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Abstract: Water resources, land and soil degradation, desertification, agricultural productivity, and
food security are all adversely influenced by drought. The prediction of meteorological droughts
using the standardized precipitation index (SPI) is crucial for water resource management. The
modeling results for SPI at 3, 6, 9, and 12 months are based on five types of machine learning:
support vector machine (SVM), additive regression, bagging, random subspace, and random forest.
After training, testing, and cross-validation at five folds on sub-basin 1, the results concluded that
SVM is the most effective model for predicting SPI for different months (3, 6, 9, and 12). Then,
SVM, as the best model, was applied on sub-basin 2 for predicting SPI at different timescales and
it achieved satisfactory outcomes. Its performance was validated on sub-basin 2 and satisfactory
results were achieved. The suggested model performed better than the other models for estimating
drought at sub-basins during the testing phase. The suggested model could be used to predict
meteorological drought on several timescales, choose remedial measures for research basin, and assist
in the management of sustainable water resources.

Keywords: meteorological drought; semi-arid regions; support vector machine; additive regression;
bagging; random subspace; random forest

1. Introduction

Lack of precipitation during a drought is a complex and cyclical phenomenon that
has a negative impact on agricultural and water resources, as well as on society [1,2].
The damage caused by drought is relatively higher than other natural disasters, such as
extreme drought in South China, which reduced the area of Honghu Lake and severely
impacted tourism, aquaculture, and the public [3]. Similar to this, the 2012 US drought cost
over 12 billion USD in economic losses and subsequently raised food prices throughout
the world [4]. Future droughts are predicted to be more frequent and more intense due
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to climate change, urging water resource managers to implement comprehensive risk-
mitigation measures [5]. The creeping nature of drought can be beneficial for drought
scientists to predict these events in advance [6]. In recent decades, advancements in various
drought modeling approaches have been observed, which will ultimately play a critical
role in effective drought modeling and drought risk reduction.

Droughts can be characterized as agricultural, meteorological, hydrological, or so-
cioeconomic based on the kind of water insufficiency, such as precipitation, runoff, soil
moisture, and water availability, respectively [7]. Among these categories, meteorological
drought is the most important; it is barely dependent on precipitation and prolonged meteo-
rological drought results in other drought categories [8]. Several drought indices, including
the standardized precipitation index (SPI), Palmer drought severity index, standardized
precipitation evapotranspiration index (SPEI), standardized runoff index, etc., have been
developed in the past few decades to model meteorological, hydrological, and agricultural
drought [5,7]. Standardized drought indices have been utilized often for drought modeling
because they are easy to use, flexible, and can estimate drought throughout many periods,
with few data requirements [3,9].

It is crucial to anticipate a drought before it occurs, in addition to monitoring it [10].
Despite the fact that predicting droughts is a challenging task owing to the inherent
uncertainties and high degree of complexity [11], drought forecasting analysis is essential
for supplying pertinent data for drought risk reduction [12]. In hydro-meteorological
applications, physical and data-driven models are the most common drought forecasting
models [13]. Data-driven models create the strongest link between independent and
dependent variables, whereas physical-based models are focused on understanding the
real dynamics of a system [14]. The parameter estimation of physical process-based models
requires information regarding soil, land use, geography, topography, water abstraction,
etc., which is not only difficult to obtain, but also poses difficulties in terms of deviating
from a thorough scientific understanding of different physical processes [15]. Because of
the drawbacks of physical process-based models, data-driven models are used increasingly
frequently in the field of hydrology and water management. Data-driven models such as
machine learning models, regression models, and time-series models are commonly used
in drought forecasting [5,16].

Data-driven models provide the capacity to anticipate droughts, according to Achite
et al. [16]. Maca and Pech [17] utilized two types of artificial neural network (ANN) models
to foresee droughts in two watersheds, namely Santa Ysabel Creek and Leaf River in
South California. The results demonstrated that the hybrid ANN model outperformed the
feed-forward ANN. Mokhtarzad et al. [18] employed three machine learning approaches,
ANN, adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM),
to predict meteorological drought at seasonal timescales in Iran. Although the models’
ability to predict drought was demonstrated by the results, SVM outperformed ANN and
ANFIS. Similarly, Sattar et al. [19] used a Markov Bayesian classifier (MBC) to predict
various classes of meteorological and hydrological drought. They reported that MBC had
a range of 36% to 76% and 33% to 70% accuracy in forecasting both meteorological and
hydrological drought, respectively. Jehanzaib et al. [12] compared the performance of
six ML models for hydrological drought forecasting and concluded that the performance
of the decision tree model was found to be superior in terms of forecast accuracy and
computation time. Adnan et al. [20] integrated random vector functional link (RVFL)
with the salp swarm algorithm, particle swarm optimization, hunger games search (HGS)
algorithm, social spider optimization, genetic algorithm, and grey wolf optimization to
forecast SPI at various timescales (3, 6, 9, and 12 months) and suggested that HGS-based
RVFL can be used for drought forecasting with a high accuracy.

Most of the previous studies [12,13,17–19] utilized data-driven models for drought fore-
casting at a single timescale. It is critical to assess the performance of various data-driven
models for drought forecasting at multiple timescales to make sound recommendations.
Therefore, this study employed five state-of-the-art machine learning models, namely SVM,
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additive regression, bagging, random subspace, and random forest, for drought forecasting
at 3-, 6-, 9-, and 12-month timescales. This study used SPI for meteorological drought esti-
mation at various timescales due to the overwhelming benefits of the standardized drought
indices. The main goals of this work were to build models for forecasting meteorological
droughts using various data-driven approaches and to assess their effectiveness at various
timeframes using accuracy metrics.

2. Materials and Methods
2.1. Description of the Study Area

The Wadi Mina basin in northwest Algeria served as the study region for this research.
It has a total area of 4900 km2 and is located between 00◦22′59” and 01◦09′02” east, as well
as between 34◦41′57” and 35◦35′27” north (Figure 1). It has four significant tributaries:
Wadi Haddad, Wadi Abd, Wadi Mina, and Wadi Taht. The elevation varies between 164
and 1327 m. The topography of the basin is complex and uneven. The study region
features a continental climate with dramatic seasonal temperature variations, such as
bitterly cold winters and sweltering summers. The yearly precipitation averages between
200 and 500 mm, with most of it falling between November and March. The average yearly
temperature is between 16 and 19.5 ◦C. Over half of the basin is covered in a variety of
plant types, including 32% scrubs, 35.8% woods, and cereal crops [21]. Monthly rainfall
and runoff records are available for five rainfall and hydrometric stations over 40 years
(1974–2009) (Figure 1 and Table 1).
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Figure 1. Study area, as well as pluviometric and hydrometric network.

Table 1. Basic characteristics of rainfall stations.

ID Name Longitude Latitude Elevation (m)

S1 013306 Oued Abtal 0◦40′33.97” E 35◦28′03.59” N 354
S2 013401 Sidi Abdelkader Djillali 0◦34′08.35” E 35◦29′20.71” N 225
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2.2. Standardized Precipitation Index (SPI)

SPI is calculated using the cumulative probability of the monthly precipitation mea-
sured at the observation point [22]. At a meteorological station, the parameters of a precipi-
tation probability density function, which follow a gamma distribution, are computed over
the whole observation period using Equation (1).

g(x) =
1

βαΓ(α)
xα−1e−x/β (1)

where α and β are the shape and scale parameters, respectively. Meanwhile, x is he
successive precipitation and Γ(α) is the gamma function, which is defined by Equation (2).

Γ(a) =
∫ ∞

0
ya−1e−ydy (2)

The alpha and beta parameters are defined as per Equation (3).

α =
1

4A

(
1 +

√
1 +

4A
3

)
, A = ln(x)− ∑ ln(xi)

n
, β =

x
α

(3)

where n, x, and xi are the number of observations, mean precipitation, and total precipita-
tion, respectively. The cumulative probability is estimated using Equation (4).

G(x) =
∫ x

0
g(x)dx =

1
βaΓ(a)

∫ x

0
xa−1e−x/βdx (4)

Equation (5) shows the cumulative probability using a mixed probability distribution
to represent the likelihood of no precipitation.

H(x) = q + (1− q)G(x) (5)

where q is the likelihood of no precipitation. The SPI is calculated using Equation (6).

SPI =

 −
(

t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
, 0 < H(x) ≤ 0.5

+
(

t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
, 0.5 < H(x) ≤ 1.0

(6)

where t is determined as shown in Equation (7).

t =



√
ln
(

1
H(x)2

)
.0 < H(x) ≤ 0.5√

ln
(

1
(1−H(x))2

)
.0.5 < H(x) ≤ 1.0

(7)

where c0, c1, c2, d1, d2, and d3 are coefficients with values of:

c0 = 2.515517 c1 = 0.802853 c2 = 0.010328

d1 = 1.432788 d2 = 0.189269 d3 = 0.001308

Based on SPI, several classifications and the projected probability of wet and dry spells
can be investigated, as shown in Table 2.
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Table 2. Categorization of different states of SPI.

SPI Values Drought Category Probability (%)

Greater than or equal to 2.0 Extremely wet 2.3
Greater than or equal to 1.5 and less than 2.0 Very wet 4.4
Greater than or equal to 1.0 and less than 1.5 Moderate wet 9.2
Greater than or equal to −1.0 and less than 1.0 Near normal 68.2
Greater than or equal to −1.0 and less than −1.5 Moderately dry 9.2
Greater than or equal to −1.5 and less than −2.0 Severely dry 4.4
Less than or equal to −2.0 Extremely dry 2.3

2.3. Machine Learning Models

In this study, support vector machine (SVM), additive regression (AR), bagging,
random subspace (RSS), and random forest (RF) models for the estimation of SPI at 3, 6, 9,
and 12 months were developed. These different models were used for anticipating drought
forecasting. The flowchart of the proposed methodology for drought forecasting at the
Wadi Mina basin, Algeria, is illustrated in Figure 2.
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2.3.1. Support Vector Machine (SVM)

SVM establishes the decision boundary or optimal line that may categorize an n-
dimensional space. The SVM algorithm searches for the extreme points that aid in the
hyperplane’s creation [23]. It is a well-known approach for supervised machine learning
that is utilized for both classification and regression applications [24]. Equation (8) for
linear SVM can be written as follows:

x1, y1 . . . . . . . . . xn, yn (8)
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where y1 is either 1 or −1, depending on the linkage between the class and point x1. The
hyperplane that divides the group of points, x1, when y1 = 1 and y1 = −1. This plane is
determined to optimize the distance between the hyperplane and the nearest point x1 from
either group. The hyperplane that satisfies Equation (9) for a set of points can be written
as below:

wTx− b = 0 (9)

where w is the hyperplane’s normal vector. The parameter, b
||w|| indicates how far away

from the origin the hyperplane is from the normal vector. The schematic diagram and
parameters of the support vector machine algorithm utilized for modeling drought forecast
are shown in Figure 3.
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The linear regression model is an important tool to utilize the independent variable,
X, to forecast the dependent variable, Y. It is a statistical and machine learning algorithm
that allows for mapping the numeric inputs to numeric outputs, fitting a best fit straight
line into the datasets. The accuracy of the model is measured by least squares estimation.
Equation (10) for linear regression can be written as follows:

Yi = β0 + β1X1 + β2X2 + . . . + βpXin + ε (10)

where Xi and Yi are the independent and dependent variables, respectively; β0 is constant;
βn is the slope coefficient of each Xi; and ε is the model error term or residuals.

2.3.2. Additive Regression (AR)

Using the stochastic gradient boosting approach described in Friedman [25], we
construct an AR model. Each iteration of AR involves drawing a random sample from the
training data (without replacing it) and fitting a standalone model to the residuals from
the previous iteration. In the initial fit, the training data are fitted to a standalone model
without resampling, resulting in the first set of residuals, which are used to fit a stochastic
gradient boosting model in the subsequent fit. The stochastic gradient boosting procedure
continues until the final iteration. In Friedman [25], the predictions of all standalone models
in the ensemble can be aggregated once the AR model has been trained.

Recent research has demonstrated the widespread application of Bayesian additive
regression trees (BARTs) [26,27]. The BART model can define complex relations between x
and y by estimating f (x) in the form y = f (x) + ε, where ε∼N (0, σ2). Furthermore, a sum of
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m regression trees is used, i.e., f (x) = ∑ g(x; Tj, Mj), ranging between j = 1 and j = m, which
allows for the estimation of f (x). BART is expressed in Equation (11):

Y = f (x) + ε =
m

∑
J=1

g
(
x; Ti, Mj

)
+ ε (11)

2.3.3. Bagging

A bagging method known as bootstrap aggregation (BA) was developed by Breiman [28].
In bagging, m training sets are generated, and the datasets are then fitted to m models using
an easy-to-use ensemble method. As a result of averaging their outputs or voting on them,
the predictions are combined. As the training dataset was modified, several classifiers were
created: Hm, m = 1, . . . , M, which were then merged into one class. As a result, the weight
of this class was derived from the combined weight of the individual predictor classes, as
per Equation (12):

H(di) = sign
M

∑
m=1

∝m +H(di) (12)

A voting method can be used to describe the method. As αm was determined as
m = 1, . . . , M, then more accurate classifications would have a greater effect than less
accurate classifications. As the weak Hm classification was slightly more accurate than
the random classification [29], the latter was referred to as the weak Hm classification. The
input datasets were also modeled using regression trees. The uniqueness of each tree was
based on its ability to forecast changes in the training dataset. As a final step, the weighted
average of each regression tree’s projections was calculated.

2.3.4. Random Subspace (RSS)

RSS is an ensemble machine learning algorithm that combines the prediction variables
from different decision trees trained on multiple subsets of columns in the training dataset.
It is a problem-independent metaheuristic technique that can be applied to a broad range
of problems. Particularly when there are few training datasets compared with the amount
of data, RSS is preferred [24]. It introduces randomness by selecting certain variables that
are substituted at random space into the issue formulation [30]. This algorithm is a robust
model assembling various weak classifiers [31,32]. It is analogous to other methods of
decision trees such as bagging, which generates trees using different samples of series from
the training dataset, and another method named random forest, which has ideas from
bagging or the RSS model. The RSS model can easily be used with any other machine
learning model, although decision trees are applied. Its performance varies notably with
the choice of input variables. The original space is divided into subsets as part of the RSS
algorithm’s first phase. Then, the results are attained by most polls using Equation (13):

β(x) = argmaxy∈{−1, 1}∑ δsng

(
Cb(x)

)
, y (13)

where δ is the Kronecker delta symbol, Cb(x) is the classification integration (C = 1, 2, . . .),
and y ∈ {−1, 1} is a class label of the classifier. The graphic schematic diagram of the RSS
algorithm for drought forecasting modeling is shown in Figure 4.

2.3.5. Random Forest (RF)

Breiman [33] proposed the RF algorithm, where the explanatory variables may be
either continuous or categorical. The model has been used effectively for both regression
and classification problems. It constructs several decision trees. The complexity of the
non-linear relationship between the explanatory and target variables can easily be reduced
instead of a detailed numerical representation because it causes more complexity in the
model. The model is formed by selecting the input features randomly at each node. The
regression in the model has a similar structure to the classification tree. The output is
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obtained by averaging each tree’s output (Figure 5). The model is efficient with internally
multiple classes, robustness to the outliers in the model, accuracy in prediction, self-tuning
ability, and deals with the large or small sample of the datasets to the other machine
learning models.
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where foob(xi) = OOB is the prediction for ith observations. For the classification, the rate
of generalization error helps to estimate the class-wise rate of error for each class in the
model, which can be evaluated using the rate of OOB error, as per Equation (15):

Eoob =
1
N

N

∑
i=1

yi 6= foob(xi) (15)
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3. Model Evaluation

To assess the performance of the ML algorithm, a comparison between the esti-
mated/modeled values using ML methods and the observed values of the SPI was made at
various timescales. Five performance metrics indices including correlation coefficient (CC),
mean absolute error (MAE), root mean square error (RMSE), relative absolute error (RAE),
and root relative squared error (RRSE) were used to quantitatively validate the models.
The various metrics are calculated as depicted in Table 3.

Table 3. Descriptions of indices for data mining techniques supported by mathematical formulations.

Performance Indices Formula Range Ideal Level Description

Correlation coefficient CC =
∑N

i=1[(SPIObs−SPIObs)(SPIPre−SPIPre)]√
∑N

i=1(SPIObs−SPIObs)
2
√

∑N
i=1(SPIPre−SPIPre)

2
(−1 to +1) +1

Calculates how similar the
observed value is to the

expected value.

Mean absolute error MAE = 1
N

N
∑

i=1
|SPIPre ,−SPIObs | (0 to ∞) 0 Analyzes the error size on

an average.

Root mean square error RMSE =

√
1
N

N
∑

i=1
[SPIPre − SPIObs ]

2 (0 to ∞) 0
Indicates how observed

values differ from
estimated values.

Relative absolute error RAE =
N
∑

i=1
|SPIPre − SPIObs |/

N
∑

i=1

∣∣SPIObs − SPIObs
∣∣ (0 to ∞) 0

Conducts a performance
evaluation of the machine

learning algorithm.

Root relative squared error RRSE =
N
∑

i=1
(SPIPre − SPIObs)

2/
N
∑

i=1

(
SPIObs − SPIObs

)2 (0 to ∞) 0

In contrast to RMSE, the
relative squared error (RSE)

allows the comparison of
models with errors expressed

in various units.
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Where; SPIPre − SPIObs are ith predicted and observed SPI values, respectively, and
SPIPre and SPIObs are predicted and observed average values of SPI, respectively. Besides,
N represents the number of data sets.

4. Results and Discussion
4.1. Input Variables Selection

The meteorological drought index (SPI) was calculated across a range of timeframes
(3–12 months). As shown in Figure 6, PACF was applied to determine the optimum lags of
the SPI index [34]. The lag values that provide this 95% confidence bound were selected
as the inputs. For all timescales, t-1 lag formed the largest correlation [16]. The SPI index
provided a remarkably large correlation of t-10 lag for the 9-month timescale. Table 4
displayed the optimal input combination for SPI prediction used in this study. To examine
the temporal gaps between the current and previous indices, the statistical approach
attempted to extract lagging information from the signal. After that, the optimal inputs
for each time lag were found by conducting statistical analysis on the lagged combination
coefficients and by analyzing the correlations between them.Water 2023, 15, x FOR PEER REVIEW 11 of 21 
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Table 4. Input−output relationships for SPI prediction.

Sub Basin Name Inputs Variables Target Variable

Sub-basin 1

SPI-3 (t-1); SPI-3 (t-2) SPI-3
SPI-6 (t-1); SPI-6 (t-2); SPI-6 (t-5); SPI-6 (t-7) SPI-6
SPI-9 (t-1) SPI-9
SPI-12 (t-1) SPI-12

4.2. Comparison Models of SPI Drought Index

The SPI drought index is predicted in five sub-basins using five machine learning
models: SVM, AR, B, RSS, and RF. For the training and testing stages, Table 5 displays
the model outcomes across all timelines. Training (70%) and testing (30%) are the two
phases into which the data was split. The results indicate that SPI-12 performed the best
when compared with the other timeframes. Moreover, RF (CC = 0.960, MAE = 0.230,
RMSE = 0.304, RAE = 29.056, and RRSE = 30.683) exhibited the best performance for SPI-3
compared with the other models for the training phase. According to CC, MAE, RMSE,
RAE, and RRSE with SPI-12 during the testing phase, SVM was able to achieve 0.880, 0.283,
0.371, 38.061, and 41.520, respectively.

Table 5. Evaluation metrics of the model outputs for various timelines during the training and testing
phases.

Model
Training Phase Testing Phase

CC MAE RMSE RAE RRSE CC MAE RMSE RAE RRSE

SPI-3

Support vector machine 0.684 0.557 0.725 70.225 73.247 0.701 0.453 0.579 68.038 71.463
Additive regression 0.711 0.544 0.696 68.638 70.366 0.677 0.475 0.596 71.313 73.552

Bagging 0.796 0.466 0.606 58.722 61.195 0.645 0.478 0.622 71.721 76.792
Random subspace 0.667 0.608 0.765 76.724 77.278 0.542 0.553 0.684 83.019 84.405

Random forest 0.960 0.230 0.304 29.056 30.683 0.592 0.526 0.682 78.926 84.088

SPI-6

Support vector machine 0.824 0.447 0.596 56.157 56.729 0.811 0.355 0.452 58.505 57.447
Additive regression 0.833 0.442 0.581 55.454 55.309 0.770 0.402 0.492 66.219 62.530

Bagging 0.864 0.399 0.529 50.116 50.396 0.800 0.360 0.461 59.361 58.638
Random subspace 0.864 0.403 0.530 50.560 50.434 0.811 0.359 0.450 59.243 57.137

Random forest 0.925 0.303 0.401 38.083 38.161 0.735 0.420 0.545 69.188 69.239

SPI-9

Support vector machine 0.882 0.359 0.472 46.288 47.242 0.866 0.306 0.381 45.599 46.795
Additive regression 0.878 0.371 0.479 47.823 47.953 0.822 0.362 0.440 53.940 53.993

Bagging 0.909 0.321 0.415 41.398 41.605 0.845 0.339 0.414 50.576 50.830
Random subspace 0.897 0.336 0.441 43.272 44.152 0.863 0.315 0.388 46.932 47.606

Random forest 0.947 0.233 0.320 30.030 32.041 0.806 0.357 0.463 53.275 56.859

SPI-12

Support vector machine 0.908 0.305 0.431 37.412 41.963 0.880 0.283 0.371 38.061 41.520
Additive regression 0.898 0.341 0.454 41.772 44.268 0.823 0.343 0.453 46.134 50.702

Bagging 0.927 0.278 0.386 34.138 37.596 0.866 0.305 0.394 41.092 44.043
Random subspace 0.924 0.283 0.394 34.728 38.386 0.874 0.297 0.380 39.914 42.553

Random forest 0.956 0.212 0.303 25.977 29.514 0.808 0.381 0.483 51.226 54.028

Figure 7 illustrates the scatterplot of the observed and predicted SPI for the training
and testing phases. The results showed that the SPI for the proposed SVM model closely
matched the observed values during the testing phase. Extreme wetness and drought
values were seen to be more properly approximated using SVM.
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Figure 7. Plots showing predicted and observed SPI values for 3, 6, 9, and 12 timeframes during
training and testing periods at sub-basin 1.

Cross-validation is a statistical method that splits data into two segments: one for
learning or training a model and the other for verifying the model. It was used in this study
to analyze and compare machine learning algorithms. It is a resampling process used to
assess machine learning models and determine how well the model would perform on
an independent test dataset. In this study, four folds were used for all of the algorithms
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developed in order to cross-validate all of the datasets, as shown in Figure 8. All of the
datasets were divided into four parts to evaluate the performance of models in terms of
accuracy and statistical errors. Table 6 demonstrated that the SVM model outperformed
other models in terms of performance. The correlation coefficients ranged from 0.67 to 0.91
under all of the SPI periods, except for SPI 12. RF was the best model for predicting SPI-12.
At the same time, statistical errors were the lowest values compared with other algorithms
(Table 6). In addition, time series and scatter plots are presented in Figure 9 to show the
performance of the developed models.
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Table 6. Cross-validation for the ML models for estimating SPI at 3, 6, 9, and 12 months.

Model CC MAE RMSE RAE RRSE

SPI-3

Support vector machine 0.674 0.569 0.734 71.44 73.94
Additive regression 0.645 0.600 0.758 75.3839 76.384

Bagging 0.638 0.600 0.764 75.325 76.964
Random subspace 0.586 0.642 0.811 80.603 81.653

Random forest 0.615 0.611 0.797 76.788 80.255

SPI-6

Support vector machine 0.818 0.455 0.606 56.654 57.369
Additive regression 0.765 0.518 0.683 64.604 64.637

Bagging 0.799 0.481 0.634 59.940 60.016
Random subspace 0.799 0.481 0.632 59.915 59.885

Random forest 0.749 0.565 0.724 70.457 68.512

SPI-9

Support vector machine 0.877 0.368 0.480 46.883 47.479
Additive regression 0.840 0.420 0.543 53.613 53.726

Bagging 0.856 0.396 0.517 50.529 51.186
Random subspace 0.856 0.395 0.517 50.355 51.152

Random forest 0.839 0.434 0.555 55.339 54.907

SPI-12

Support vector machine 0.908 0.305 0.431 37.412 41.963
Additive regression 0.898 0.341 0.454 41.772 44.268

Bagging 0.927 0.278 0.386 34.138 37.596
Random subspace 0.924 0.283 0.394 34.728 38.386

Random forest 0.956 0.212 0.303 25.977 29.514



Water 2023, 15, 765 15 of 20

Water 2023, 15, x FOR PEER REVIEW 16 of 21 
 

 

  

  

  

  

Figure 9. Cont.



Water 2023, 15, 765 16 of 20Water 2023, 15, x FOR PEER REVIEW 17 of 21 
 

  

  

  

  

Figure 9. Plots showing the predicted and observed SPI values for 3-, 6-, 9-, and 12-month 

timeframes during the cross-validation periods at sub-basin 1. 

As illustrated in Table 7, at sub-basin 2, the SVM model also gave higher outcomes 

for correlation coefficients (CC) and statistical errors, such as MAE, RMSE, RAE, and 

RRSE, than other data-driven models. The CC values varied from 0.642 to 885 for the SPI 

periods from 3 to 12 months. The time series and scatter plots for the SVM model were 

created to show its accuracy in SPI modeling under different months for the second basin 

(Figure 10). This study concludes and recommends using SVM for the studied stations 

Figure 9. Plots showing the predicted and observed SPI values for 3-, 6-, 9-, and 12-month timeframes
during the cross-validation periods at sub-basin 1.

As illustrated in Table 7, at sub-basin 2, the SVM model also gave higher outcomes for
correlation coefficients (CC) and statistical errors, such as MAE, RMSE, RAE, and RRSE,
than other data-driven models. The CC values varied from 0.642 to 885 for the SPI periods
from 3 to 12 months. The time series and scatter plots for the SVM model were created to
show its accuracy in SPI modeling under different months for the second basin (Figure 10).
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This study concludes and recommends using SVM for the studied stations for modeling
the drought SPI index for better water resources management, monitoring, and planning.

Table 7. Performance validation of SVM at sub-basin 2.

CC MAE RMSE RAE RRSE

SPI-3 0.642 0.575 0.751 72.927 77.370
SPI-6 0.811 0.445 0.580 58.958 58.548
SPI-9 0.865 0.379 0.493 51.304 50.172

SPI-12 0.885 0.331 0.466 42.81 46.639
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during validating the performance at sub-basin 2.

This model was validated by comparing its performance across the results reported
in the literature. The SVM model (CC = 0.674, MAE = 0.569, RMSE = 0.734, RAE = 71.44,
and RRSE = 73.94) outperformed the ANFIS model trained using the nomadic people
optimization algorithm (NPA) (RMSE = 2.21, MAE = 2.15, NSE = 0.91, PBIAS = 0.15,
and R2 = 0.92) to forecast the 3-month SPI. The ANFIS-NPA model was reported to be
the best-performing model compared with the ANFIS, RBFNN, MLP, and SVM models
optimized using the krill algorithm, salp swarm algorithm, and bat algorithm, along
with the standalone models [35]. This affirms the robustness and outperformance of the
developed models compared with those found in the previous studies.

5. Conclusions and Recommendations

Drought has a detrimental influence on agricultural output, land and soil quality,
desertification, food security, and water resources. Despite this, because of its complexity
and several factors at various temporal and geographic dimensions, drought continues
to be among the least understood natural phenomena. In the last ten years, the use of
machine learning approaches to develop trustworthy models with high computational
capabilities has drawn attention to the field of drought modelling. In this context, this
research applied five machine learning models, namely support vector machine, additive
regression, bagging, random subspace, and random forest, to anticipate a meteorological
drought in the Wadi Mina basin, Algeria. Five performance assessment metrics were used
to compare the performance of the developed models. The results indicated that SPI-12
performed the best when compared with the other timeframes. According to CC, MAE,
RMSE, RAE, and RRSE with SPI-12 during the testing phase, SVM was able to achieve 0.880,
0.283, 0.371, 38.061, and 41.520, respectively. The results from cross-validation demonstrated
that the SVM model outperformed the other models. The correlation coefficients ranged
from 0.674 to 0.908 under all of the SPI periods. Its performance was validated at sub-
basin 2 and satisfactory results were achieved. The suggested model provided a practical
tool for managing intricate drought dynamics at various periods. Future studies should
investigate the application of the proposed model in other basins of different countries. A
trustworthy intelligent system might be developed using the suggested model to anticipate
meteorological drought across a variety of timescales, aid in the management of sustainable
water resources, and identify corrective actions in stations.
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