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Abstract: This study compares three imputation methods applied to the field observations of hy-
draulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of ground-
water elevations often face issues with missing data that may mislead both the interpretation of
the relevant processes and the accuracy of the analyses. The imputation methods adopted for this
comparative study are relatively simple to be implemented and thus are easily applicable to large
datasets. They are: (i) the spline interpolation, (ii) the autoregressive linear model, and (iii) the
patched kriging. The average of their results is also analyzed. By artificially generating gaps in
timeseries, the results of the various imputation methods are tested. The spline interpolation is shown
to be the poorest performing one. The patched kriging method usually proves to be the best option,
exploiting the spatial correlations of the groundwater elevations, even though spurious trends due
to the the activation of neighboring sensors at times affect their reconstructions. The autoregressive
linear model proves to be a reasonable choice; however, it lacks hydrogeological controls. The
ensemble average of all methods is a reasonable compromise. Additionally, by interpolating a large
dataset of 53 timeseries observing the variabilities of statistical measures, the study finds that the
specific choice of the imputation method only marginally affects the overarching statistics.

Keywords: groundwater piezometric heads; timeseries imputation; interpolation; missing data;
autoregressive linear model; patched kriging

1. Introduction

In the last few decades, the groundwater resource has been recognized worldwide as a
critical water security player. However, increased exploitation and often the consequences
of climatic change are a matter of concern [1,2]. Groundwater resources currently play
an essential role in sustaining ecosystems and human activities, and the importance of
sustainably managing them is broadly acknowledged [3–5]. Nevertheless, conflicting uses
and the intrinsic complexity in measuring comprehensive groundwater systems concerts
difficult assessments of the quantity and quality of the resource [6].

Hydrogeological studies often focus on the monitoring data of the groundwater
piezometric head in various horizons in space and time (say, the hydraulic head), via instan-
taneous observations or by observing the groundwater system’s seasonality. Longitudinal
observations of the hydraulic head along transects are often the starting points of studies
on storages and fluxes, and they provide relevant information on the aquifers of interest [7].
Hydrogeological studies that analyze the longitudinal observations of the hydraulic head
are often employed to refine the conceptual model of the system, e.g., [8–10], and in particu-
lar if impacts of different stressors are sought (say, shifting rainfall and increased pumping).
Timeseries measurements and analyses prove to be particularly meaningful, e.g., [11,12],
especially in assessing the sustainability of the withdrawals, e.g., [13–16]. They are also

Water 2023, 15, 801. https://doi.org/10.3390/w15040801 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15040801
https://doi.org/10.3390/w15040801
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-6409-4673
https://doi.org/10.3390/w15040801
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15040801?type=check_update&version=2


Water 2023, 15, 801 2 of 23

valuable in calibrating and validating numerical models that are focused on regional or
field-scales, e.g., [17–21].

In this domain, optimizing monitoring networks is a challenge, e.g., [22–24]. The
optimal management of the water resources is likewise demanding, e.g., [25–28]. Within hy-
drogeology, the analysis of observed timeseries of groundwater levels is commonplace,
and also for different purposes: for example, to study the stress state of the source aquifer
before and after large earthquakes [29], or in studies of the poroelastic subsidence in river
delta domains [30]. The impacts of urban planning on prospective subsurface resources
may also be tackled in this framework [31,32].

In conducting timeseries analyses, one of the major problems that are encountered by
hydrogeologists lies in the degree of the completeness of the data, i.e., in the observed series
lacking continuity, for whatever reason. Potentially, extended gaps may impair an overall
understanding of the underlying processes and the accuracy of the analysis [33]. Missing
data can be due to field issues that are encountered during monitoring campaigns based on
manual measures, or malfunctioning sensors, in the case of the continuous monitoring of
the groundwater level. In the latter case, typical causes of the fragmented record are faulty
sensors that can remain unnoticed for a long time. In addition, groundwater levels may
drop below the sensor elevation for relatively long periods of time at precisely when the
data would be crucial. If gaps are few and short-lived, for standard hydrogeology purposes,
the missing data may be managed with simple imputation methods. Otherwise, when the
loss of information about the groundwater system might cloud important processes, this
prevents proper analysis and understanding. Depending on the goal that groundwater
level timeseries are used for, carefully filling of gaps could be essential, even for the shortest
and most fragmented series.

Several data analyses or mathematical models require a complete dataset assuming a
complete data matrix [33]. As summarized by [34], two approaches can be applied to deal
with incomplete available datasets: the conservative approach that defines the minimum
timeseries length and discards shorter records, possibly losing important information; and
the approach that identifies alternative methodologies to gather additional information
concerning the shorter series. Imputation methods for short or fragmented timeseries fall
into the latter approach.

The treatment of missing values has been studied in other fields, e.g., financial eco-
nomics and surface hydrology. Only a few studies have dealt specifically with the suitable
interpolation applied to the groundwater level timeseries, where the issue of the proper
treatment of vital missing data via automatic approaches is central. The latter are essential
when using and analyzing big databases, e.g., [35]. The simplest imputation methods delete
missing values or substitute the missing values with the timeseries mean. They return the
complete timeseries, yet they unavoidably lose information. Thus, adding missing data
with insight via more sophisticated methods is recommended [36]. By increasing the com-
plexity of the imputation methods, other approaches deal with interpolation (e.g., linear
and spline interpolations), regressions (e.g., autoregressive models by [35] or [37], artifi-
cial neural networks [38–40], spectral analyses [36]), or combined methods [41,42]. Such
methods, however, are not optimal for the groundwater data because they often require
a priori knowledge of behaviors and periodicities, which are rarely available. For spa-
tiotemporal datasets, combining geostatistics and vector regression for infilling the missing
groundwater level data is an option [43], as they do take correlations among sites into ac-
count. Another option is the least squares method to fit empirical orthogonal functions [44],
but this approach needs a priori information for the spatiotemporal covariance. Recently,
machine learning methods have been developed for spatiotemporal imputation, e.g., multi-
layer perceptron (MLP); SOM, k-nearest neighbor (KNN); random forests, e.g., [45]; and
hybrid models, e.g., [46,47]. These methods still base their results on significant hydrogeo-
logical assumptions. For example, Ref. [45] assumes that the aquifer is homogenous, and
that only gradual transitions are admissible. Among these methods, a few are simple and
fast to apply, but they are unrelated to the groundwater dynamics. Others are more sophis-
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ticated, but they are often based on strong assumptions, or else they are computationally
demanding. Typically, therefore, they prove unsuitable for large scale applications [48].

The present comparative study aims to help field groundwater practitioners who
need to choose the proper imputation method for their purposes and data, by focusing on
imputation methods for groundwater level records that are relatively simple to implement
in an automatic structure and that are therefore easy to use for large datasets. The forecast-
ing methods available in Pastas [11] have not been here applied, because they require the
timeseries of hydraulic drivers (e.g., rain or recharge). This feature limits their applicability
for large datasets monitoring groundwater levels at regional scales. With typical field
applications in mind, this study compares the three imputation methods:

• Spline interpolation (mathematical approach), which smoothly interpolates the ground-
water trends;

• The autoregressive linear model (statistical approach), based on random processes
where imputed values can be identified by linearly combining values previously
observed;

• Patched kriging (geostatistical approach), the sequential application of the ordinary
kriging, preserving the available spatio-temporal information [34].

Moreover, the ensemble average of the results obtained using the three imputation
methods is also considered, and is compared with the others. These methods are imple-
mented in this study as a first attempt for hydrogeological timeseries interpolation, and for
a comparison of their statistical results. Thus, assumptions and simplifications have been
here applied that can be modified and improved.

The goal is to rank methodologies for the imputation of field subsurface hydraulic
head data. The comparison is carried out using two different procedures. The former
compares three long timeseries by artificially creating missing values in the available
records, to check a posteriori which method best reproduces the actual timeseries in the
time domain. Relevant statistics of the source and reconstructed timeseries are also explored.
The latter instead proposes a comparison based on whole datasets, i.e., by applying the same
statistical analyses to the whole available dataset where gaps are present and where real
timeseries are unknown. This procedure is useful for testing different interpolation results
on real records. The main results concern the strengths and weaknesses of the various
approaches, with recommendations for practical use in cases of common field relevance.

2. Materials and Methods

First, this section briefly presents the study area, the available dataset, and how it
has been pre-processed for the following analyses, i.e., timeseries selection and dataset
homogenization. Second, the selected imputation methods are briefly described, with par-
ticular focus on the description of groundwater-specific corrections. Finally, two different
procedures are applied to compare the imputation methods based on the results of three
statistical analyses, namely: Fourier analysis, the study of autocorrelation functions, and
the evaluation of microscales (the time interval over which the signal may be assumed to
be perfectly correlated). The two comparison procedures have a slightly different objective:
(i) a comparison of the interpolated timeseries with the original recorded timeseries, and
(ii) an analysis of the results’ variability, depending on the applied imputation method.
A flowchart of the analysis is shown in Figure 1.
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Figure 1. Flowchart of the analysis applied to compare the results of the imputation methods: pre-
processing phase, imputation phase applying three different methods and their average for the
interpolation of missing values, the comparison phase comprising two parallel procedures working
on different datasets (three complete long timeseries vs. the whole dataset), and both comparing the
results of three statistical analyses on the imputed timeseries. Blue squares and arrows define the
main phases of the analysis.

2.1. Overview of the Study Area

The study area where the monitoring network is located covers most of the Bac-
chiglione river basin (Veneto, Italy) within the alluvial plain north of the city of Vicenza.
Overall, the hydrologic domain comprises approximately 600 km2. It is confined by the
Asiago plateau and the Tretto area at the northern boundary, and by the Lessini moun-
tain range westwards. The study area corresponds to the domain of earlier subsurface
hydrology studies [10,16]. Several waterways drain the area in the NW–SE direction, then
discharging into the Adriatic sea. The area is characterized by Quaternary deposits lying on
a bedrock whose depth ranges between a few meters in the upper plain to several hundred
meters towards the southeast. In the upper plain, the subsoil is mainly course material and
the aquifer is undifferentiated, while towards the lower plain coarse layers vanish and a
clearly stratified structure (hosting up to six clearly differentiated aquifers) appears [49,50].
The study area thus includes a hydrogeological system comprising both a large unconfined
aquifer where the water table oscillates following the vagaries of hydrologic recharge; and
(ii) a layered confined multi-aquifer system that is highly valuable for its protection from
surface pollution [16].

2.2. Dataset Pre-Processing

The imputation methods have been applied to a proprietary dataset, collected and
made available by Sinergeo srl, which has an extensive monitoring network recording the
groundwater level within the study area. The proprietary dataset used for the compari-
son of imputation methods corresponds to the one used and presented in [16], where a
detailed table reports the specifics of the monitoring network (e.g., the recorded period and
the percentages of missing values for each timeseries). Briefly, the groundwater levels are
monitored in 102 locations, with a sampling interval of 1 or 3 h. The available timeseries
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have different overall durations, ranging from 3 months to almost 14 years. Moreover,
as for many real case studies, the dataset is affected by missing values and outliers. A series
selection has been carried out to have at least 2 years of data per series, and less than 50% of
missing values after the outliers had been removed. As a result, the final dataset includes
79 series (Figure 2). Furthermore, in order to homogenize the dataset, hourly records have
been suitably transformed into daily data.

Figure 2. Map of the sensors within the study area: the 79 sensors included in the pre-processed
dataset (blue) and the three identified sensors for the first comparative procedure on complete long
timeseries (red).

2.3. Imputation Methods

The study applied three existing imputation methods, described in this section,
adapted to the treatment of groundwater level timeseries. The first two, namely the
cubic spline interpolation and the autoregressive linear model, focus on a single timeseries,
while the patched kriging exploits the spatial correlation structure shown by the measured
groundwater levels. Thus, the applied methods test the applicability, and the quality of
the resulting fit, of both time and spatial imputation. In order to describe and to better
comprehend the adjustments needed to the selected imputation methods, the resulting
interpolated timeseries are reported and commented for three complete long samples
(sensors 31, 37, and 57, shown in Figure 2). The same timeseries were used for comparative
purposes when gaps were artificially created by removing recorded data.

The cubic spline interpolation (CS) is a mathematical interpolation, which, based on the
information of the timeseries alone, applies a piecewise cubic polynomial approximating
function to obtain a smooth approximation. As explained by [51], the piecewise cubic
interpolators f handle data points g(τ1), . . . , g(τn) with a = τ1 < . . . < τn = b. In each
subinterval [τi, τi+1], the interpolating function f coincides with a polynomial Pi of order 4
that satisfies the following conditions:

Pi(τi) = g(τi) Pi(τi+1) = g(τi+1) (1)

P′i (τi) = si P′i (τi+1) = si+1 (2)
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where si are defined as “free slopes”. Therefore, the interpolating f agrees with the data
points, it is continuous, and it has a continuous first derivative on the interval [a, b]. There
exist different piecewise interpolation schemes, depending on the choice of the slopes
evaluation: the applied CS interpolation adds the condition where the second derivative of
the interpolating function f is also continuous; thus, f is twice continuously differentiable:
P′′i−1(τi) = P′′i (τi). In this analysis, the interpolation is carried out by calling the spline
function in MATLAB.

The resulting CS interpolations for sensors 31, 37, and 57 are reported in Figure 3. As is
noticeable, sometimes the spline interpolation achieves maximums and minimums that are
never observed by the recorded timeseries. If this happens, the CS is not considered as a
plausible imputation method. The exact applied conditions are:

• The minimum spline value must be greater than the recorded minimum less one
quarter of the recorded range;

• The maximum spline value must be smaller than the recorded maximum plus one
quarter of the recorded range.

Figure 3. Cubic Spline interpolation applied to the three timeseries (sensors 31, 37, and 57). For each
sensor, a plot shows the comparison of the original complete recorded timeseries (in gray) with the
interpolated timeseries (in red) of the fragmented timeseries (in black). On the right, the map shows
the location of the three sample timeseries within the domain.

The autoregressive linear model (AR) is a statistical approach which, based on the
information of the timeseries alone, aims to predict a realization of an underlying random
processes based on past observations. Specifically, the estimated present value at k is
considered to be approximated by a linear combination of n past observations. The number
of past values n used by the procedure is the model order, and it intends to represent
the process memory. The coefficients selected for the linear combination are constant
parameters of the model that are therefore considered to be invariant in time.

y(k) = −a(2)y(k− 1)− a(3)y(k− 2)− . . .− a(n + 1)y(k− n) (3)

In order to apply an AR model to a timeseries, it is required to first identify the ap-
propriate order, and to estimate the coefficients by using the Linear Predictive Coding
(LPC) algorithm—lpc function in MATLAB. In this study, the code used is the one described
by [35], which has been adapted to this specific groundwater analysis. The code’s specifi-
cations are in [52]. What follows outlines the general procedure and the changes that are
implemented. The basic assumptions are also discussed.

The AR procedure starts from a simple linear interpolation of all intervals of missing
values shorter than 5 days and from a for-loop on the remaining gaps in the timeseries.
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For each gap, the model order is assumed to be equal to three-quarters of the prior known
record length in order to use most of the available information. The known sequence is
subtracted by its own mean, and the coefficients are estimated with the LPC algorithm,
considering the modified timeseries. The forecast series imputing the gap is estimated using
the identified linear combination, and by adding again the previously subtracted mean.
Sometimes, the AR forecasted series ends (gap f in = ti) with a value that considerably
diverges from the first known value after the gap ti+1, thus creating an unrealistic step-
shaped trend. This happens as this forecasting procedure does not consider the available
knowledge of the recorded sequence after the gap. In order to adjust such a final step,
the interpolated timeseries is linearly modified within the gap in order to obtain a final
forecasted value coinciding with the first value of the following known record: i.e., the
timeseries S is corrected by summing up a linearly increasing factor that ranges from
0 in the first unknown value (gap0), and Sti − Sti+1 in the last unknown value (gap f in).
The timeseries is then updated with the interpolated sequence and the following gap
of the for-loop will consider all previous values as being known and usable for its own
interpolation. This for-loop applies only if the previous knowledge covers a sequence that
is longer than 30 days, otherwise the information is too poor and a spline interpolation is
applied for the first gaps, up to the satisfaction of the condition.

The interpolation is applied to the three long timeseries previously identified, and
Figure 4 reports the resulting interpolations. Observing the graphs, it is noticeable how the
interpolation can mimic the local hydrogeological behavior, even if sometimes it creates
unreal minimums and peaks. This is due to the statistical approach that lacks hydrological
knowledge and guidance.

Figure 4. The autoregressive linear model applied to the three long timeseries (sensors 31, 37, and 57).
For each sensor, a plot shows the comparison of the original complete recorded timeseries (in gray)
with the interpolated timeseries (in red) of the fragmented timeseries (in black). On the right, the map
shows the locations of the three sample timeseries within the domain.

Differently from the previous methods, the patched kriging (PK) is a geostatistical
approach that takes advantage of the spatial information of the groundwater level. It
has been originally proposed and implemented by [34] in order to deal with uneven
and fragmented rainfall records that are useful for the statistical assessment of extremes.
The method considers each measurement as a 3D point (x, y, t), and for each timestep, a
spatial interpolation in the whole domain is carried out. This way, missing values in the
timeseries can be evaluated owing to the concomitant information in other measurement
points, extracting information from timeseries recorded nearby in space. To the authors’
knowledge, this method has been never applied to impute groundwater level timeseries.
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This technique evaluates the parameter value also in unmeasured points, but it is not a
result of interest in this study.

Each measurement is considered as a 3D point (x, y, t) for each time instant the
hydraulic data are spatially interpolated. The method applied by [34] and by this study
is the ordinary kriging. All details regarding kriging are extensively available in the
geostatistical literature, e.g., [53]. Differently from the original study, the here applied
PK method does not correct the data for elevation effects. The current analysis directly
evaluates the spatial dependence of measured records by estimating a sample variogram as:

V(L) =
1

n(L) ∑
Lij

(αi − αj)
2 (4)

where L is the lag distance, αi and αj are observations lagged by a distance L, and n(L) is
the number of pairs separated by lag L. As in [34], for each timestep, the sample variogram
is evaluated by using Equation (4), and the global sample variogram is estimated as a
weighted average of these. The weights are defined as the number of measuring points
in each timestep. Then, the theoretical variogram is estimated with the exponential form
best fitting the global sample variogram. The exponential model has been simply selected
as first attempt, given the preliminary phase of this comparative study. This variogram
model needs the definition of the nugget and the number of the considered nearest points:
the nugget effect is neglected, and therefore, the measured values are preserved, while the
latter parameter is arbitrary and there are different objects to look at in order to define it. It
depends on the desired variability scale: few neighbors for identifying a small scale, and
up to the whole sample if the small scale is not required and if a shorter computational
time is desired. Ref. [54] suggest a number of between 10 and 20, even if this number
should depend on the range of the evaluated variogram. In this study, as well as in [34],
given that for each timestep the number and the spatial distribution of recording sensors
varies, the variogram range has been used as a first hint for selecting the number of nearest
points. Given the sensors’ spatial distribution within the domain and the estimated range,
the algorithm always considers the 10 closest sensors for the kriging interpolation. In this
manner, a minimum amount of information is also guaranteed also in areas with a lower
density of sensors.

After the space interpolation and the creation of a map for each timestep with a space
resolution of 25 m × 25 m, complete timeseries are extracted for each sensor location:
i.e., given the space coordinates of a sensor (x, y), the complete series in the t axis is
extracted from all maps, see Figure 5.

Figure 5. (a) Representation in time of the maps obtained with the ordinary kriging. (b) Example of
the extraction of a timeseries in a certain location. Source: [34].

Moreover, the interpolated timeseries have to be further adjusted with respect to
the procedure of [34]. The Extracted timeseries coincides with the recorded one when
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data are available, but it can be offset in interpolated gaps as the water level is driven
by surrounding points that could have different average elevations. Nevertheless, the
oscillations of the neighboring timeseries are significant information to be extracted by
the spatial interpolation. Therefore, the timeseries are shifted in order to have the first
interpolated value of the gap ti be coincident with the last known value ti−1 (Sti−1 = Sti ).
Moreover, looking at the shifted timeseries, often it shows a step between the last shifted
interpolated value St f and the first recorded value after the gap St f+1 . This step can be
upward, showing a hydrogeological peak, or downward, which is less realistic for a
descending water level. Indeed, the ascending side of the hydrogeological peak can be
very steep, while the descending one has always a slighter slope. A correction is applied
only for the descendant phase (St f > St f+1 ) linearly modifying the interpolated series and
making the two points coincide St f = St f+1 .

Another needed adjustment is made with regard to the oscillations range. Depending
on the hydrogeological local connections, between the recording sensors, the oscillations
range could be very different. In order to define which range adjustment (RA) to use,
three possibilities are investigated and compared on imputing the three complete long
timeseries. The three options are: (i) no range adjustment; (ii) series arrangement, meaning
that the whole interpolated timeseries is proportionate in order to have the same range
as the original fragmented timeseries; and (iii) interval arrangement, by proportioning
the interpolated timeseries on each gap with the original record. Looking at the results
comparison in Figure 6, different observations arise. In sensor 31, the PK works well on the
reproduction of the real timeseries, and even with no range adjustment, the reconstructed
timeseries well fits the reality in almost all gaps. This is probably due to the availability
of many nearby surrounding points that well guide the imputation method. On the
contrary, sensor 37 is not well reproduced and a range adjustment is necessary. The interval
adjustment has water level oscillations that are close to the recorded ones, but they are
shifted. The series adjustment is well located on average, the problem is that the fluctuations
are softened. Finally, sensor 57 is similarly interpolated by the different range adjustments.
In general, the interval RA has the tendency to enhance fluctuations, and not adjusted RA
is sometimes the best option (sensor 31), even if occasionally it is completely out of the
series range (sensor 37), while the series RA seems to be the safest option, even if it tends to
soften the peaks. The best RA option is chosen by comparing the mean percentage daily
errors, defined as the Euclidean distance divided by the total missing values of the series,
and scaled based on the oscillations range:

err =
∑
√

(Si−So)
2

nMV

r
100 (5)

where Si and So are the interpolated and original timeseries, nMV is the total number
of missing values, and r is the recorded range of the original timeseries. The error is
evaluated for each sensor and for each interpolation. Table 1 highlights as the interpolation
with a series range of adjustment that better fits the original timeseries: it is always the
minimum error. This RA is therefore chosen for the PK imputation method. Additionally,
these results (particularly in the imputation of the timeseries of sensor 37) clearly show
how sometimes the PK technique is step-shaped and where the applied shift procedure
is not enough. This is probably because the imputed timeseries does not have so many
recording sensors nearby, hence, it is sensitive to the activation and deactivation of the few
surrounding points.
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Figure 6. The patched kriging applied to the three long timeseries (sensors 31, 37, and 57). For each
sensor, a plot shows the comparison of the original complete recorded timeseries (in gray) with
the interpolated timeseries of the fragmented timeseries (in black). The plots show three different
patched kriging interpolations differing on the applied range adjustment (RA): no RA (in red), series
RA (in yellow), and interval RA (in violet). On the right, the map shows the locations of the three
sample timeseries within the domain.

Table 1. Percentage daily errors of patched kriging interpolations differing on the applied range
adjustment (RA): no RA, series RA, and interval RA for sensors 31, 37, and 57.

No RA Series RA Interval RA

Sensor 31 5.00 4.76 11.71
Sensor 37 165.08 11.12 19.52
Sensor 57 13.76 12.24 16.34

The last interpolation is the average of all previous imputation methods. Note that
if the spline interpolation has been removed because it failed to respect the aforementioned
range conditions, the average is only between the autoregressive linear model and the
patched kriging methods.

2.4. Comparing Procedures and Applied Statistical Analyses

For an easy understanding of the imputation methods performances, the first proce-
dure compares interpolations with true timeseries: the comparison in time domain that
returns an immediate feeling of the interpolation’s goodness is easy to comprehend and
evaluate, then statistical analyses are applied to see how sensitive these analyses are to the
chosen imputation method. This comparison with the true timeseries is possible only for a
few timeseries of the dataset: three series have been identified to be at least 12 years long,
with less than 0.2% of missing values, and located far away from each other in order to not
bias the analysis. The identified timeseries are 31, 37, and 57, the locations of which are
shown in Figure 2. The three timeseries have been fragmented in MATLAB by randomly
creating 12 gaps, applying the functions randfixedsum e randi. The fragmentation procedure
has been guided by removing 35% of the shortest timeseries (1608 values), and it created
variably long gaps ranging from 45 to 356 days.

The second procedure aims to compare the results of the imputation methods on the
whole dataset, using all of the available timeseries to evaluate how much of the method is
affecting the results of some statistical analyses. This returns an idea of the importance of
correctly selecting the imputation method, even if the comparison with the reality is not
possible. It is substantially a sensitivity analysis.
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As a comparison of imputations, both procedures apply and compare the results
of three statistical analyses, with the following being briefly described: Fourier analysis,
autocorrelation, and microscale. The Fourier analysis provides a different view of timeseries
because it analyses them in the frequency domain [55]. Its main result is the power spectrum
that points out timeseries periodicities, which are usually not easily recognizable in the
time domain. This result is often interesting for hydrogeological studies, as the main
hydraulic periodicities depend on the most relevant hydraulic drivers affecting the site.
The Discrete Fourier transform is carried out to move from the time to the frequency
domain by applying the Fast Fourier Transform algorithm-fft function in MATLAB. The
second statistical analysis is the evaluation of the autocorrelation function that defines the
correlation (Pearson coefficient [53]) of a signal with a delayed copy of itself as a function of
the time lag k. This analysis is usually useful for having insights on signal persistence and
periodicity. The sample autocorrelation function (ACF) is defined by applying the autocorr
function in MATLAB. The final analysis is the definition of an integral scale parameter,
the microscale. It represents the time interval in which values are perfectly correlated, and
it is an indication of the series memory and fluctuations rapidity. There are three ways to
evaluate it:

• Using the formula of [56]:

λ =

√
− f (0)

f ′′(0)
(6)

where f (0) is the autocorrelation value at k = 0, and is therefore equal to 1, and f ′′(0)
is its second derivative in 0;

• Evaluating the intersection with the abscissa axis of the parabola passing by point
(0, 1) and leaned against the first autocorrelation values;

• Using Equation (6) but evaluating it starting from the parabola previously defined.
Giving the parabola general equation y = ax2 + bx + c, the formula becomes

λ =

√
− f c

2a
(7)

3. Results and Discussion
3.1. Comparison on Three Complete Long Timeseries

The results of the comparative analysis on the three chosen long timeseries are shown
in Figures 7–9. Plot ‘a’ shows the comparison in the time domain: the interpolations’
trend, compared to the known true trend. The cubic spline interpolation fails to properly
reproduce the true record, owing to its smooth behavior and some outsize extreme values.
All three reconstructed series do not meet the extremes condition; therefore, the CS interpo-
lation should not be considered as a viable option. Its results are kept only in order to show
the differences with other imputation methods. Regarding the autoregressive linear model,
it creates a reasonable trend for all timeseries, meaning that its oscillations are similar to
the recorded ones. However, the method is not hydrogeologically driven, and therefore, at
times, it diverges in the opposite direction with respect to the removed observations. On the
contrary, the patched kriging interpolation follows the real trend, given its hydrogeological
basis. Close-by sensors and related information are obviously supporting the fitting of
the input timeseries, and thus guiding the interpolated groundwater levels. Having one
standalone borehole (with the closest neighbor being far away) could lead to erroneous
imputations if different local stresses are present. Otherwise, the shifted interpolated data
adjust the originally diverging groundwater level averages, and thus, it is likely to behave
well. Instead, the main observed PK flaw is due to the activation or the deactivation of
nearby recording points, affecting the induced water level in the interpolated point and
producing a step-shaped behavior. The shifting correction solves many similar issues,
but sometimes they tend to persist, degrading the overall imputation quality. The average
interpolation is a compromise that reduces the PK stepped shape, even if it is sometimes
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still noticeable (e.g., sensor 37 in Figure 8), and maintains a clear hydrological meaning,
thus improving the AR interpolation.

In order to confirm the observations by visual inspection and to assess how well the
interpolated timeseries approximate the real recorded one, the R2 coefficient has been
computed. They are shown in Table 2 for each method and each sensor. Obviously, an R2
of 1 indicates a perfect interpolation of the data. The CS method is poorly performing,
while others compete with the PK for the best fitting. The PK performs better than any
other method when it is not affected by the activation of neighboring sensors, i.e., when the
interpolation is step-shaped. Moreover, within the tested timeseries, it is noticeable how
sensor 57 is the most poorly imputed, maybe due to the fast groundwater level oscillations.

Table 2. Estimated R2 between the imputed timeseries, using the imputation methods (Cubic Spline
CS, Autoregressive linear model AR, Patched Kriging PK, and their average) and the original recorded
timeseries for each analyzed long timeseries. R2 estimated only for the interpolated intervals, roughly
35% of the complete timeseries.

Sensor 31 Sensor 37 Sensor 57

CS 0.34 0.18 0.00
AR 0.69 0.40 0.08
PK 0.84 0.39 0.01

Average 0.80 0.48 0.07

The Fourier analysis produces the phase and power spectra as results. The phase
is reported in plots ‘b’, but it only shows and confirms the randomness of the process.
The main result is the power spectrum, reported in plots ‘c’. Regarding the power spectra,
firstly, it is evident how the CS interpolation is highly overestimating the magnitude,
especially for sensors 37 and 57; secondly, its shape does not follow the true one. Looking at
other interpolations instead, the magnitude is maintained, and the shape is quite similar too.
These observations are confirmed by the R2 coefficient and are computed to assess how well
the spectrum of each sensor approximates the real recorded one: the CS method is poorly
performing, while PK best performs for fitting the spectra of sensors 31 and 37. As for the
comparison in the time domain, sensor 57 is the most poorly imputed. Nevertheless, slightly
different understandings come from the tables reported within the graph where the three
main periodicities are identified. Not considering the CS interpolation, the tables show how
all imputation methods lead to the correct identification of the two main periodicities for
sensor 31 and the main periodicity for sensor 57. While for sensor 37, only the PK succeeds
on identifying the main periodicity. In conclusion, AR, KP, and the average interpolations
are relatively good at reproducing the magnitude and shape of the power spectrum, but on
the specific action of identification for the main periodicities, they are less reliable.

Regarding the autocorrelation analysis, the resulting functions are reported in plots
‘d’. Except for the CS function that is always the farthest, other interpolations have similar
autocorrelation functions that decently reproduce the function of the original timeseries.
For each imputation method, the distance from the true autocorrelation function has been
evaluated as the mean Euclidean distance:

di =
∑
√
(ac f i − ac f t)

2

Lac f
(8)

where: ac f i and ac f t are respectively the interpolated and the true autocorrelation functions;
and Lac f is the length of autocorrelation functions. Table 3 reports the evaluated distances
and highlights that the PK interpolation has the closest autocorrelation function to the
true one. Its distances are the lowest for sensors 31 and 37. For sensor 57, the average
interpolation has the minimum distance, but the PK distance is very close. The same
conclusions can be derived by calculating the R2 coefficient: the CS is the poorest performer,
while the PK always has the highest coefficients.
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Table 3. Euclidean distances between the autocorrelation functions estimated from the time-
series interpolated by the imputation methods (Cubic Spline CS, Autoregressive linear model AR,
Patched Kriging PK, and their average) and the autocorrelation function estimated from the original
recorded timeseries.

Sensor 31 Sensor 37 Sensor 57

CS 0.0680 0.1420 0.1243
AR 0.0543 0.0783 0.0855
PK 0.0373 0.0359 0.0738

Average 0.0455 0.0503 0.0703

In plots ‘e’, the microscale is shown as a range because there exist multiple applicable
methods to compute it, see Section 2.4. As a consequence, interpolations differ on the
minimum, mean, and maximum evaluated microscales, but also in the range extent. As for
other analyses, the results of the CS interpolation are far from the true outcome, and also
far from the ones of all other interpolations. Indeed, its microscale evaluation is too high
for all sensors, while other methods provide closer estimations: the order of magnitude is
well identified, even if the range slightly differs. No general patterns are identified, and the
interpolations results differ, depending on the sensor analyzed.

Finally, the CS interpolation proves to be unsuitable, both in the time domain and in terms
of the statistical analyses. This is likely due to the presence of large gaps in the fragmented
timeseries that cause high interpolated peaks that should be removed. Comparing the results
of other imputation methods, the PK returns results that are close to reality for the Fourier
analysis and the autocorrelation function, but its weak point is the occasional stepped behavior
in time that is surely not realistic. The AR has good performances on statistical results and a
reasonable trend in the time domain, even though it lacks hydrogeological bases. The average
interpolation softens both the pros and the cons of these last two imputation methods by
considering both the hydrogeological guide of PK and the reasonable timeseries rendering
of AR. Nevertheless, given the general performance dependence on the gap’s length and
position, in addition to the sensor analyzed, these results are useful for an understanding of
the method, but hardly suited to the general conclusions.

3.2. Comparison on the Whole Dataset of the Recorded Timeseries

In order to obtain some conclusions that are specifically aimed at selecting the proper
imputation method, the same three statistical analyses (Fourier analysis, autocorrelation,
and microscale evaluation) are applied to the whole dataset of 79 records for which missing
values are present and true timeseries are unknown. Note that 26 series have no missing
values, and the remaining 53 series are the focus of this analysis. In order to observe
the variability of the statistical results depending on the selected method, indicators are
defined and applied to evaluate the statistical variability for each sensor in the dataset.
These general indicators allow for a comparison of the results variability within the dataset.
Indicators are thus presented and applied, as an example, to sensor 92, whose data and
statistical figures are reported in Figure 10.

For the Fourier analysis, the main result concerns the power spectrum that pinpoints
the main periodicities shown by the data. Interpolations affect the peak recognition; hence,
the variability indicator is defined based on the identifiers of spectral peaks. Specifically,
for each interpolation, the five main peaks are ordered by decreasing power, and the table is
standardized by allowing for a fair comparison; see Tables 4 and 5. The first table’s values
are divided by the maximum period of the power spectrum, 7.17 years in this example,
and the standardized table is likewise constructed. The variance of each standardized
period is then calculated and reported (in blue) in Table 5. In conclusion, the final indicator
is defined as the mean of the five estimated peak variances: 7.82× 10−2 for sensor 92.
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Figure 7. Statistical results comparison for the interpolation of sensor 31: (a) Records in time domain; (b) Phase Spectra; (c) Power Spectra, and a table of the
three most relevant periodicities (P1, P2, P3) identified in the original and in each interpolated timeseries; (d) Autocorrelation functions; (e) Ranges of evaluated
microscales—plotted as horizontal green bars. Within plots ‘e’, continuous lines are the autocorrelation functions, while the dashed lines are the fitting parabolas.
In all plots, black lines/bars represent the original complete observed record (named ‘Rec’) where missing data have been artificially located and then interpolated.
The tested imputation methods are cubic spline (CS in pink), autoregressive linear model (AR in light blue), patched kriging (PK in red), and their average (Av in
blue)—the legend is shown only in plots ‘a’, but it is valid for all plots. Note that the Power Spectra (plots ‘c’) has two y-axes due to the different magnitudes: Power
of the CS on the left, and Power of the other three imputation methods and the original record on the right.
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Figure 8. Statistical results comparison for the interpolation of sensor 37: (a) Records in time domain; (b) Phase Spectra; (c) Power Spectra, and a table of the
three most relevant periodicities (P1, P2, P3) identified in the original and in each interpolated timeseries; (d) Autocorrelation functions; (e) Ranges of evaluated
microscales—plotted as horizontal green bars. Within plots ‘e’, continuous lines are the autocorrelation functions, while dashed lines are the fitting parabolas. In all
plots, black lines/bars represent the original complete observed record (named ‘Rec’), where missing data have been artificially located and then interpolated. Tested
imputation methods are cubic spline (CS in pink), autoregressive linear model (AR in light blue), patched kriging (PK in red), and their average (Av in blue)—the
legend is shown only in plots ‘a’, but it is valid for all plots. Note that the Power Spectra (plots ‘c’) has two y-axes due to the different magnitudes: Power of the CS
on the left, and Power of the other three imputation methods and the original record on the right.
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Figure 9. Statistical results comparison for the interpolation of sensor 57: (a) Records in time domain; (b) Phase Spectra; (c) Power Spectra, and a table of the
three most relevant periodicities (P1, P2, P3) identified in the original and in each interpolated timeseries; (d) Autocorrelation functions; (e) Ranges of evaluated
microscales—plotted as horizontal green bars. Within plots ‘e’, continuous lines are the autocorrelation functions, while dashed lines are the fitting parabolas. In all
plots, black lines/bars represent the original complete observed record (named ‘Rec’) where missing data have been artificially located and then interpolated. Tested
imputation methods are cubic spline (CS in pink), autoregressive linear model (AR in light blue), patched kriging (PK in red), and their average (Av in blue)—the
legend is shown only in plots ‘a’, but it is valid for all plots. Note that the Power Spectra (plots ‘c’) has two y-axes due to the different magnitudes: Power of the CS
on the left, and Power of the other three imputation methods, and the original record on the right.
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Figure 10. Statistical results comparison for the interpolation of sensor 92: (a) Records in time domain, (b) Phase Spectra, (c) Power Spectra, (d) Autocorrelation
functions, (e) Ranges of evaluated microscales—plotted as horizontal green bars. Within plots ‘e’, continuous lines are the autocorrelation functions, while dashed
lines are the fitting parabolas. Tested imputation methods are cubic spline (CS in pink), autoregressive linear model (AR in light blue), patched kriging (PK in red),
and their average (Av in blue)—the legend is shown only in plots ‘a’, but it is valid for all plots. In red are the percentages of missing values in the recorded timeseries.
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Table 4. Five main periodicities (years), identified using each imputation method, observing the
estimated power spectrum-sensor 92.

1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak

CS 0.42 7.17 0.80 1.19 1.79
AR 1.79 2.39 7.17 0.42 0.51
PK 1.79 2.39 7.17 0.42 0.51

Average 1.79 0.42 7.17 2.39 1.19

Table 5. Five main standardized periodicities identified by each imputation method, observing the
estimated power spectrum-sensor 92. For each power peak, the variances σ2 of the standardized
periodicities of the four elaborated power spectra are reported in blue.

1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak

CS 0.06 1.00 0.11 0.17 0.25
AR 0.25 0.33 1.00 0.06 0.07
PK 0.25 0.33 1.00 0.06 0.07

Average 0.25 0.06 1.00 0.33 0.17
σ2

92 × 10−2 0.9 16.1 19.7 1.68 0.74

Regarding the autocorrelation function, the results’ variability is evaluated as the
average maximum range along the function: the mean maximum distance. Specifically,
for each time lag k, the autocorrelation functions with maximum and minimum values are
identified, and the Euclidean distance is evaluated. The k distances are summed up and
divided by the length of the autocorrelation function in order to standardize the indicator,
thus allowing for the comparison within the dataset.

dEucl =
∑
√
(ac f k

max − ac f k
min)

2

Lac f
(9)

Finally, in order to evaluate, for each timeseries, the variability obtained in the evalua-
tion of the microscale, different factors may be relevant. Depending on the specific goal,
the maximum, minimum, mean, or range of the estimated microscale could be of interest.
As a variability index, the coefficient of variation, CV, is calculated for each sensor s as:

CVs =
σs

µs
(10)

Therefore, each microscale indicator is evaluated as the standard deviation σs of the
maximum/minimum/mean/range values, estimated starting from the four interpolated
timeseries, divided by their mean µs, as a standardization process. Table 6 reports the
calculations steps for sensor 92.

Table 6. Calculations for the four microscale variability indicators referring to the maximum, mini-
mum, mean, and overall range of the estimated microscale-sensor 92. For each indicator, the standard
deviation σ, the mean µ, and the coefficient of variation CV are reported in blue.

Max Min Mean Range

CS 11.31 6.67 8.65 4.64
AR 10.80 7.55 9.14 3.24
PK 11.02 7.55 9.26 3.46

Average 10.74 6.92 8.65 3.82
σ92 0.26 0.45 0.32 0.61
µ92 10.97 7.17 8.92 3.79

CV92 × 10−2 2.38 6.26 3.59 16.2
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The six proposed variability indicators (one for the Fourier analysis, one for the
autocorrelation, and four for the microscale) have been standardized in order to compare
the results fairly for the whole dataset. The expectation is a positive dependence of each
indicator variability on the percentage of missing values of the analyzed timeseries. Indeed,
more missing values would imply a possibly major impact of the choice of imputation
method. The variability indicator of the dataset is shown in Figure 11, plotted against the
percentage of missing values.

Figure 11. Relationships between variability indicators and the percentage of missing data. Estimated
statistical indicators are (a) the variance σ2 of five identified main periodicities for the Fourier analy-
sis, (b) the average maximum distance between evaluated autocorrelation functions (Equation (9)),
the coefficient of variation CV, considering (c) maximum, (d) minimum, (e) mean microscale values,
and (f) their ranges (Equation (10)). Tested imputation methods are Cubic Splice CS, Autoregressive
linear model AR, Patched Kriging PK, and their average.

By looking at the scatter plots, the variability of the six indicators may be evaluated.
The periodicities variance and the mean maximum distance of the autocorrelation function
have lower magnitudes than microscale indicators. However, they are not easily com-
parable because of the different standardization procedures. The comparison is possible
between microscale indicators: the mean microscale is the indicator that is less dispersed,
meaning that it is less affected by the chosen method, while the range is the most variable.
Microscale observations are also confirmed by observing the indicator mean of the whole
dataset, reported on the plots ‘c’ to ‘f’ in Figure 11.

Additionally, as expected, indicators are directly dependent on the percentage of
missing values: it is noticeable a heteroskedastic behavior, i.e., the variance of the variability
indicator is not homogeneous, but it varies depending on the values plotted in the x-axis.
Heteroskedasticity is not always evident for the presence of a few outliers that bias the
visual inspection.

The Fourier analysis indicator is the variance of the recognized most important peri-
odicities. The real main periodicities are unknown, but the maximum variance between
the timeseries is 0.1. Only two points are outliers, meaning that for them, the imputation
method’s choice is affecting the statistical result more than the general dataset’s behavior.
This statistical analysis seems to be ‘robust’ for the analyzed dataset, and the applied
method does not excessively affect the result. Moreover, the periodicities variance indicator
has been plotted on the map in Figure 12a to observe if any geographical trend is present.
No specific trends are observed. For example, the proximity to timeseries with lower
percentages of missing data does not lower the value of the variability indicator. The auto-
correlation variability is evaluated by calculating the mean distance between the locally
maximum and minimum functions. The maximum value evaluated in the dataset is below
0.12. The low distance values indicate quite robust results for this statistical analysis, as 0.12
out of a range [−1, 1] represents an error of 6%. Thus, even this statistical analysis seems to
be ‘robust’ for the analyzed dataset. Regarding the microscale analysis, between the four
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indicators, the mean microscale is the one that is less variable, and with lower CVs, for high
missing data percentages. Thus, the mean microscale seems to be the most robust to the
different applied imputation methods.

It is likely that different types of missing data can differentially affect the results
of the various imputation methods. Missing point data is not an issue, but longer gaps
can strongly affect any imputation result. Moreover, in addition to the length of every
single gap, the results of the imputation methods are significantly impacted by the missing
data forms: i.e., how often and in which hydrogeological moment (low, high, or average
groundwater level) the missing data are present. Future works should investigate the
sensitivity of imputation methods to the different missing data forms.

This study presented and compared different simple-to-implement methods tackling
a common issue encountered by groundwater practitioners and highlighting their cons and
pros on the applicability and the final fitting. With these results in mind, a groundwater
practitioner can select with critical awareness the imputation method to apply. Based
on such results, for this specific groundwater system, the authors decided to prefer the
PK method if it is not step-shaped for the specific timeseries. In case it is not suitable,
the Average method is the second choice if it manages to cancel the steps, otherwise the
AR method is used. In this specific study, for the 53 timeseries with missing values: the
PK method has been selected 41 times (77%), the average 5 times (10%), and the AR
method, the remaining 7 times (13%). Figure 12b shows in which location each method
has been preferred to the others, highlighting how the patched kriging dominates in the
southern confined aquifer, while the three imputation methods alternate on the northern
unconfined aquifer with no evident geographic trends. The PK method is preferred to
other imputation methods (time imputation), even for some standalone boreholes, meaning
that the concomitant information recorded by other sensors (even if far away) is useful
for the imputation. Moreover, as the study objective is to support a proper imputation
of the groundwater level timeseries, a forward step will be to provide a ready-to-use
software for practitioners implementing an open source Python package including such
imputation methods, as was performed with Pastas for the analysis of hydrogeological
timeseries [11,12].

Figure 12. (a) Map of the variability indicator for the Fourier Analysis and the periodicities variance.
(b) Map of the prefered imputation method for each sensor (Cubic Spline CS, Autoregressive linear
model AR, Patched Kriging PK, and their average). In both maps, the symbol dimension is related
to the percentage of missing values in the recorded timeseries, and the yellow crosses represent the
26 timeseries without missing data.

4. Conclusions

The present study compared three different imputation methods (Cubic Spline CS, Au-
toregressive linear model AR, and Patched Kriging PK) and their averages for groundwater
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level. The methods have been selected as they are relatively simple to implement in an
automatic structure; hence, they are easily applicable for large datasets, and are potentially
widely accessible to groundwater practitioners.

Although the method’s complexity increases going from CS, through AR to the PK,
the latter imputation method is suggested to be the most appropriate method to interpolate
the timeseries of the groundwater level, largely because of its ability to use information
on the spatial correlation of the data. By comparing the results of the applied methods
with the three true timeseries, the study concludes that: (i) the spline interpolation is the
simplest to implement, but it is the poorest performing option; (ii) the autoregressive
linear model is always hydrogeologically reasonable but it is not guided, and it is therefore
missing relevant hydrological peaks or minimums; (iii) the patched kriging proves to be
the best option, because it is hydrogeologically driven but also sensitive to the activation
of neighboring sensors. The ensemble average of these methods is shown to be a good
compromise between PK and AR as it retains the PK hydrogeological guide but softens the
step-shaped trend by averaging with the AR trend.

Regarding the importance of properly choosing the imputation method, such an un-
derstanding is complex, and here it is based on the observation of the variabilitues of
methods in a few statistical results of interpolated timeseries. Even if the outcome is uncer-
tain, the comparative procedure on the whole available dataset highlights as the Fourier
analysis, and the autocorrelation functions fail to be significantly sensitive to the selected
interpolation method, while between microscale indicators, the mean microscale is the one
that is less sensitive. Nevertheless, depending on the use of interpolated timeseries, more
or less caution is necessary for the choice of the interpolation method: a site-specific and
statistic-specific sensitivity analysis could be a useful preliminary step for relevant studies.
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