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Abstract: The matching degree between agricultural water and land resources directly determines the
sustainable development of regional agriculture. Based on climate data corrected by delta statistical
downscaling from five global climate models (GCMs) in the Coupled Model Intercomparison Project
Phase 6 (CMIP6) and a multi-model ensemble, this study simulated the runoff used by the Variable
Infiltration Capacity (VIC-3L) model under four emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5) and analyzed the land use changing trend to obtain the matching degree between
agricultural water and land resources. The results demonstrate that annual climate factors exhibit an
increasing trend, and the average annual runoff was 2128.08–2247.73 × 108 m3, during 2015–2100
under the four scenarios. The area of farmland changed with an increased area of 4201 km2 from 1980
to 2020. The agricultural water and land resources would be well matched under the SSP1-2.6 and
SSP2-4.5 scenarios in 2021–2100. However, the risks of mismatch would occur in the 2030–2040 and
2050–2060 periods under the SSP3-7.0 scenario, and the 2030–2040 and 2080–2090 periods under the
SSP5-8.5 scenario. This study can provide insight into the scientific decision support for government
departments to address the challenges of mismatching risks of agricultural water and land resources.

Keywords: agricultural water resources; land use; matching coefficient; Xijiang River; global
climate models

1. Introduction

Water resources directly affect the production and utilization of agricultural land,
while the utilization of agricultural land also has an important impact on the development
and application of water resources [1]. Therefore, the spatial–temporal matching degree
between agricultural water and land resources directly determines the sustainable devel-
opment of regional agriculture and the sustainable utilization of natural resources [2]. At
the same time, the spatiotemporal matching pattern between agricultural water and land
resources is also the premise and basis for the optimal allocation of regional water and
land resources [3]. Thus, the spatiotemporal matching pattern between water and land
resources has always been a primary focus for many scholars.

At present, climate change has become one of the most important environmental
challenges in the world and has a significant effect on further aggravating the contradiction
between water supply and demand [4,5]. Meanwhile, drastic human activities are con-
stantly changing the land use type [6], thereby changing the matching degree of regional
water and land resources. Studying the changing trends of water and land resources under
the changing environment (mainly including two aspects, i.e., climate change and human
activities) [7] and clarifying the matching coefficient between water and land resources are
of great scientific significance, providing application value for rationally allocating regional
water and land resources.
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The spatiotemporal matching pattern of water and land resources is a prerequisite for
agricultural production. Scholars have done a lot of studies on the matching patterns of
water and land resources in the world. They have studied the matching pattern of water
and land resources in specific regions by using the matching coefficient of water and land
resources method, Gini coefficient method, data envelopment analysis (DEA) method, etc.,
and have made some achievements in China and other research areas [8–11]. In recent years,
more new methods have been used to study the matching degree of agricultural water and
soil resources. Liu et al. [12] used a model for measuring the matching index between the
broadly-defined agricultural water resources and land resources (MIBAWRLR), to evaluate
the degree of matching between agricultural water and land resources from 2001 to 2016.
Du et al. [13] used the spatial mismatch index to investigate the spatial–temporal changes
of matching characteristics between agricultural water and land resources in Ningxia from
2007 to 2017. Based on the conception of generalized water resources (including blue water
and green water), Geng et al. [14] developed a holistic index (RSI), derived from resource
equivalency analysis (REA), to examine the abundance or deficiency of agricultural water
and land resources (AWLR) from 2010 to 2017. The matching coefficient of the water and
land resources method is simple, and the application is mature, thus, it is most frequently
used. Data in that previous studies are obtained from statistical yearbooks, which are
usually discontinuous and also difficult to obtain. Furthermore, only matching degrees of
past times are studied, and there are relatively few studies on the matching prediction of
water and land resources for the future.

Research on matching the degree of agricultural water and soil resources in the future
needs to be carried out from two aspects: the prediction of future water resources and the
prediction of future land use. At present, based on the rapid development of the Coupled
Model Intercomparison Project (CMIP) [15], many scholars will use the global climate
models (GCMs) and combine hydrological models to explore the changes in water resources
under different emission scenarios in the future. This will provide an important reference
for research on water resource management and ecological protection [16–18]. However,
direct outputs of GCMs with systematic deviations are applicated to research and will
cause large errors in the results. Deviation correction is required when using the outputs of
GCMs. Therefore, it is necessary to evaluate the downscaling results. Meanwhile, with the
continuous development of remote sensing technology, the research on land use change has
gradually changed from land evaluation research to land use model and prediction research,
involving studies on land use patterns, ecological environments, dynamic mechanisms, and
many other aspects [19–21]. The study of simulation and prediction of land use is mainly
obtained by establishing mathematical models [22,23]. Research on the change process of
land use is very important to predict the changes in land use type and to formulate the
corresponding policies in the future. Thus, it is feasible that future land use and water
resources under the changing environment can be obtained, which can lead to future
studies on the matching degrees.

In the Xijiang River basin, China, due to the impact of climate change, drought disasters
have occurred frequently in recent years, which can seriously affect the production of coastal
residents and local economic development [24]. At the same time, human activities have a
great impact on the natural form of the basin, while the land use type has been changing
continuously [25]. However, the agricultural water supply security and the matching
problem of agricultural water and land resources in the basin need to be urgently solved.
Though, any relevant research on the Xijiang River basin currently primarily focuses on the
hydrological simulation and drought [26–28], while there is no research on the matching
degree between agricultural water and land resources in this region.

Thus, the purposes of this study were: (1) to investigate the characteristics of climate
change for the future; (2) to predict the water resources of the Xijiang River basin by hydro-
logical model simulation based on the data from GCMs; (3) to investigate the characteristics
of the land use change; (4) to explore the regular pattern of matching degree between agri-
cultural water and land resources in the Xijiang River basin under changing environment.
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2. Materials and Methods
2.1. Study Area

The Xijiang River is the largest water system in the Pearl River. It originates from
the eastern foot of Maxiong Mountain in Qujing City, Yunnan Province, on the Yunnan-
Guizhou Plateau (Figure 1). The river flows from west to east through Yunnan, Guizhou,
Guangxi, and Guangdong provinces, with a total length of 2075 km and an average slope
drop of 0.58%. The catchment area is about 3.5 × 105 km2, accounting for 77.83% of the total
area of the Pearl River basin. There are many tributaries of the Xijiang River system. The
primary tributaries with a catchment area of more than 1.0 × 104 km2 include the Beipan
River, Liujiang River, Yujiang River, Guijiang River, and Hejiang River. The Xijiang River is
the most important water supply source in China. The Xijiang River basin belongs to the
subtropical monsoon climate zone, with obvious changes in dry and wet seasons, and an
uneven distribution of precipitation in the region, which leads to the uneven distribution
of water resources in the basin.
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2.2. Model and Data

At present, a total of 33 different scientific research institutions have participated
in Coupled Model Intercomparison Project Phase 6 (CMIP6). The Scenario Model Inter-
comparison Project (ScenarioMIP), as the primary activity within CMIP6, is widely used
in research fields such as the prediction and mechanism of future climate changes [29].
The ScenarioMIP emission pathways include four Shared Socioeconomic Pathways (SSPs),
namely: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. They indicate the representative con-
centration pathways, where radiative forcing will reach 2.6 W/m2 (low-forcing scenario,
SSP1-2.6), 4.5 W/m2 (medium-forcing scenario, SSP2-4.5), 7.0 W/m2 (medium- to the
high-forcing scenario, SSP3-7.0), and 8.5 W/m2 (high-forcing scenario, SSP5-8.5) near 2100,
respectively [30].

In this study, five GCMs were selected from CMIP6 with complete datasets of daily
precipitation, daily maximum temperature, daily minimum temperature, and daily wind
speed, and the four Shared Socioeconomic Pathways, such as SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 were used (https://esgf-node.llnl.gov/search/cmip6/ (accessed on
6 December 2022)). The global climate model’s information is shown in Table 1. In addition,

https://esgf-node.llnl.gov/search/cmip6/
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the multi-model ensemble mean (MME) is a better method to reduce the uncertainty of
model simulation. Its simulation capability is better than that of a single model, and
it is widely used in climate change simulations [31]. Therefore, this study also used it,
named “Multi”.

Table 1. The global climate model’s information.

Index Model Spatial Resolution Research Institution, Country

1 BCC-CSM2-MR 1.125◦ × 1.125◦ BBC, China
2 CanESM5 2.8◦ × 2.8◦ CCCMA, Canada
3 ACCESS-CM2 1.25◦ × 1.875◦ CSIRO-ARCCSS, Australia
4 MRI-ESM2-0 1.125◦ × 1.125◦ MRI, Japan
5 IPSL-CM6A-LR 1.27◦ × 2.5◦ IPSL, France

Daily meteorological data of the 63 weather stations from 1961 to 2014, including pre-
cipitation, maximum temperature, minimum temperature, and wind speed were obtained
from “Daily Data Set 2.0 of China’s Surface Climatic Data”, which was issued by the Na-
tional Meteorological Science Data Center (http://data.cma.cn (accessed on 6 July 2022)).
The data have been quality controlled, during which, it performed satisfactorily. The actual
observed daily runoff data of the Gaoyao hydrologic station at the outlet of the Xijiang
River basin were obtained from the “Hydrological Yearbook of the Pearl River Basin”.

The land use data, with a resolution of 30 m, were obtained from the Resource and
Environmental Science Data Center of the Chinese Academy of Sciences (http://www.
resdc.cn (accessed on 8 September 2022)). Digital elevation data (DEM), with a resolution
of 30 m, were obtained from the National Aeronautics and Space Administration (https:
//www.nasa.gov/ (accessed on 3 February 2022)). All the above data were checked, and
the data quality was good.

2.3. Method
2.3.1. Delta Statistical Downscaling

In this study, the inverse distance weighted (IDW) method was used to generate daily
precipitation, daily maximum temperature, daily minimum temperature, and daily wind
speed for the five GCMs and “Multi” from the 63 weather stations in the Xijiang River
basin. The delta statistical downscaling method was used for bias correction. The method
is a simple bias correction technique recommended by the U.S. Global Change Research
Program, which is easy to operate, requires fewer factors, and is widely applied in a wide
range of climate change studies [32,33]. For variables such as precipitation, temperature, or
wind speed, the method is used to calculate the average deviation in each climate station
between the historical observation data and the historical simulation data of each GCM.
Then, the average deviation is applied to the simulation data in the future. The calculation
equations are as follows [34]:

Pgcm−bias,d =
Pgcm,m,his

Pobs,m,his
· Pgcm,d (1)

Tgcm−bias,d = Tgcm,d + (Tobs,m,his − Tgcm,m,his) (2)

Wgcm−bias,d = Wgcm,d + (Wobs,m,his − Wgcm,m,his) (3)

where Pgcm-bis,d, Tgcm-bis,d, and Wgcm-bis,d are daily data for precipitation, temperature, and
wind speed, which have been reconstructed by the delta statistical downscaling method, re-
spectively; Pgcm,d, Tgcm,d, and Wgcm,d are daily data for precipitation, temperature and wind
speed of GCMs, respectively; Pgcm,m,his, Tgcm,m,his, and Wgcm,m,his are multi-year monthly av-
erage data for precipitation, temperature, and wind speed of GCMs, respectively; Pobs,m,his,
Tobs,m,his, and Wobs,m,his are multi-year monthly average observed data for precipitation,
temperature and wind speed, respectively.

http://data.cma.cn
http://www.resdc.cn
http://www.resdc.cn
https://www.nasa.gov/
https://www.nasa.gov/


Water 2023, 15, 827 5 of 16

2.3.2. VIC-3L Model Calibration and Evaluation

VIC-3L land surface model is a macroscale distributed hydrological model that is
based on the water and energy balance. It has been widely applied for surface runoff
generation [35,36]. This study used the VIC-3L to simulate the runoff under four different
emission scenarios such as SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The input param-
eters include land use data, soil data, and meteorological data (daily precipitation, daily
maximum temperature, daily minimum temperature, and daily wind speed).

To evaluate the performance of simulation results provided by the model, statistical
performance indicators, such as the Nash–Sutcliffe efficiency coefficient (NSE), ratio of root
mean squared error to standard deviation (RSR), and percentage of bias (PBIAS) were used.
Normally, when NSE > 0.5, RSR ≤ 0.7, and PBIAS < ± 25%, the modeling results of the
runoff are considered to be satisfactory. Furthermore, the modeling results can be evaluated
as good if 0.75 ≥ NSE > 0.65, 0.6 ≥ RSR > 0.5 and ± 15% ≥ PBIAS > ± 10%, and very good
if 1.0 ≥ NSE > 0.75, 0.5 ≥ RSR, and ±10% ≥ PBIAS [37].

2.3.3. Calculation of Matching Coefficient of Agricultural Water and Land Resources

The matching coefficient [38,39] of agricultural water and land resources indicates the
temporal suitable matching relationship between water resources and farmland resources
available for agricultural production in a region. It is generally expressed by the number of
water resources available per unit of farmland area. The coefficient is determined by the
area of farmland, the number of water resources in a region, temporal distribution, and the
utilization of the water resources, etc. The smaller the value, the lower the matching degree
will be, which indicates there is more farmland and less water in the region.

In this study, the method of the matching coefficient was used to study the matching
degree of agricultural water and land resources in the Xijiang River basin. The calculation
equation is expressed as:

Rk =
αWk
Lk

(4)

where Rk is the matching coefficient of agricultural water and land resources in the basin in
the kth year, α is the agricultural water use proportion coefficient, and is taken as 0.68 [40];
Wk is the total runoff of the basin in the kth year (108 m3), Lk is farmland area of the basin in
the kth year (104 hm2).

3. Results
3.1. Climate Changing Trend
3.1.1. Climate Models Evaluation

The simulation effectiveness of daily precipitation, daily maximum temperature, daily
minimum temperature, and daily wind speed of the five climate models in the 1961–2014
period was evaluated by standard deviation, root mean squared error and correlation
coefficient based on the observed values from the 63 ground-based meteorological stations.
The results are shown in a Taylor chart (Figure 2). For daily precipitation corrected by delta
statistical downscaling, IPSL-CM6A-LR was ranked high for each evaluation index. For the
corrected daily maximum temperature, ACCESS-CM2 was ranked high for each evaluation
index. For the corrected daily minimum temperature, ACCESS-CM2 was ranked high for
each evaluation index. For the corrected daily wind speed, IPSL-CM6A-LR was ranked
high for each evaluation index. The five climate models had different simulation effects on
daily precipitation, daily maximum temperature, daily minimum temperature, and daily
wind speed. Among them, IPSL-CM6A-LR had the best simulation performance on daily
precipitation and daily wind speed, and ACCESS-CM2 had the best simulation on daily
maximum temperature and daily minimum temperature.
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Generally, the simulation effect of the daily maximum temperature and daily minimum
temperature was better than the other two meteorological factors. In addition, it can also be
seen from Figure 2 that the simulation accuracy of all four meteorological factors improved
after the values were corrected.

The simulation effectiveness of the daily precipitation, daily maximum temperature,
daily minimum temperature, and daily wind speed in the “Multi” model for the 1961–2014
period was also evaluated (Figure 2). Compared with the five climate models, all four
meteorological factors in the “Multi” were better. This indicates that the “Multi” has a
higher simulation accuracy and provides more reliable results.

The distribution differences during a year between the multi-year daily average
observation values and the “Multi” simulation values in the Xijiang River basin from 1961
to 2014 are shown in Figure 3. For distribution during a year of precipitation, temperature,
and wind speed, the values for the “Multi” simulation were consistent with the observation
of the changing trend and distribution characteristic. Meanwhile, the uncertainty values
for the daily maximum temperature and daily minimum temperature for the “Multi”
were small. While the uncertainty values of daily precipitation and daily wind speed
for the “Multi” were a little large. Therefore, the “Multi” could be used to analyze the
climate-changing trend and simulate the runoff in the Xijiang River basin.
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the model.

3.1.2. Climate Change Characteristics

The changing trends in annual precipitation, annual average maximum temperature,
annual average minimum temperature, and annual average wind speed in the Xijiang
River basin from 2015 to 2100, under the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5, are shown in Figure 4. Under all four scenarios, the annual precipitation in the
basin from 2015 to 2100 showed a significant increasing trend, and all passed the 95%
confidence test. Under the scenario of SSP1-2.6, the annual precipitation increase rate was
the highest, whereas SSP2-4.5 was the lowest. The annual precipitation increase rates under
all four scenarios were 25.00 mm/10a, 20.08 mm/10a, 21.99 mm/10a, and 22.49 mm/10a,
respectively. Thus, the annual precipitation in the Xijiang River basin would decrease at
first and then increase with the rising of the radiative forcing level in the 2015–2100 period.
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Figure 4. Temporal variation of annual precipitation, annual average maximum temperature, annual
average minimum temperature, and annual average wind speed in the Xijiang River basin under
different climate scenarios, 2015–2100. Note: shadows represent the values range of the five climate
models, the equation denotes the linear trend of each emission scenario, and P is an indicator of
significance obtained by the F-test.

From Figure 4, both the annual average maximum temperature and annual average
minimum temperature in the basin from 2015 to 2100 showed a significant increasing trend,
under the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, and all passed the 95%
confidence test. Under the four scenarios, the annual average maximum temperature in-
crease rates were 0.12 ◦C/10a, 0.31 ◦C/10a, 0.50 ◦C/10a, and 0.68 ◦C/10a, respectively, and
the annual average minimum temperature increase rates were 0.12 ◦C/10a, 0.29 ◦C/10a,
0.47 ◦C/10a, and 0.62 ◦C/10a, respectively. It indicated that the annual maximum tempera-
ture and annual minimum temperature in the Xijiang River basin would increase with the
rising of the radiation forcing level in the 2015–2100 period.

Annual average wind speed in the basin during 2015–2100 showed an increasing
trend under the scenario of SSP1-2.6 and passed the 95% confidence test. It also showed an
increasing trend under the scenario of SSP2-4.5, although didn’t pass the 95% confidence
test. In addition, the annual average wind speed during 2015–2100 under the scenarios of
SSP3-7.0 and SSP5-8.5 both showed a decreasing trend, while the value passed the 95%
confidence test under the scenario of SSP3-7.0, yet did not pass the 95% confidence test
under the scenario of SSP5-8.5.

In summary, annual precipitation, annual average maximum temperature, and annual
average minimum temperature in the Xijiang River basin from 2015 to 2100 showed an
increasing trend under the four scenarios, including SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5. Furthermore, the annual average maximum temperature and annual average
minimum temperature showed strong regularity, which increased with the rising of the
radiative forcing level. However, the annual average wind speed from 2015 to 2100 showed
an increasing trend under the scenarios of SSP1-2.6 and SSP2-4.5 and a decreasing trend
under the scenarios of SSP3-7.0 and SSP5-8.5.
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3.2. Water Resource Changing Trend
3.2.1. VIC-3L Model Calibration and Validation

In this study, the periods of 2006, 2007–2010, and 2011–2014 were taken as the warm-up
period, calibration period, and validation period of the model, respectively. The daily runoff
of Gaoyao Station at the outlet hydrometric station of the Xijiang River basin was simulated.
A total of seven parameters needed to be calibrated for the VIC-3L model, including, the
variable infiltration curve parameter (Binf), Dsmax fraction, where the nonlinear baseflow
originates (Ds), the maximum velocity of baseflow (Dsmax), the fraction of maximum soil
moisture, where the nonlinear baseflow occurs (Ws), the thickness of the topsoil layer (D1),
the thickness of the second soil layer (D2), and the thickness of the third soil layer (D3).
Generally, D1 did not need to be calibrated, and it is taken as 0.1 m directly. The remaining
six parameters need to be calibrated, and the calibration results of the VIC-3L parameters
are shown in Table 2.

Table 2. Sensitivity ranking and corresponding fitted values of the VIC-3L calibration parameters for
daily-scale streamflow simulation.

Parameter Description Unit Value Range Fitting Value

Binf Variable infiltration curve parameter 1 [0, 1] 0.35

DS
Dsmax fraction where nonlinear

baseflow originates 1 [0, 1] 0.17

Dsmax Maximum velocity of baseflow mm/d [0, 40] 18

Ws
Fraction of maximum soil moisture
where nonlinear baseflow occurs 1 [0, 1] 0.9

D1 Thickness of top (first) soil layer m - 0.1
D2 Thickness of second soil layer m [0, 1] 0.4
D3 Thickness of third soil layer m [1, 2] 0.7

The calibration and validation statistics for daily-scale runoff simulation by VIC-3L
are shown in Table 3. The model simulation effect was “very good” during calibration and
validation periods at the daily time step since both of the NSE values were greater than
0.75. Additionally, values for the RSR of 0.46 and 0.53 during the calibration and validation
periods indicated that the simulation effect was “very good” and “good”, respectively. The
model simulation effect was “very good” during the calibration and validation periods,
while both of the PBIAS values were less than 10%. Overall, the VIC-3L model had a good
simulation effect during the calibration periods and validation periods, at daily time steps
in the Xijiang River basin.

Table 3. Calibration and validation statistics for daily-scale runoff simulation by VIC-3L.

Period Index Gaoyao

Calibration (2007–2010)
NSE 0.80
RSR 0.46

PBIAS 6.79%

Validation (2011–2013)
NSE 0.76
RSR 0.53

PBIAS 7.88%

3.2.2. Annual Total Runoff Changing Trend

According to the meteorological data corrected by the delta statistical downscaling, the
annual total runoff of the Xijiang River basin for 2015–2100, under the scenarios of SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5, were obtained by using the VIC-3L model. Accordingly,
the future annual runoff of the basin was determined by meteorological factors. From
Figure 5, under the four scenarios, all of the annual total runoff of the Xijiang River basin for
2015–2100 showed a linear increasing trend and all passed the 95% confidence test. Daily
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precipitation, daily maximum temperature, and daily minimum temperature, all show
increasing trends, except for daily wind speed. Thus, the change trends of the annual runoff
in the four scenarios are consistent with those of the daily precipitation, daily maximum
temperature, and daily minimum temperature.
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significance was passed.

The range of annual runoff under the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 were 1350.04 × 108 m3 to 3148.16 × 108 m3, 1614.16 × 108 m3 to 3202.38 × 108 m3,
1437.30 × 108 m3 to 3096.82 × 108 m3, 1440.75 × 108 m3 to 3114.54 × 108 m3, respectively.
This shows that the variation range of a future annual runoff under each scenario is large. In
addition, the average annual runoff for 2015–2100 was 2247.73 × 108 m3, 2199.60 × 108 m3,
2128.08 × 108 m3, and 2203.77 × 108 m3, respectively. This indicated that the future average
annual runoff will decrease first and then increase with the rising of the radiation forcing
level, although the change range was small for all four scenarios.

3.3. Land Use Changing Trend

The result of the analysis of the land use area and its changes over the past 40 years
from 1980 to 2020 in the Xijiang River Basin is shown in Table 4. The area of each land
use type was constantly changing over the previous year. In all land use types, the area
of forestland had changed the most, with a reduced area of 8025 km2, a total reduced rate
of 3.81%, and an annual increase rate of 0.10%. In addition, the area of farmland had the
second largest change, with an increased area of 4201 km2, a total increase rate of 5.65%,
and an annual increase rate of 0.14%. In addition, the area of unused land had changed the
least, by only 2 km2.
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Table 4. Land use type areas during 1980–2020 (km2).

Land Classification 1980 1990 2000 2010 2020 Change of 1980 to 2020

Farmland 74,360 74,193 73,892 73,605 78,561 4201
Forestland 210,470 210,404 210,401 210,880 202,444 −8025
Grassland 48,619 48,709 48,602 47,459 48,446 −173

Water Body 3813 3846 3925 4300 4582 769
Built-Up Land 4229 4335 4669 5256 7437 3208
Unused Land 99 98 98 92 97 −2

From Figure 6, the different land use types have been in the process of mutual trans-
formation from 1980 to 2020 in the Xijiang River basin. During the past 40 years, the area
of farmland transformed from the other five land types has increased. Furthermore, the
increased farmland was mainly transformed from forestland and grassland, specifically, a
large number of forestlands were transformed into farmland between 2010 and 2020. In
addition, the areas of grassland, built-up land, and water body transformed from the other
land types have also been increasing during the past 40 years, while the area of forestland,
transformed from the other land types, initially increased before decreasing.
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3.4. Matching Degree of Agricultural Water and Land Resources in the Xijiang River Basin

In this study, the area change rate of the farmland from 2021–2100 was assumed as
being the same as that during 1980–2020. Then, the annual farmland area of the Xijiang
River basin from 2021–2100 could be obtained from a simple linear regression model.
The area of farmland will be 87951.59 km2 with an annual increase rate of 0.14% in 2100.
Thus, according to the simulation results of water resources, the matching coefficient of
agricultural water and land resources in the Xijiang River basin during 2021–2100, under
the climate scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5, has been calculated.

From Figure 7, the matching coefficient of agricultural water and land resources in the
Xijiang River basin showed a linear increasing trend under the four scenarios from 2021 to
2100. The multi-year average matching coefficients of agricultural water and land resources
were 1.63 × 104 m3/hm2, 1.59 × 104 m3/hm2, 1.54 × 104 m3/hm2, and 1.60 × 104 m3/hm2,
respectively, indicating that the matching coefficient changed slightly with the rising of the
radiation forcing level.
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The minimum matching coefficient of agricultural water and land resources, in the
past 40 years, was 1.20 × 104 m3/hm2, which occurred in 1995. When using this as the
minimum threshold for the matching coefficient, the agricultural water and land resources
would be well matched under the two scenarios of SSP1-2.6 and SSP2-4.5 during 2021–2100,
and there would be no risk of a mismatch. However, the matching degree of agricultural
water and land resources under the SSP3-7.0 and SSP5-8.5 scenarios would not be well.
Among them, the risk of mismatch would occur in the 2030–2040 and 2050–2060 periods,
under the SSP3-7.0 scenario, while the risk of mismatch would occur in the 2030–2040 and
2080–2090 periods, under the SSP5-8.5 scenario.

4. Discussion

At present, the direct outputs of GCMs with systematic deviations, which are appli-
cated to research, will cause large errors in the results. Therefore, deviation correction
is required when using the outputs of GCMs [41]. There are many bias-corrected meth-
ods, such as the Statistical DownScaling Model, Artistic Neural Network model, and
bias-corrected based on randomly moving points, etc. [42–45]. The accuracy of these bias-
corrected methods has improved the outputs of GCMs. In this study, the delta statistical
downscaling method was used to correct the outputs, and the daily outputs of each me-
teorological factor were verified after correcting for any bias. The results have shown
that all the corrected outputs were improved. However, due to the strong randomness
of meteorological factors on a daily scale, further studies will be needed to detail how to
improve the bias-corrected accuracy of GCMs outputs.

The multi-year average annual runoff of the Xijiang River basin from 2015 to 2100
was 2103.77 × 108 m3 to 2247.73 × 108 m3, under the four scenarios of SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5. According to the bulletin of Guangdong Xijiang River Basin Admin-
istration, the multi-year average annual runoff of Xijiang River Basin was 2215 × 108 m3,
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indicating that the annual runoff under the four scenarios in the future was generally con-
sistent with those in the past. Previous research has shown that the increase in temperature
and precipitation might promote an increase in runoff [46]. For rivers with precipitation
as the main supply source, the response of runoff to precipitation is more obvious, while
for rivers with glacial melt water as the main supply source, the response of runoff to
temperature is more obvious [47]. In the four scenarios, the multi-year average annual
runoff of the SSP3-7.0 was the minimum, and the multi-year average annual precipitation
under this scenario was also the minimum, yet the multi-year average maximum and mini-
mum temperatures were not the minimums. Meanwhile, the multi-year average annual
runoff of the SSP1-2.6 was the maximum, and the multi-year average annual precipitation
under this scenario was also the maximum, yet the multi-year average annual maximum
and minimum temperatures were the minimums. Therefore, the runoff change was more
consistent with the precipitation change than with the temperature and wind in the Xijiang
River basin [48,49].

The land use type in the Xijiang River basin has been changing from 1980 to 2020, and
the farmland area change has shown an increasing trend. A large number of forestlands
have been transformed into farmland, especially from 2010 to 2020, which might be due
to the implementation of the project of “returning forests to farmland” in China [50]. In
the previous research on land use change simulation, the method of land use transfer
probability matrix was used for the land use dynamic prediction model [51]. For the
whole study area, the result of the dynamic prediction model of land use change is almost
consistent with that of a linear regression model. The difference between the two methods
is that the dynamic prediction model can simulate spatial distribution [52]. This study only
evaluated the land use change of the whole basin, thus, a simple linear regression model
used for assuming the future land use change seems rational.

The matching coefficient of agricultural water resources and land resources in the Xi-
jiang River basin from 1980 to 2020 changed from 1.20 × 104 m3/hm2 to 2.12 × 104 m3/hm2.
The matching coefficients were all at about 1.20 × 104 m3/hm2 in 1995, 2002, and 2011.
According to “China Meteorological Disaster Ceremony (Yunnan volume, Guangxi vol-
ume, Guizhou volume, and Comprehensive volume)” along with previous research [53,54],
major droughts occurred, and damage to the crops happened in all the provinces in the
study area during these years, while droughts in the other years were relatively light. Thus,
1.20 × 104 m3/hm2 is used as the criterion of the matching coefficient in this area. In the
case of the matching coefficient in the Xijiang River basin, it is lower than the future value
of 1.20 × 104 m3/hm2. Therefore, measures such as promoting the water-saving irrigation
of farmland, adjusting the agricultural planting structure, and implementing water system
connection projects will improve the structural water shortage caused by the mismatch of
water and land resources. In addition, the matching coefficient of agricultural water and
soil resources is affected by agricultural planting structures, farmland type, and the support
of farmland water conservancy infrastructure, thus, there is no uniform optimal value at
present. For some years in the Xijiang River basin, the matching coefficient of water and
soil resources is higher than 1.65 × 104 m3/hm2 (the matching coefficient from 1980 to 2020
is ranked from high to low, and the frequency of occurrence is calculated to be 25%), or
even in the case of flooding, measures, such as the inter-basin water resource dispatching
project, construction of reservoirs, and other water storage projects, can be implemented
and a water quota for industry and domestic use can be moderately increased to improve
the utilization rate of water resources.

The multi-year average matching coefficient of agricultural water and land resources
in the Xijiang River basin was 1.54 × 104 m3/hm2 to 1.63 × 104 m3/hm2 under the future
four scenarios. The matching degree in this study region was good compared with that in
the northwest, northeast, and other regions of China [55]. Over the previous decades, a
few studies have analyzed the agricultural water and land resources in the sub-basins of
the Xijiang River basin, and the results showed that the matching degree of agricultural
water and land resources in this region was also good [40,56]. In addition, this study has



Water 2023, 15, 827 14 of 16

shown that there would be risks of a mismatch of agricultural water and land resources in
the Xijiang River basin, in some years, under the scenarios of SSP3-7.0 and SSP5-8.5. Thus,
the government department should do some work in planning the utilization of water and
land resources [11], to achieve social–economic–ecological sustainable development in the
Xijiang River basin. In changing environments, the government needs to strengthen the
construction of a digital river basin in the Xijiang River basin and enhance its hydrological
forecasting capacity. Moreover, the planning of farmland utilization in the basin should
fully consider the carrying capacity of future water resources and continue to strengthen the
construction of high-standard farmland water conservancy infrastructure and water-saving
irrigation facilities, to improve agricultural disaster prevention capacity. Furthermore,
although the matching coefficient in the basin is generally good, mismatches may occur in
some intra-basin areas or in specific seasons. Therefore, it is necessary to study the spatial
distribution of the matching pattern in the region in the future.

5. Conclusions

In this study, the water resource changing trends were obtained from 2015 to 2100 in
the Xijiang River basin under four scenarios based on the bias-corrected climate factors
of GCMs and the VIC-3L model. Meanwhile, the land use change was analyzed, and
the matching degree between agricultural water and land resources was studied. The
conclusions of this study are as follows:

Annual precipitation, annual average maximum temperature, and annual average
minimum temperature in the Xijiang River basin from 2015 to 2100 have shown an increas-
ing trend under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. However, the annual average
wind speed from 2015 to 2100 has shown an increasing trend under the scenarios of SSP1-2.6
and SSP2-4.5 and a decreasing trend under the scenarios of SSP3-7.0 and SSP5-8.5.

Under the four scenarios, the annual total runoff of the Xijiang River basin during
2015–2100 showed a linear increasing trend. The average annual runoffs during 2015–2100
were 2247.73 × 108 m3, 2199.60 × 108 m3, 2128.08 × 108 m3, 2203.77 × 108 m3, respectively.

The area of each land use type changed constantly between 1980 and 2020. The area
of forestland changed the most, with a reduced area of 8025 km2. In addition, the area
of farmland changed the second most, with an increased area of 4201 km2 and an annual
increase rate of 0.14%, while it mainly transformed from forestland and grassland.

The matching coefficient of agricultural water and land resources in the Xijiang River
basin will have an increasing trend under all four scenarios from 2021 to 2100. The
multi-year average matching coefficients of agricultural water and land resources were
1.63 × 104 m3/hm2, 1.59 × 104 m3/hm2, 1.54 × 104 m3/hm2, and 1.60 × 104 m3/hm2,
respectively. The agricultural water and land resources would be well matched under the
scenarios of SSP1-2.6 and SSP2-4.5 during 2021–2100. However, the risk of mismatches
would occur in the 2030–2040 period and the 2050–2060 period under the SSP3-7.0 scenario,
while the risks of mismatches would occur during the 2030–2040 period and 2080–2090
period under the SSP5-8.5 scenario.
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