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Abstract: Due to the spatial variability of hydraulic properties, probabilistic slope seepage analysis
becomes necessary. This study conducts a probabilistic analysis of slope seepage under rainfall, con-
sidering the spatial variability of saturated hydraulic conductivity. Through this, both the commonly
used Monte Carlo simulation method and the proposed first-order stochastic moment approach
are tested and compared. The results indicate that the first-order analysis approach is effective and
applicable to the study of flow processes in a slope scenario. It is also capable of obtaining statistics
such as mean and variance with a high enough accuracy. Using this approach, higher variabilities in
the pressure head and the fluctuation of the phreatic surface in the slope are found with a higher value
of the correlation length of the saturated hydraulic conductivity. The Monte Carlo simulation is found
to be time-consuming: at least 10,000 realizations are required to reach convergence, and the number
of realizations needed is sensitive to the grid density. A coarser grid case requires more realizations
for convergence. If the number of realizations is not enough, the results are unreliable. Compared
with Monte Carlo simulation, the accuracy of the first-order stochastic moment analysis is generally
satisfied when the variance and the correlation length of the saturated hydraulic conductivity are
not too large. This study highlights the applicability of the proposed first-order stochastic moment
analysis approach in the slope scenario.

Keywords: first-order stochastic moment analysis; slope seepage; spatial variability; saturated
hydraulic conductivity; rainfall infiltration; phreatic surface

1. Introduction

Due to the heterogeneous nature of geological media and our inability to completely
know them [1–3] our predictions of the hydrological processes in a slope inevitably involve
uncertainties [1,4–6]. For example, the hydraulic properties generally exhibit significant
spatial variabilities at multiple scales [1,7]. This leads to uncertainties in the slope seepage
flow analysis, which contributes to the slope stability analysis.

Probabilistic methods become necessary for dealing with the uncertainty issues as-
sociated with our predictions of slope seepage [1,5,8,9]. Generally, given the statistical
properties of hydraulic parameters, a Monte Carlo simulation method is used to derive the
statistics such as the mean and variance of properties of the slope seepage field. Either a
steady or transient analysis of the saturated or unsaturated flow in the slope can be carried
out in a Monte Carlo simulation. For example, Gui et al. [5] used Monte Carlo simulation
to investigate the influence of variabilities in the hydraulic conductivity on the seepage
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and stability of an embankment dam. Using FLAC 5.0, Srivastava et al. [10] conducted a
Monte Carlo simulation to derive the statistical response of steady-state seepage flow due
to spatially variable permeabilities. Cho [2] obtained statistical responses of the seepage
of an infinite slope under rainfall due to the spatial variability of hydraulic conductivity
from the Monte Carlo simulation. Gomes et al. [11] investigated the effect of uncertainties
in the hydraulic properties on the pressure head via the Monte Carlo simulation of a three-
dimensional flow model. Tang et al. [12] considered the random rainfall pattern through
the Monte Carlo simulation to produce its impacts on the pore-water pressure distribution
and the assessment of rainfall-induced landslide. Li et al. [13] applied the Monte Carlo
simulation to the probability and sensitivity analysis of slope stability of a tailings dam
under seepage. More recently, Monte Carlo simulation was used in the stochastic analysis
of unsaturated slopes subjected to various rainfall intensities and patterns by [14]. Few
simplified assumptions are required by the Monte Carlo simulation except for the definition
of the probability density function of the hydraulic properties [15].

These appealing advantages of the Monte Carlo simulation method build on its high
demand for computational time and storage space [2,15]. This demand becomes dreadful
when addressing flow problems with fine meshes [15]. In turn, this restricts the number of
realizations that can be conducted in a Monte Carlo simulation [5].

As an alternative, a first-order stochastic moment analysis approach [16] has been used
to conduct a two-dimensional probabilistic infiltration analysis in a hillslope. Although
the derived statistics of slope seepage are at an accuracy of the first-order approximation,
conducting a large number of simulations is avoided, thus easing the computational
burden associated with the Monte Carlo simulation. In addition, similar to the Monte
Carlo simulation, either the steady-state flow or the transient flow in the slope can be
examined using the first-order analysis. With these advantages of the first-order approach,
Cai et al. [7] investigated the temporal and spatial propagation of the uncertainty of slope
stability during rainfall, considering variabilities in the initial soil moisture, rainfall and
soil hydraulic properties.

Although much work has been performed using the Monte Carlo simulation to date,
much less attention has been paid to the influence of the grid density on the Monte
Carlo simulation. In addition, the applying conditions of the first-order analysis remain
unexplored. Moreover, at the present time, the effective flow profile and variability of
seepage in two-dimensional, unsaturated heterogeneous slopes under conditions of steady
rainfall infiltration, based on a spatially correlated hydraulic conductivity field, are not
sufficiently understood.

The objectives of this study are to (1) conduct a probabilistic analysis of slope
seepage under rainfall, considering the spatial variability of hydraulic conductivity and
(2) test and compare the Monte Carlo simulation and the first-order analysis method
applied in the probabilistic slope seepage analysis. The influence of the grid density
on both methods and the applicability of the proposed first-order stochastic moment
analysis approach are the focus. To this end, we first introduce how the first-order
stochastic moment analysis works by analyzing the first-order moments of the pressure
head. In Section 2, we consider the spatial variability of the hydraulic conductivity and
introduce the equations that govern the rainfall infiltration process. For the purpose of
verifying the accuracy of the first-order analysis method, we also briefly introduce the
Monte Carlo simulation of hydraulic responses, considering the spatial variability of
the hydraulic conductivity in Section 2. One focus of this study is the grid density, the
influence of which on the probabilistic analysis by both Monte Carlo simulation and the
first-order analysis method will be investigated. The model setups for the numerical
simulation of the slope rainfall infiltration analysis are also provided in Section 2. The
results and discussions are provided in Section 3, which includes the results of the
effect of the spatial variability of hydraulic conductivity on the pressure heads by the
proposed first-order stochastic moment analysis method and the Monte Carlo simulation
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verification, shedding light on the applying conditions of the first-order analysis in
probabilistic slope seepage analysis. The article finally draws its conclusions in Section 4.

2. Methodology

Based on the governing equations of the rainfall infiltration process, the first-order
stochastic moment analysis of the pressure head, considering the spatial variability of the
saturated hydraulic conductivity, is introduced. In addition, to verify the accuracy of the
first-order analysis method, the Monte Carlo simulation of hydraulic responses, considering
the spatial variability of the saturated hydraulic conductivity, is also briefly introduced.
Finally, both the first-order analysis and the Monte Carlo simulation of rainfall infiltration
are implemented via finite element simulations. Hence, the methodology section will be
grouped into: (1) the governing equations for rainfall infiltration analysis, (2) first-order
stochastic moment analysis, (3) Monte Carlo simulation verification and (4) the setup of
the simulations.

2.1. Governing Equations for Rainfall Infiltration Analysis

The two-dimensional, steady-state flow in a slope under rainfall infiltration can be
described by the following equation:

∂

∂x

(
K(h)

∂h
∂x

)
+

∂

∂z

(
K(h)

∂(h + z)
∂z

)
= 0 (1)

which is subject to the following boundary conditions:

h(x, z)|ΓD
= hD and

[
K(h)

∂h
∂x
· nx + K(h)

(
∂h
∂z

+ 1
)
· nz

]∣∣∣∣
ΓN

= qN (2)

where x and z denotes the coordinates along the horizontal x-axis and vertical z-axis,
respectively; h denotes the pressure head, which is a function of the coordinates; k(h) is
the hydraulic conductivity–pressure constitutive function, hD is the prescribed head at the
Dirichlet boundary ΓD, qN is the specific flux at the Neumann boundary ΓN and notations
nx and nz are the components in the x and z directions, respectively, of a unit vector n that
is normal to the boundary ΓN .

To describe the k(h) and the volumetric water content, θ(h), the hydraulic conduc-
tivity curve and the moisture retention curve (Figure 1a,b) developed by [17,18] are
adopted herein:

K(h) = Ks

(
1− (α|h|)n−1[1 + (α|h|)n]−m

)2[
1 + (α|h|)n](−m/2) (3)

θ(h) = (θs − θr)
[
1 + (α|h|)n]−m

+ θr (4)

In which Ks is the saturated hydraulic conductivity; α, n and m are soil parameters, where
m = 1−1/n and θs and θr denote the saturated and residual moisture content, respectively;
|| represents the absolute value.

2.2. First-Order Stochastic Moment Analysis

Based on the governing equations of the rainfall infiltration, the first-order stochas-
tic moment analysis of slope seepage can be discussed. In this section, the two-
dimensional correlation structure of the saturated hydraulic conductivity, Ks, was
constructed, and the first-order stochastic moment formulation of slope seepage was
then derived.
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Figure 1. Moisture retention and hydraulic conductivity curves: (a) is the hydraulic conductivity
curve and (b) is the moisture retention curve.

2.2.1. Two-Dimensional Correlation Structure of Saturated Hydraulic Conductivity

Usually, a mean (µKs ), a variance (σ2
Ks

) and a correlation structure described by correla-
tion length (λ) are needed to define a correlated field. The correlation length, λ, represents
the distance within which the hydraulic conductivities are correlated in space. Physi-
cally, the correlation lengths describe the average dimensions (e.g., length, thickness) of
heterogeneity, such as layers or stratifications [19].

If the saturated hydraulic conductivity is assumed to follow a lognormal random field,
then ln Ks can be modeled as a normal distribution with a mean, µln Ks , and a variance,
σ2

ln Ks
, which are calculated from:

σ2
ln Ks

= ln
(

1 + σ2
Ks

/µ2
Ks

)
(5a)

µln Ks = ln(µKs)−
1
2

σ2
ln Ks

(5b)

In this study, the saturated hydraulic conductivity was treated as a statistically station-
ary and isotropic field, which is reasonable when the soil of the slope is deposited with
regionally similar soils and without a specific direction. In this type of field, the mean
hydraulic properties are constant in the domain. The covariance (or correlation) between
any two points in the simulation domain does not depend on their locations. It decreases
with their distance within the correlation length, gradually becoming relatively small (or
zero) beyond the correlation length. The correlation lengths in the horizontal and vertical
directions were assumed to be the same. An exponential autocorrelation function was used
as follows:

ρ
(

A, A′
)
= exp

−
√
(x− x′)2 + (z− z′)2

λ

 (6)

where ρ(A, A′) is the autocorrelation function of any two points, A(x, z) and A′(x′, z′).

2.2.2. First-Order Formulation

Natural logarithms of the saturated hydraulic conductivity are treated as a stochastic
process in space, which is characterized by its mean, µln Ks , its variance, σ2

ln Ks
and its spatial

correlation function, ρ(A, A′). Subsequently, the pressure head, h, is expanded in a Taylor
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series about µln Ks . After neglecting the second- and the higher-order terms, the first-order
approximation of the pressure head can be written as:

h(x, z) = h(x, z) + p(x, z) = h(x, z) + f (x, z)
∂h(x, z)

∂ ln Ks(x, z)
(7)

where f (x, z) is the perturbation of ln Ks(x, z); h is the mean pressure head, evaluated
using the mean saturated hydraulic conductivity, µKs , and it represents the head in an
equivalent homogeneous slope; and p denotes the head perturbation around the mean head
h, resulting from spatial variability of ln Ks(x, z). The partial derivative is the sensitivity
matrix, which is evaluated at the mean parameter µKs . According to Equation (7), the head
perturbation can be written in a matrix form as:

p = Jp f f (8)

Here, bold symbols denote either matrices or vectors. Jp f is the sensitivity of p to
change in f or a Jacobian matrix, which can be calculated by the adjoint method [15,20–22].
Multiplying Equation (8) with itself and taking the expectation leads to the covariance of
the head:

Rpp = Jp f R f f JT
p f (9)

where R f f are the covariance function matrices for ln Ks, which is calculated by σ2
ln Ks
·ρ(A, A′).

The superscript T denotes the transpose. Each diagonal element of Rpp is the head variance, σ2
p,

at location (x, z), representing the mean-square deviation of the head in a heterogeneous slope
from the head, calculated using the mean parameter, µKs , for the homogeneous slope.

2.3. Monte Carlo Simulation Verification

Despite the enormous computer effort required by a Monte Carlo simulation, this
method is still the most widely acceptable method to obtain various statistical properties [1].
In order to verify the accuracy of the first-order analysis method proposed in this study,
Monte Carlo simulation was used. For one simulation, a series of realizations of a random
field with the same mean (µKs ),variance (σ2

Ks
) and correlation length (λ) were generated,

and the hydraulic response was calculated for each realization. These hydraulic responses
(e.g., pressure head) were then used to calculate statistical properties such as mean and
variance, which can be compared with the results produced by the first-order analysis.
In order to generate a statistically stationary and isotropic random field, the fast Fourier
transform code, modified from [23], was applied.

The grid density of the random field, which is crucial in a Monte Carlo simulation,
decides the amount of random data appearing in one realization, and hence influences
the number of realizations needed to reach convergence. A coarse grid with 25 × 20 cells
and a fine grid with 50 × 40 cells of random fields are generated to investigate how the
random field grid density affects the number of realizations required for a Monte Carlo
simulation. These two sets of grid size have also been applied in the first-order analysis to
test the algorithm stability of the first-order analysis approach.

In addition, a single realization of a Ks(x, z) random field was generated using this fast
Fourier transform method with the given mean, variance and correlation length of Ks(x, z).
This random field was then used to simulate the head response within a heterogeneous
slope. The response within the heterogeneous slope was subsequently compared to the
response derived from mean parameter, µKs (homogeneous slope), to show the effect of
heterogeneity on the pressure head profile.

2.4. Setup of Simulations

A finite element numerical modeling of the steady seepage flow due to rainfall in-
filtration was conducted within a 2D hypothetical slope (Figure 2) and was based on a
variably saturated flow and transport in 2D (VSAFT2) platform [24]. Firstly, the simulation
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domain (100 m × 40 m) was evenly discretized into 50 × 40 elements and 2091 nodes.
Then, the top right corner of the domain was truncated, and the shape of the remaining
part, with 1610 elements and 1681 nodes, was the geometry of the slope (Figure 2). The soil
hydraulic parameters used in this study are listed in Table 1. These parameter values are
mainly from the study by [25]. Based the published literature [1,5,9,10], the general range
of σ2

ln Ks
was suggested to be 0.1~0.7. The correlation length, λ, of ln(Ks) was suggested to

be 0.025–100 times the slope height [9]. Actually, the slope height, in addition to the grid
size and the entire domain size, should be taken into consideration to determine a proper
study range for correlation length [26]. Hence, a range of 0.1–100 m of correlation length, λ,
was proposed in this study (Table 1). Finally, the ratio between the vertical infiltration flux
and µKs was set as 0.01 [9].
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Figure 2. The hypothetic slope in the numerical study.

Table 1. Soil hydraulic parameters used in the study.

Parameters Values

Mean of saturated hydraulic conductivity, µKs 1.0 m/d
Coefficient in MVG model, α 0.4 m−1

Exponent in MVG model, n 2
Exponent in MVG model, m 0.5

Residual volumetric water content, θr 0.07
Saturated volumetric water content, θs 0.4

Vertical infiltration flux, q 0.01 m/d
Variance of ln(Ks), σ2

ln Ks
0.4, 0.7

Correlation length of ln(Ks), λ 0.1, 0.5, 1, 10, 100 m

Figure 2 displays the boundary conditions for this analysis. The boundaries AH
and BC remained a constant head, in which (h + z)|AH = 20 m and (h + z)|BC = 10 m.
The boundary AB was impermeable, and the boundary GF had a constant vertical flux
applied, q = 0.01 m/d. The boundaries FE, ED, GH and DC were defined as seepage
faces [16].

To comprehensively investigate the effect of variability in saturated hydraulic conduc-
tivity and to verify the first-order analysis approach proposed, a series of study cases were
selected, shown in Table 2. From Case 1 to 5, the first-order analysis was carried out to study
the variability of the pressure head with respect to the change in the correlation length, λ,
of ln Ks(x, z). A single realization of a Ks(x, z) random field was generated for each λ of
Ks(x, z) to calculate the head response within a heterogeneous slope. To use the result of the
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Monte Carlo simulation as a comparison to verify the accuracy of the first-order analysis
method, a, Monte Carlo simulation with two different grid sizes (Case 8 and Case 9) were
first conducted to find the number of realizations needed to reach convergence for different
grid densities. These two cases with different grid sizes were also applied in the first-order
analysis (Case 4 and Case 6). Second, both the Monte Carlo simulation (Case 8 and Case 10)
and the first-order analysis (Case 4 and Case 7) were conducted at two σ2

ln Ks
of 0.7 and 0.4.

Table 2. Statistics of Ks in each study case.

Case No. σ2
ln Ks

λ (m) Grid Method

1 0.7 0.1 50 × 40 cells First-order analysis
2 0.7 0.5 50 × 40 cells First-order analysis
3 0.7 1 50 × 40 cells First-order analysis
4 0.7 10 50 × 40 cells First-order analysis
5 0.7 100 50 × 40 cells First-order analysis
6 0.7 10 25 × 20 cells First-order analysis
7 0.4 10 50 × 40 cells First-order analysis
8 0.7 10 50 × 40 cells Monte Carlo simulation
9 0.7 10 25 × 20 cells Monte Carlo simulation
10 0.4 10 50 × 40 cells Monte Carlo simulation

3. Results and Discussion

The results and discussions are grouped into (1) the effect of the spatial variability
of the saturated hydraulic conductivity on the pressure heads and (2) the Monte Carlo
simulation verification.

3.1. Effect of Spatial Variability of Saturated Hydraulic Conductivity on Pressure Heads

To reveal the effect of the spatial variability of the saturated hydraulic conductivity on
the pressure heads, the deterministic analysis of the mean pressure head with the mean
value of the saturated hydraulic conductivity and the first-order analysis of the variance
of the pressure head were first conducted. Afterwards, the mean and the variance of the
pressure head were used to derive the upper and the lower bounds of the pressure head
profile. Finally, these upper and lower bounds served as an appropriate range to discuss
the pressure head response within the heterogeneous slope.

3.1.1. Deterministic Analysis

The deterministic analysis was performed assuming the slope was homogeneous, with
the mean of the saturated hydraulic conductivity, µKs , and the soil hydraulic parameters
displayed in Table 1. The slope geometry, the grid size and the boundary conditions can
be seen in Figure 2. The results, including the vectors of seepage velocity, contours of
the pressure head at a steady-state flow and the phreatic surface, of the deterministic
analysis are shown in Figure 3. As expected, the rain infiltrates into the slope, merging
with the groundwater at the phreatic surface and flowing from high total head to low total
head under the phreatic surface. The seepage field derived from the homogeneous, mean
hydraulic properties represents the most likely seepage field with given infiltration rates
and boundary conditions. Although the most likely seepage field can be quite different
from the field based on the heterogeneous hydraulic properties, it shows the general
seepage field within the slope. This result presents a basic understanding of seepage within
the slope, which demonstrates that VSAFT2 has the ability to predict the infiltration and
seepage behavior in an unsaturated slope scenario. The pressure head was calculated can
also be used as the mean pressure head in Equation (7).
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Figure 3. Results of deterministic seepage analysis.

3.1.2. Pressure Head Variance

For Case 1 to Case 5 in Table 2, the first-order analysis was utilized to calculate the
variance of the pressure head at each node in the slope. Analyses were conducted with the
same mesh that was used for the deterministic analysis.

Figure 4 shows the variance of the pressure head at each node in the slope. It shows
that a higher correlation length leads to a higher variability in the pressure head on the
whole. More specifically, the variance of the pressure head above the phreatic surface
increases sharply with the correlation length before the correlation length reaches 10 m
and then grows slowly until the correlation length reaches 100 m. On the other hand, the
increases in the variance of the pressure head below the phreatic surface are mainly around
the central part of the phreatic surface.
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The amount of different random data of Ks appearing in one realization decreases
with the increasing correlation length. Meanwhile, the statistical differences between each
generated realization based on the same mean, variance and correlation length increases.
To summarize, the amount of random data of Ks appearing in each realization is sufficiently
high at small correlation lengths. However, when correlation length becomes larger, each
realization generated from the same statistical parameters only contains parts of the random
data of the whole probability distribution.

Due to this tendency, the variance of the pressure head is also affected by the bound-
ary conditions. The domain above the phreatic surface is dominated by a constant flux
boundary. According to Darcy’s law, the hydraulic gradient is inversely proportional to
the Ks field, as is the pressure head. Therefore, at low correlation lengths, the pressure
heads do not deviate much from each other due to the similar statistical characteristics
of the Ks field. Therefore, the variance of the pressure head is small. However, at large
correlation lengths, the pressure head values calculated from different realizations of Ks
certainly deviate from each other, and the variance of the pressure head becomes large.
This is the reason why the variance of the pressure head is proportional to the correlation
length above the phreatic surface.

The domain below the phreatic surface is saturated under the control of a constant
hydraulic head difference between (h + z)|AH = 20 m and (h + z)|BC = 10 m. Using
Darcy’s law, the head loss distributes inversely with the Ks distribution along the flow
direction, keeping the continuous, specific discharge through the domain below the phreatic
surface so that the head distribution is influenced by the discrepancy in the distributions of
the Ks field. Therefore, at low correlation lengths, the Ks field of each realization becomes
homogenous, in which a relatively high or low zone of Ks, which contains many elements,
is hardly delineated. Thus, the variance of the pressure head is small. At a relatively high
value of correlation length (e.g., 10–100 m in this study), each generated realization has a
discrepancy in the distributions of the Ks field. These distributions differ from each other,
leading to a large variance of the pressure head. These explanations are supported by the
other literature [26,27].

3.1.3. Upper and Lower Bounds of Pressure Head Profile

The standard deviation of the pressure head, σp, derived from Figure 4, is added to
and subtracted from the mean pressure head profile obtained from Figure 3 to yield the
upper and the lower bounds of the pressure head profile. The pressure head profiles along
the cross section 1-1′ (indicated in Figure 2) are shown in Figure 5.
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As can be seen from Figure 5, a higher correlation length yields a lower bound with a
more negative pressure head and an upper bound with a less negative pressure head. This
result is consistent with the findings in the variance of the pressure head shown in Figure 4.
However, Figure 5 clearly illustrates that the range of variation of the pressure head can be
as much as approximately 3 m due to the uncertainties and spatial variation of the hydraulic
conductivity in a slope. In their studies, Santoso et al. [26,27] and Zhu et al. [9] also found
that the range of variation of the pressure head changes with the correlation length of
the hydraulic conductivity. This can be circumstantial evidence for the effectiveness and
accuracy of the first-order analysis.

The fluctuation range of the phreatic surface, which is crucial to the slope stability
analysis, can be seen on the left side of Figure 5b where the pressure head is equal to zero.
A fluctuation of up to 3 m is shown. More specifically, the fluctuation range of the phreatic
surface increases sharply at first when the correlation length value is low. The growth then
slows when the correlation length reaches 10 m. The fluctuation range at high correlation
lengths is larger than the range at low correlation lengths. This phenomenon is due to the
amount of different random data of Ks, the boundary condition and the discrepancy in the
distributions of Ks field, which has been explained in previous section.

Note that the lower and upper bounds obtained by the first-order analysis are ap-
proximate bounds. They delineate the expectation of deviation from the pressure head
profile obtained using µKs based on a first-order approximation. To summarize, in all
possibilities, this fluctuation can be far larger than this expectation: 3 m. Usually, it is
suggested that three times the standard deviation, σp, is the range for all the possibilities;
this is a fluctuation of 9 m.

3.1.4. Pressure Head Response within Heterogeneous Slope

Figure 6 shows the simulated pressure head profiles at a steady state along Section 1-1′

in the heterogeneous slopes with five different correlation lengths. The corresponding
mean pressure head profiles were obtained based on the homogeneous slope assumption,
and the upper and lower bounds are associated with the mean pressure head profiles. As
can be seen, the pressure head profiles of these heterogeneous slopes differ from the ones
based on the homogeneous slope with µKs and are bounded by the upper and the lower
bounds. These results imply that it is not possible to reproduce the hydraulic response of
a real slope under steady rainfall infiltration from any equivalent homogeneous model.
The upper and the lower bounds provide an appropriate range to delineate the possible
hydraulic response.

The positions of the phreatic surfaces of these heterogeneous slopes also differ from
the one based on the homogeneous slope, which can be indicated by the location where
the pressure head equals zero in Figure 6a–e. This may also suggest that the shape of
the phreatic surface in a heterogeneous slope is different from its shape in an equivalent
homogeneous slope.

3.2. Monte Carlo Simulation Verification

For the Monte Carlo simulation verification, we first investigated the influence of
the grid density on the probabilistic analysis by both the Monte Carlo simulation and the
first-order analysis method. We then compared the results from the first-order analyses
with those from the Monte Carlo simulations.

3.2.1. Impacts of the Grid Density

As was previously mentioned in Section 2, the grid density decides the amount of
random data appearing in one realization and the number of realizations needed to make
the Monte Carlo simulation reach convergence. Changes in the grid density also can
be used to test the algorithm stability of the first-order analysis proposed here. For this
purpose, a fine grid with 50 × 40 cells and a coarse grid with 25 × 20 cells were adopted
for both the Monte Carlo simulation and the first-order analysis.
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Figure 7 shows that the mean and variance of the pressure head of Point F (slope top)
changes with the number of realizations obtained by the Monte Carlo simulation for Case 8
and Case 9. Both cases involved 20,000 realizations.
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Figure 6. Pressure head response along section 1-1′ within heterogeneous slope: (a) ρ = 0.1 m;
(b) ρ = 0.5 m; (c) ρ = 1 m; (d) ρ = 10 m and (e) ρ = 100 m.
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Figure 7. Convergence of the mean and variance of the pressure head of Point F (slope top) obtained
by Monte Carlo simulation using two different grid densities: (a,b) are for Case 8 with the fine grid
(50 × 40 cells) and (c,d) are for Case 9 with the coarse grid (25 × 20 cells).

As can be seen in Figure 7a,b, the mean pressure head initially fluctuates with a
maximum range from −3.5 to −4.7 m. With the increasing number of realizations, the
fluctuation of the mean pressure head decreases. Finally, it keeps nearly steady after ap-
proximately 3000 realizations. The variance of the pressure head can be observed to reach
convergence after 10,000 realizations, with a maximum fluctuation of 0 to 1.46 m2. There-
fore, the minimum number of realizations needed for Case 8 (a fine grid with 50 × 40 cells
of random fields) to reach convergence was 10,000.

The result for the coarse grid with 25× 20 cells of random fields is shown in Figure 7c,d).
The maximum fluctuation of the mean pressure head with the increasing number of realiza-
tions is from −3.5 to −5.5 m. The maximum fluctuation for the variance of the pressure head
is from 0 to at least 1.7 m2: both are larger and more fluctuating than the corresponding result
for the fine grid case. In addition, the mean pressure head still maintains a slight fluctuation
when the number of realizations reaches a quite high value, 20,000, indicating that the Monte
Carlo simulation with a coarse grid size requires a greater number of realizations to reach
convergence than the simulation with a fine grid size. This is for to two reasons: firstly, each
realization of a coarser grid contains a lesser amount of random data; it therefore needs more
realizations to make the results of the Monte Carlo experience the same amount of random
data as in the fine grid case to reach convergence. Secondly, a finite element numerical
simulation with a coarse grid size reduces the accuracy of the pressure head prediction,
making the mean and variance of the pressure head more fluctuating and uncertain.

Comparisons of Figure 7a–d indicate that the mean pressure heads for cases with both
the coarse and fine grid sizes are all approximately −4.2 m. However, the variance of the
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pressure head values in the coarse grid case is larger than the variance in the fine grid case.
Again, this can be attributed to an insufficient amount of random data contained in one
realization and the reduced accuracy of the pressure head prediction in the coarse grid case.

In summary, the Monte Carlo simulation can only reach convergence based on a large
number of realizations, which is time-consuming and computation-consuming. If the
number of realizations is not high enough, the result is unreliable.

As a comparison, Figure 8 shows the variance of the pressure head, σ2
p , along section

1-1′, which was obtained by first-order analysis, using two different grid densities: a fine
grid with 50 × 40 cells (Case 4) and a coarse grid with 25 × 20 cells (Case 6).
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Figure 8. Comparison of variance of pressure head along section 1-1′ obtained by first-order analysis
using two different grid densities.

According to Figure 8, the σ2
p with the fine grid, denoted by the solid red line, is slightly

smaller than that of the coarse grid, which is denoted by the dashed green line. This result
is consistent with the result obtained by the Monte Carlo simulation in Figure 7. Moreover,
this result indicates that changes in grid density have little impact on the σ2

p estimated by
the first-order analysis approach, which reveals a good algorithm stability of the first-order
analysis approach.

3.2.2. Comparison of First-Order Analysis and Monte Carlo Simulation

Scatter plots of the mean and the variance of the pressure head at two variances of
ln Ks(x), σ2

ln Ks
= 0.7 and 0.4, obtained from the Monte Carlo simulation versus the results

obtained from the first-order analysis are displayed in Figures 9 and 10. In these scatter
plots, a red point is located using the means (in Figure 9) or variances (in Figure 10) of
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the pressure head, which were calculated by the different methods from the same point
in the finite element slope model. The solid black line in these scatter plots represents
the reference position for a perfect match. More points approaching this line implies that
the differences between the results obtained from these two methods are smaller. The
Monte Carlo simulation used in Case 8 and Case 10 contains 20,000 realizations, and the
correlation length is 10 m.
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Figure 10. Comparison of variance of pressure head obtained by different methods: (a) σ2
ln Ks

= 0.7
and (b) σ2

ln Ks
= 0.4.

As is indicated in Figure 9, for both cases with the variances of ln Ks(x) equal 0.7
and 0.4, the mean pressure head values range from −5 to 20 m, and the mean pressure
head values obtained by the first-order analysis are close to those achieved by the Monte
Carlo simulation.

The variances of the pressure head, σ2
p , obtained by both methods are less consistent

with each other. According to Figure 10a, when σ2
ln Ks

= 0.7, the range of σ2
p from the

Monte Carlo simulation is from 0 to 2.1. This is slightly broader than the range from the
first-order analysis, which is from 0 to 2. The maximum deviation from the reference line
is approximately 0.25, which is small and acceptable. As is shown in Figure 10b, when
σ2

ln Ks
= 0.4, the deviation of points from the reference line is up to 0.1. σ2

p ranges from
0 to 1.22 from the Monte Carlo simulation, while its range is narrower, from 0 to 1.15,
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when obtained using the first-order analysis. This is to be expected because the first-order
analysis approach ignores the high-order terms in the Taylor series and therefore results in
a smaller value of σ2

p .
Comparisons of Figure 10a with Figure 10b indicate that the deviation from the

reference line and the discrepancy of range of σ2
p increase with σ2

ln Ks
. This suggests that the

accuracy of the first-order analysis approach with respect to deriving statistics such as the
mean and the variance of the slope seepages can be sufficiently high when the correlation
length and variance of ln Ks(x) are not too large.

4. Conclusions

This study conducts a probabilistic analysis of slope seepage under rainfall, consider-
ing the spatial variability of hydraulic conductivity. Both the commonly used Monte Carlo
simulation method and the proposed first-order stochastic moment approach applied in
the probabilistic slope seepage analysis are tested and compared with each other.

Results indicate that the first-order analysis approach is effective and applicable to
the study of slope seepage flow. It is capable of obtaining statistics such as mean and
variance at a high enough accuracy. With the aid of the first-order analysis approach, it
is found that a larger value of the correlation length of ln Ks(x) leads to a higher value
of the variability in the pressure head and a larger fluctuation of the phreatic surface
in the slope. In a heterogeneous slope, the distribution of the pressure head is quite
different from that of a homogeneous slope. Therefore, it is not possible to reproduce the
hydraulic response of a real heterogeneous slope under steady rainfall infiltration from
any equivalent homogeneous model. The upper and the lower bounds obtained from
the first-order analysis approach provide an appropriate range to delineate the possible
hydraulic response.

The Monte Carlo simulation is found to be time-consuming, requiring at least 10,000
realizations are to reach convergence. In addition, the number of realizations needed is
sensitive to the grid density. A coarser grid case needs more realizations for convergence.
If the number of realizations is not enough, the result is unreliable. In comparison, the
first-order analysis approach reveals a good algorithm stability. The first-order analysis
approach is strongly competitive for use in addressing probabilistic slope seepage analysis
with fine meshes, especially for the calculation of the sensitivity or the cross-correlation of
the pressure head with the hydraulic conductivity, which can be time-consuming and even
hard to implement using the Monte Carlo simulation method.

Despite the many advantages of the first-order analysis, it should be emphasized that
this approach is based on a first-order approximation. The accuracy of the approximation
is generally satisfied when the variance and correlation length of ln Ks(x) are not too
large. At a large variance and correlation length, a higher order approximation or an
iterative approach is proposed (Li and Yeh, 1998), and its application in probabilistic slope
seepage analysis may deserve further investigation. Regardless, this study highlights
the applicability of the proposed first-order stochastic moment analysis method in the
slope scenario.
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