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Abstract: This article solves the problem of detecting water leaks with a minimum size of down
to 1 mm in diameter. Two new mathematical tools are used to solve this problem: the first one is
the Te cross-spectral density and the second is Te coherence. These mathematical tools provide the
possibility of discriminating spurious frequency components, making use of the property of multi-
sensitivity. This advantage makes it possible to maximize the sensitivity of the frequency spectrum.
The wavelet function used was Daubechies 45, because it provides an attenuation of 150 dB in the
rejection band. The tools were validated with two scenarios. For the first scenario, a synthetic signal
was analyzed. In the second scenario, two types of background leakage were analyzed: the first
one has a diameter of 1 mm with a signal-to-noise ratio of 2.82 dB and flow rate of 33.7 mL/s, and
the second one has a diameter of 4 mm with a signal-to-noise ratio of 9.73 dB with a flow rate of
125.0 mL/s. The results reported in this paper show that both the Te cross-spectral density and Te

coherence are higher than those reported in scientific literature.

Keywords: cross-correlation; frequency dyadic spectrum; Te coherence; Te cross-spectral density;
Te transform

1. Introduction

This paper shows a feature extraction study of water leaks with a diameter of 1 mm and
4 mm, in a controlled laboratory environment. This study makes use of the Te transform [1]
and its properties in the frequency domain.

Nowadays, one of the most widely used approaches in pipeline fault feature extraction
is performed in the domain of frequency [2–4]. This is because the frequency domain reveals
characteristics of the signal to be analyzed that are not visible in the time domain. For this
reason, this article shows two new mathematical tools for extracting the characteristics of a
signal in the frequency domain:

1. The first is the Te cross-spectral density.
2. The second is Te coherence.

These mathematical tools are based on the Te transform [1] and in the cross-correlation
function [5–8]. The main objective of this new approach increases sensitivity in the fre-
quency spectrum. This makes it possible to detect water leaks of a small size. These
contributions were validated by the behavior of a pipeline with two types of background
leakage, the first with a diameter of 1 mm and the second with a diameter of 4 mm.

There is currently great interest in detecting non-catastrophic background leaks with
a flow rate below the limit commonly known as Unavoidable Annual Real Losses [9,10].
There is interest in background leaks with these characteristics since they are precursors to
catastrophic water leaks.
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The authors of [8,11] state that these losses are due to a variety of factors. These include
demographic, socioeconomic, and environmental factors, such as rapid population growth,
rapid urbanization, unsustainable consumption patterns, and groundwater and surface
water pollution. The authors in [12] reveal that these problems are compounded by events
arising from operations, such as turning pumps on or off and opening or closing valves.
Some of these events are aggravated by the aging and corrosion of these installations,
leading to background water leaks that increase repair costs.

Due to the adversities caused by water leaks, it is of great interest to minimize the life
span, which begins when this event is generated and ends when the water distribution
system comes to repair it. This problem has motivated many researchers to study and
propose different solutions in the frequency domain for background leakage.

In [13], the authors carried out work aimed at detecting water leaks in plastic pipes. In
this work, they use the Fourier transform, the short-time Fourier transform, and the contin-
uous Wavelet transform to detect the presence of leakage. In addition, they analyze leaks
with a diameter of 6 mm and 10 mm. In the research reported by [14], the vibroacoustic
characteristics of leakage in buried water pipes were studied. After conducting their study,
they propose that before processing the cross-correlation function, unwanted noise should
be removed. This is achieved by filtering the data in a frequency bandwidth where there is
leakage information. In addition, they use cross-spectral density and coherence to extract
the background leakage feature.

Researchers in [15] investigated to detect background leakage, under controlled condi-
tions, with a flow rate of 0.6 L/min. To solve their problem, they use power spectral density.
Authors in [16] performed work on the influence of piping material on the background
leakage signal for real and complex water distribution systems. In the work of [17], the
process of differentiation is applied in urban pipeline networks to detect leaks based on
correlation. For this purpose, the authors use cross-spectral density.

In [9], they present a work directed towards the study of vibrations to detect water
leaks. In that article, the authors use auto-correlation analysis and power spectral density
to extract the water leakage feature. In the study shown in [18], they analyze the detection
of background leakage in water pipelines under a noisy environment. For their study, these
authors considered that in practice, leakage signals coexist with white noise and color noise.
They used the coherence function and cross-spectral density for their analysis.

The article [19] shows a study for detecting water leaks in a steam generator. The
authors use cross-spectral density to analyze the background leakage generated. The
research of [20] shows a work aimed at leak detection in urban water distribution systems,
where a study is conducted on the accuracy of different technologies in the detection of
background leaks. In said study, the authors did not detect any leaks below the limit
commonly known as Unavoidable Annual Real Losses [10]. The authors of [21] show a
procedure based on linear prediction for leak detection in water distribution networks. For
their analysis, they used the short-time Fourier transform.

Despite the existing advantages of the mathematical methods reported in the scientific
literature, the main drawback is that there is no mathematical tool to calculate cross-
spectra. This maximizes the sensitivity of the frequency spectrum and in parallel makes it
possible to extract background leakage characteristics below the limit commonly known as
Unavoidable Annual Real Losses.

For this reason, to find new study methods that do not exist in the international litera-
ture, this manuscript proposes two new mathematical tools to calculate crossed spectra.
The first contribution is the Te cross-spectral density and the second contribution is Te co-
herence. Our results show the possibility of characterizing, in the dyadic frequency domain,
background leakage generated in a controlled laboratory environment corresponding to
1 mm and 4 mm leakage.

The remainder of the article is organized as follows. Section 2 presents the theoretical
background for Te cross-spectral density and Te coherence. Section 3 shows the contribu-
tions to the knowledge presented in this article, which are Te cross-spectral density and Te
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coherence. Section 4 shows the experimental setup used. Section 5 shows the simulation
and experimental results together with discussions. Finally, the main conclusions are
shown in Section 6.

2. Theoretical Background

In this section, we describe the theoretical bases used to obtain the Te cross-spectral
density and Te coherence. The authors start with the definition of the cross-correlation
function, and then with the definition of the Te transform. Subsequently, with the definition
of the cross-spectral density function, and finally with the definition of the coherence
function.

2.1. Cross-Correlation Function

The cross-correlation function is widely used in fault detection [22–24] to extract
features that highlight the relationship between two signals.

If there are two signals x1(t), x2(t) ∈ L1(R) ∀ t ∈ R stationary and ergodic, then the
cross-correlation function is defined by [25,26] as shown in Equation (1).

Rx1,x2(τ) = E[x1(t)x2(t + τ)] (1)

where τ ∈ R and indicates the delay between x1(t) and x2(t), E is the expected value
operator.

To perform an easy-to-interpret feature extraction, it is very useful to express the
cross-correlation in a normalized form, giving Equation (1) as expressed in Equation (2),

ρx1,x2(τ) =
Rx1,x2(τ)√

Rx1,x1(0)Rx2,x2(0)
(2)

where Rx1,x1(0) is the auto-correlation function for x1, Rx2,x2(0) is the auto-correlation
function for x2, −1 ≤ ρx1,x2(τ) ≤ 1, indicating that 0 and ±1 are minimum and maximum
correlation, respectively.

2.2. Te Transform

The Te transform defined by [1] is a mathematical tool that allows for obtaining a
dyadic frequency spectrum. Its main advantage is that it allows the isolation of spurious
frequency components.

If f (t) ∈ L1(R) ∀ t ∈ R then the Te transform is defined by [1] as shown in
Equation (3).

f̂DTe[ f (t)](µ, ξ, ϑ) =

∞∫
−∞

f (t)g∗µ,ξ,ϑ(t)dt ∀ µ, ξ, ϑ ∈ Z+ (3)

where f̂DTe[ f (t)](µ, ξ, ϑ) are the Te coefficients of f (t), g∗µ,ξ,ϑ(t) = w∗µ(t)ψ∗ξ,µ(t)e
−i2πϑt is ker-

nel Te, w∗µ(t) = w∗(t− µ) ∈ L1(R)∩ L2(R) is a window function, ψ∗ξ,µ(t) =
1√
2ξ

ψ∗
(
2−ξ t− µ

)
∈ L1(R) ∩ L2(R) is a dyadic wavelet function, and 2ξ and µ are the scaling and translation
parameters, respectively.

2.3. Cross-Spectral Density Function

Cross-spectral density is a mathematical tool widely used in the field of fault detection
because it allows us to know, in the frequency spectrum, the relationship between two
signals [27–29].

This function is based on calculating the Fourier transform of the cross-correlation
function described in Equation (1). Equation (4) defines the cross-spectral density for
x1(t), x2(t) ∈ L1(R) ∀ t ∈ R [30,31].
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Sx1,x2(ω) =

∞∫
−∞

Rx1,x2(τ)e
−iωτdτ (4)

2.4. Coherence Function

Coherence is a particular case of cross-spectral density. The main advantage of
this function is that it normalizes the relationship between two signals, x1(t), x2(t) ∈
L1(R) ∀ t ∈ R, in the frequency domain. This advantage has led this function to be widely
used in the area of fault detection [32–34]. Equation (5) defines the coherence function [31].

Gx1,x2(ω) =
|Sx1,x2(ω)|√

Sx1,x1(ω)Sx2,x2(ω)
(5)

where Sx1,x1(ω) is the auto-spectrum of x1(t), Sx2,x2(ω) is the auto-spectrum of x2(t), and
0 ≤ Gx1,x2(ω) ≤ 1, indicating that zero and one are minimum and maximum coherence,
respectively.

3. Method for the Detection of Water Background Leakage

In this section, the authors show the main contributions to this work. It is important
to note that the mathematical basis for these contributions was presented in the previous
section (Section 2).

Signal analysis using the cross-spectral approach has been of great importance in several
areas of knowledge [35–37]. Among the works reported, a focus on the continuous Wavelet
transform is found [38–41]. Despite the progress achieved, its main drawback is that it does not
allow multiple-resolution analysis using a dyadic approach. This makes it impossible to isolate
frequency components that are not characteristic of the system to be analyzed.

To solve this problem, the authors of this paper show, in Sections 3.1 and 3.2, new
study methods not existing in the international literature for the detection of background
water leakage. The main advantage of these mathematical tools is that they allow the
investigation of the relationship between two signals in the dyadic frequency spectrum.

Section 3.1 shows Te cross-spectral density and Section 3.2 Te coherence.

3.1. Te Cross-Spectral Density Function

This subsection shows the first contribution aimed at obtaining a function defining
the Te cross-spectrum, through the cross-correlation link and the Te transform.

The Te cross-spectrum provides a dyadic cross-spectrum that allows extraction of char-
acteristics of systems under deterministic or stochastic processes, increasing the sensitivity
of the frequency spectrum.

If we replace the f (t) signal of Equation (3) with cross-correlation, Rx1,x2(τ), defined
in Equation (1) we obtain Equation (6) which defines the Te cross-spectral density. It is
important to note that Equation (6) is defined for two signals x1(t), x2(t) ∈ L1(R) ∀ t ∈ R.

Ŷx1,x2(µ, ξ, ϑ) =

∞∫
−∞

Rx1,x2(τ)g∗µ,ξ,ϑ(τ)dτ ∀ µ, ξ, ϑ ∈ Z+ (6)

where Ŷx1,x2(µ, ξ, ϑ) is Te cross-spectral density.

3.2. Te Coherence Function

This subsection shows the second contribution of this manuscript, which is based on
the first contribution shown in Section 3.1. This is oriented to obtain the particular case of
the Te cross-spectral density, which is Te coherence.
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Te coherence is obtained by normalizing Equation (6) by the Te auto-spectra of the signals
x1(t) and x2(t). Equation (7) defines the Te coherence function for signals x1(t) and x2(t).

Ωx1,x2(µ, ξ, ϑ) =

∣∣∣Ŷx1,x2(µ, ξ, ϑ)
∣∣∣√∣∣∣Ŷx1,x1(µ, ξ, ϑ)

∣∣∣∣∣∣Ŷx2,x2(µ, ξ, ϑ)
∣∣∣ (7)

where
∣∣∣Ŷx1,x1(µ, ξ, ϑ)

∣∣∣ is the absolute value of the Te auto-spectrum of x1(t),
∣∣∣Ŷx2,x2(µ, ξ, ϑ)

∣∣∣
is the absolute value of the Te auto-spectrum of x2(t), and 0 ≤ Ωx1,x2(µ, ξ, ϑ) ≤ 1, indicating
that 0 and 1 are the minimum and maximum Te coherence, respectively.

4. Experimental Design

To validate the two contributions, an installation consisting of a slightly rusted cast
iron pipe with a length of 90 cm and an outer and inner diameter of 8.5 cm and 8.2 cm,
respectively, was used.

The distance between the sensors is d = 30 cm and the distance from each sensor to the
leakage is 15 cm. In addition, 2 scenarios were used: In the first one, two simulated signals
were used with the addition of white Gaussian additive noise. In the second scenario,
two background leaks were generated, a 1 mm and an 4 mm in diameter background
leak. Figure 1 shows the schematic of the installation used for background leak detection.
Note, in this figure, how the position of the sensors is described, highlighting the distance
between them and the distance from each sensor to the background leakage.
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Figure 1. Scheme for background leakage detection.

The data acquisition process used two 603C01 uniaxial piezoelectric accelerometers,
which have a sensitivity of 100 mV/g and a dynamic range of ±50 g. A data acquisition
system was also used from National Instrument NI 9234 and NIcDAQ− 9172 together with
the LabView (2018 version) program. The vibration signals were sampled in compliance
with Nyquist’s theorem. A sampling frequency of 500 Hz was used since leakage has
components with frequencies lower than 250 Hz. Experiments were conducted at room
temperature (25 ◦C) and atmospheric pressure (1019 hPa).

5. Results and Discussion

The objective of this section is to present the advantages of the contributions of
this article (see Section 3) compared to those reported by the scientific community (see
Sections 2.3 and 2.4).

For this reason, the authors of this paper divided Section 5 into two subsections.
Section 5.1 shows the results obtained under a simulation environment. Section 5.2 shows
the results achieved for two different background leakages under a real controlled experi-
mental environment. In signal processing with Te cross-spectral density and Te coherence,
the Hamming function was used as a window and the Daubechies 45 as a wavelet. The
Daubechies 45 was selected because it provides an attenuation of 150 dB in the rejection
band [42].
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5.1. Simulated Signal Scenario

In this first scenario, the authors show the simulation results obtained with the proce-
dures reported in the scientific community and the two contributions reported in this article.

The main objective of this subsection is to show from a deterministic approach the
effectiveness of the contributions shown in Section 3 in comparison with the procedures
reported in the literature.

To obtain the results shown in this subsection, two signals were simulated with the
presence of additive white Gaussian noise: The first signal has frequency components of
10 Hz and 100 Hz. The second one presents frequency components of 50 Hz and 100 Hz.

Figures 2 and 3 show the results obtained by the cross-spectral density function and
the coherence function, respectively. Note, in these figures, how it is possible to extract
the 100 Hz frequency characteristic, discriminating the frequency components that are not
equal. On the other hand, note, how from Figures 4–7, it can be observed that both the
Te cross-spectral density as well as the Te coherence add the advantage of isolating the
100 Hz frequency component between the two analysis signals. However, it maintains the
advantage of discriminating frequency components that are not common. This advantage
makes it possible to analyze, on a specific scale, a frequency component without the
intervention of frequency components that do not correspond to the background leakage
being analyzed.
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Figure 2. Cross-spectral density, with two synthetic signals: S1 = sin(2π10t) + sin(2π100t) and
S1 = sin(2π50t) + sin(2π100t).
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sin(2π50t) + sin(2π100t).
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Figure 4. Te cross-spectral density, with two synthetic signals: S1 = sin(2π10t) + sin(2π100t) and
S1 = sin(2π50t) + sin(2π100t).
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sin(2π100t) and S1 = sin(2π50t) + sin(2π100t). Absolute error 1 ∗ 10−3.
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5.2. Real Experimentation Scenarios

In this subsection, the authors validate, through real experiments, the contributions
shown in Section 3. For this, they used a scenario under the setup shown in Section 4.
The said scenario was used to analyze two types of background leakage. The first back-
ground leak is 1 mm in diameter with a signal-to-noise ratio of 2.82 dB and a flow rate
of 33.7 mL/s. The second background leak is 4 mm in diameter with a signal-to-noise
ratio of 9.73 dB and a flow rate of 125.0 mL/s. Figures 8 and 9 show the signals corre-
sponding to sensors 1 and 2, respectively. Notice, in these figures, how the amplitude of
the background leak corresponding to 1 mm of diameter and the amplitude of the signal
without background leak are very close. This highlights the need to analyze background
leakage signals with mathematical tools that allow analyzing such signals through their
frequency characteristics.
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Figure 8. Signals were acquired from the first sensor with a background leak of 1 mm and 4 mm
in diameter.
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Figure 9. Signals were acquired from the second sensor with a background leak of 1 mm and 4 mm
in diameter.

5.2.1. Results Obtained for Background Leakage of 1 mm in Diameter

This subsubsection shows the results obtained after processing the signals displayed
in Figures 8 and 9. Note that for Figures 10 and 11, as well as for the leakage of 1 mm in
diameter, two frequency components appear (17.0 Hz and 31.7 Hz), which are apparently
associated with the background leakage. On the other hand, notice how in Figure 11,
the coherence obtained is less than 0.6, which indicates that there is a very poor relation
between the signals arriving at the sensors. This result is because the signal related to the
1 mm background leakage has a signal-to-noise ratio close to the noise floor of the data
acquisition system, which causes the signal to be very weak at the reception point, making
the feature extraction process difficult.
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Figure 10. Cross-spectral density, with background leak (1 mm in diameter) and flow rate 33.7 mL/s.

However, the results are shown by the Te cross-spectral density (see Figures 12–14)
and Te coherence (see Figures 15 and 16) show superiority over the above-mentioned
procedures. Notice how both the Te cross-spectrum and the Te coherence highlight the
frequency component related to background leakage. This result is due to the fact that these
contributions are based on showing a dyadic frequency spectrum that allows obtaining
multi-sensitivity in the frequency spectrum, which allows detection of background leakage
of 1 mm in diameter.
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Figure 11. Coherence’s magnitude, with background leak (1 mm in diameter) and flow rate
33.7 mL/s.
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Figure 12. Te cross-spectral density, with background leak (1 mm in diameter) and flow rate
33.7 mL/s.
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Figure 16. Te coherence in Scale 4, with background leak (1 mm in diameter) and flow rate 33.7 mL/s.

Another important result is that the dyadic frequency spectrum obtained by the Te
cross-spectral density and Te coherence discriminates frequency components corresponding
to the color noise (31.7 Hz frequency component) as shown in Figure 14. This property
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allows highlighting only the frequency component related to background leakage. This
result is observed when comparing Figures 10–16.

5.2.2. Results Obtained for Background Leakage of 4 mm in Diameter

This section shows the results obtained after processing the acquired signals of 4 mm
diameter background leakage (see Figures 8 and 9).

Figures 17 and 18 show the results obtained by cross-spectral density and coherence,
respectively. Note that in this case, the background leakage has a frequency component of
86.36 Hz.

Water 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 16. 𝒯௘  coherence in Scale 4 , with background leak ( 1 mm  in diameter) and flow rate 33.7 mL/s. 

Another important result is that the dyadic frequency spectrum obtained by the 𝒯௘ 
cross-spectral density and 𝒯௘  coherence discriminates frequency components corre-
sponding to the color noise (31.7 Hz frequency component) as shown in Figure 14. This 
property allows highlighting only the frequency component related to background leak-
age. This result is observed when comparing Figures 10–16. 

5.2.2. Results Obtained for Background Leakage of 4 mm in Diameter 
This section shows the results obtained after processing the acquired signals of 4 mm 

diameter background leakage (see Figures 8 and 9). 
Figures 17 and 18 show the results obtained by cross-spectral density and coherence, 

respectively. Note that in this case, the background leakage has a frequency component 
of 86.36 Hz. 

 
Figure 17. Cross-spectral density, with background leak ( 4 mm  in diameter) and flow rate 125.0 mL/s. 

C
oe
ffi

ci
en

tʹs
 m

ag
ni

tu
de

Figure 17. Cross-spectral density, with background leak (4 mm in diameter) and flow rate 125.0 mL/s.
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Figure 18. Coherence, with background leak (4 mm in diameter) and flow rate 125.0 mL/s.

Notice how even though this type of leak has a higher signal-to-noise ratio than
the 1 mm diameter leak, the sensitivity of the frequency spectrum is maximized with the
contributions shown in this article.

Figures 19–22 show the result obtained after computing the Te cross-spectral density
and Te coherence. Observe in these figures how different frequency bands appear where
spurious frequencies are observed. If we focus only on scale 2, we can see that this is
where the frequency component with the highest density is concentrated. This allows us
to characterize the frequency component of the background leakage. This provides the
possibility of extracting the background leakage characteristic with maximum accuracy.
This is shown by comparing the results displayed in Figures 17 and 18 with those shown in
Figures 20 and 22.



Water 2023, 15, 736 13 of 16

Water 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 18. Coherence, with background leak (4 mm in diameter) and flow rate 125.0 mL/s. 

Notice how even though this type of leak has a higher signal-to-noise ratio than the 1 mm diameter leak, the sensitivity of the frequency spectrum is maximized with the con-
tributions shown in this article. 

Figures 19–22 show the result obtained after computing the 𝒯௘ cross-spectral density 
and 𝒯௘ coherence. Observe in these figures how different frequency bands appear where 
spurious frequencies are observed. If we focus only on scale 2, we can see that this is where 
the frequency component with the highest density is concentrated. This allows us to char-
acterize the frequency component of the background leakage. This provides the possibil-
ity of extracting the background leakage characteristic with maximum accuracy. This is 
shown by comparing the results displayed in Figures 17 and 18 with those shown in Fig-
ures 20 and 22. 

 
Figure 19. 𝒯௘  cross-spectral density, with background leak (4 mm  in diameter) and flow rate 125.0 mL/s. 

N
or

m
al

iz
ed

Figure 19. Te cross-spectral density, with background leak (4 mm in diameter) and flow rate
125.0 mL/s.
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These contributions allow the investigation of the relationship between two signals
in the dyadic frequency domain. The main advantage they present is that they allow the
extraction of the common frequency characteristic between two signals by discriminating
the frequency components that correspond to color noise.

6. Conclusions

This paper presented two contributions based on the link of the Te transform and the
cross-correlation function, to detect background leakage of down to 1 mm diameter and
flow rate of 33.7 mL/s. The first contribution is the Te cross-spectral density and the second
contribution is Te coherence.

The detection of such small leaks provides great strength to the water distribution
systems in knowing the current state of the distribution network. Which makes such leaks
a precursor to catastrophic water leaks.

The results obtained show that the two contributions presented in this paper are supe-
rior to the state-of-the-art procedures that have previously been reported in the literature.
This is because the procedures reported in the scientific literature are not able to extract
the frequency component of the background leakage by isolating it from the spurious
components. In addition, the procedures reported in the literature lack sensitivity in the
frequency spectrum.

In future work, we will focus on the study of the properties of the Te cross-spectral
density and Te coherence. We will also evaluate their performance in a real, uncontrolled
environment. In addition, we will work on the implementation of the the Te cross-spectral
density and the Te coherence in environments such as those provided by EPANET, allowing
researchers to analyze the frequency components of background water leaks.
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