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Abstract: The third-monthly (about 10 days in a time-step) hydropower scheduling, typically a
challenging nonlinear optimization, is one of the essential tasks in a power system with operational
storage hydropower reservoirs. This work formulates the problem into quadratic programming (QP),
which is solved successively, with the linearization updated on the nonlinear constraint of the firm
hydropower yield from all the cascaded hydropower reservoirs. Notably, the generating discharge is
linearly concaved with two planes, and the hydropower output is defined as a quadratic function
of reservoir storage, release, and generating discharge. The application of the model and methods
to four cascaded hydropower reservoirs on the Jinsha River reveals several things: the successive
quadratic programming (SQP) presented in this work can derive results consistent with those by
the dynamic programming (DP), typically with the difference in water level within 0.01m; it has
fast convergence and computational time increasing linearly as the number of reservoirs increases,
with the most significant improvement in the objective at the second iteration by about 20%; and
it is capable of coordinating the cascaded reservoir very well to sequentially maximize the firm
hydropower yield and the total hydropower production.

Keywords: hydropower scheduling; successive quadratic programming; trust corridor; concave
linearization; reservoir operation

1. Introduction

Seasonal or monthly hydropower scheduling is one of the essential tasks in a power
system with operational storage hydropower reservoirs. As shown by Allen and Bridgeman
(1986), a seasonal load dispatch problem could be formulated to provide a preliminary
evaluation of the ability of hydropower reservoirs to revise their system operation to
maximize potential savings [1]. Wang et al. (2015) employed a monthly scheduling model
to analyze the compensation benefits of four hydropower stations on the Jinsha River, which
coordinate to reduce spillages during flood seasons and improve generation efficiency in
dry seasons [2]. A deterministic monthly hydropower scheduling can also be simulated
over many years of historical inflows in an implicit stochastic optimization to derive the
operational rule of a reservoir [3]. Zambelli et al. (2011) demonstrated that an operational
strategy based on deterministic modeling, when appropriately applied, can achieve similar
performance to that which is yielded with a stochastic approach [4].

The monthly hydropower scheduling is typically a nonlinear optimization where the
nonlinearity imposes challenges for a method to deliver an efficient solution; in addition,
it is a problem in high dimensions when involving many operational storage reservoirs.
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The nonlinearity mainly comes from the hydropower output, a nonlinear function of the
water head and generating discharge, and the generating capacity, which is also a nonlinear
function of the water head [5,6].

Dynamic programming (DP), well known as one of the most applied mathematical
optimization methods, effectively derives the global optimum at a discrete precision by
transforming a multi-stage problem into multiple single-stage problems. However, it
still encounters the “dimensional difficulty” [7] when dealing with a reservoir system on
a large scale and at a high discretization resolution. Many strategies were proposed to
improve its solution efficiency, including the DDDP [8,9], POA [10,11], and DPSA [12],
which reduce the number of trials by using iterative ways to approach the optimum
and are sensitive to the initial solution. In some cases, the problem of “dimensional
difficulty” can somehow be alleviated by using the metaheuristic algorithms, such as
Genetic Algorithm [13], Differential Evolution [14], Artificial Neural Networks [15,16],
Particle Swarm Optimization [17–19], and Ant Colony Optimization [2], which, however,
all have difficulty dealing with complex constraints, are sensitive to specific problems,
and are inconsistent in securing the optimum. The fact that one of the extreme points
is the optimum to a linear programming problem allows it to be efficiently solved by
checking only on these extreme points [20], only that a real-world nonlinear problem must
be simplified by linearization. Indeed, nonlinear programming (NLP) can effectively deal
with non-differentiable objective functions and nonlinear constraints [21]. However, it does
not have an efficient solver that can be extensively applied to various nonlinear problems.

Previous works dealt differently with the nonlinearity of a medium/long-term hy-
dropower scheduling problem. In discrete dynamic programming (DDP), the state and
decision spaces are represented with a sample of discrete values, which determine the
values of the hydropower output and its capacity [22]. However, the “dimensional dif-
ficulty” of the DDP has always been a significant challenge to the optimal operation of
cascaded reservoirs, because the computational memory and time increase exponentially
with the increasing number of reservoirs [23]. A linear objective that assigned weights
to storage and release was used by Yoo (2009) to approximate the nonlinear hydropower
output [24]. The errors of linearization, however, need to be reduced to an applicable extent
by introducing integer variables for a piecewise linear approximation [25], which makes the
problem a mixed integer linear programming (MILP) one that, in some cases, can be either
too weak or too large to be effectively solved by state-of-the-art solvers [26]. Nonlinear
programming (NP) is a natural choice to model a monthly hydropower scheduling problem,
which often requires all constraints to be linear to allow it to be efficiently solved [27,28].
As adopted by Shang et al. (2017), nonlinear constraints were often dealt with by using
penalty functions in a metaheuristic approach [29]. The solution quality, however, relies
heavily on the penalty coefficient, whose value is difficult to determine [30].

A sensible strategy in dealing with the nonlinearity of the hydropower output is to
apply successive linear programming (SLP), which may have its trajectory oscillating be-
tween extreme points without finding a maximum located in the interior of the feasible set,
since an LP solver only searches for the optimum among extreme points. As demonstrated
by Cheng et al. (2022), the searching process must be carefully guided by checking on the
improvement of the original objective, for instance, to ensure the objective improving till
its convergence [31,32].

As demonstrated by Catalao et al. (2010), using a nonlinear objective can improve
the converging performance, leading to successive quadratic programming (SQP) which
has attracted many researchers to experiment with hydropower scheduling [33]. Niu
et al. (2018), for instance, formulated an hourly hydropower scheduling problem into
standard quadratic programming at fixed water heads, which made the lower and upper
bounds on the hydropower output to be linear and were frequently updated to update
the quadratic programming, whereas the convergence, however, was not clearly inves-
tigated [34]. Diaz and Fontane (1989) successively approximated the original objective
function with a quadratic expression by the second-order expansion around the previous
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solution, with the monthly hydropower scheduling problem involving only linear con-
straints [35]. Arnold et al. (1994) applied sequential quadratic programming to a monthly
hydropower scheduling problem, which included only the linear constraints such as the
water balance as well as the bounds on the storage, release, and spillage [36]. Most of
these previous works, however, assumed either fixed water heads to linearize the nonlinear
constraints or included only the conventional linear constraints, and it was not clear how
incorporating more nonlinear constraints would affect the performances of the SQP.

This work will include more nonlinear constraints in a third-monthly (about 10 days in
a time-step) hydropower scheduling problem, including the generating discharge capacity
that will be linearly concaved with two lines defined by the water head, along with the
firm hydropower output that will be linearized as a function of storages and releases.
Based on what is observed, the relationship between the generating discharge capacity
and the water head can be well-fitted to linear constraints, and the water head can be
well represented with a linear function of storage and outflow, making the generating
discharge capacity also a linear function of storage and outflow. Since the hydropower
output can be estimated as the production of the water head and the generating discharge,
it becomes a quadratic function of storage and outflow, leading to the objective function in
a quadratic form. Having the storages variable during the solution process, a successive
quadratic programming (SQP) strategy will be applied and compared with the well-known
dynamic programming to see if they can produce consistent results in the third-monthly
hydropower scheduling of a hydropower reservoir, and then will be experimented with in
case studies involving at least four cascaded operational storage reservoirs to investigate
its performances, convergence, and capability of securing the optimal solution.

2. Problem Formulation

The problem is formulated to maximize the firm power output and energy production
sequentially during a planning horizon, expressed as:

maxW1 · F + W2 ·
N

∑
i=1

T−1

∑
t=0

Pit (1)

where W1 and W2 are the weights with W1 � W2 to prioritize the firm power output (F)
over the energy production; i and t are subscripts for reservoir and time-step, respectively;
Pit is the power output in MW in time-step t.

Constraints include:

(1) The water balance,

Vi,t+1 = Vit + ( ∑
j∈Ω(i)

Qjt + Iit −Qit) ·
∆t · 24× 3600

1000000
(2)


qit + split = Qit
Vi,0 = Vini

i
Vi,T = Vend

i

(3)

where Vit = storage in hm3 at the beginning of time-step t of reservoir i; Qit = outflow in
m3/s in time-step t from reservoir i; Iit = local inflow in m3/s in time-step t into reservoir i;
qit = generating discharge in m3/s in time-step t of hydroplant i; spltit = spillage in m3/s
in time-step t from reservoir i; Iit = local inflow in m3/s in time-step t into reservoir i; Iit
= local inflow in m3/s in time-step t into reservoir i; Ω(i) = set of reservoirs immediately
upstream of reservoir i; ∆t = the number of days in time-step t; Vi

ini and Vi
end = initial and

target storages in hm3 at the beginning and end of the planning horizon, respectively.

(2) Upper and lower bounds on storage or release,



Water 2023, 15, 716 4 of 15

{
Vdead

i ≤ Vit ≤ Vmax
it

Qmin
i ≤ Qit ≤ Qmax

i
(4)

where Vdead
i = dead storage in hm3 of reservoir i; Vmax

it = upper bound on the storage at
the beginning of t of reservoir i, equal to the flood control limited storage during flooding
seasons and the normal storage during dry seasons; Qi

min and Qi
max = lower and upper

bounds on the release from reservoir i in time-step t.

(3) Firm hydropower output,

N

∑
i=1

Pit ≥ F (5)

where N = number or hydroplants/reservoirs.

(4) The hydropower output determined by,

Pit = Ai · qit · hit (6)

with the generating discharge limited to its capacity,

qit ≤ Gmax
i (hit) = min[(c(0)i hit + d(0)i ), (c(1)i hit + d(1)i )] (7)

which, as illustrated in Figure 1, is equivalent to{
qit ≤ c(0)i hit + d(0)i
qit ≤ c(1)i hit + d(1)i

(8)

with
hit = Zu

i (Vit)− Zd
i (Qit)

= [αi · (Vit − V̂(0)
i ) + Ẑu

i ]− [βi · (Qit − Q̂(0)
i ) + Ẑd

i ]
(9)

Vit =
Vit + Vi,t+1

2
(10)

where Ai = power generating efficiency in MW.s/m4; hit = water head in time-step t of
hydroplant i; Gi

max (.) = capacity of hydropower output of i, a function of water head;
c(0)i , c(1)i , d(0)i and d(1)i = coefficients to be estimated to fit the power output capacity with
piecewise linearization; Zi

u (.) and Zi
d (.) = forebay and tailwater elevations, dependent

on the water storage and release, respectively, of reservoir i; ai, V̂(0)
i and Ẑu

i = coeffi-
cients/parameters to be estimated for the relationship curve between storage and forebay
water level; βi, Q̂(0)

i and Ẑd
i = coefficients/parameters to be estimated for the relationship

curve between outflow and tailwater level.
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Figure 1. Capacity of generating discharge due to water head. 
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one. If the solution has not been improved, then either terminate the procedure if the con-

vergence has been achieved or shrink the trust level by a percentage, for instance, 80%. 

Figure 1. Capacity of generating discharge due to water head.

The model outputs the firm hydropower yield, as well as the third-monthly releases,
storages, water heads, power generations, and spillages, with inputs including the weights
assigned to prioritize the objectives, local inflows, hydrological connections among reser-
voirs, initial and end storages, lower and upper bounds, and the coefficients used to
estimate the relationship functions. It does not incorporate any pump storage reservoirs,
which will complicate the modeling since variables must be included to represent the flow
pumped up into the reservoirs from a downstream pool.

3. Solution Techniques

Figure 2 illustrates the flowchart of the solution procedure at a high level. With a trust
level (∆i) initiated, the procedure starts with finding a feasible solution (x) to the problem,
around which the original problem is approximated with quadratic programming (QP) to
derive its optimum (x1), which, if better than the base solution (x0) on the original objective,
will serve as the base solution, with the trust level restored to its initial one. If the solution
has not been improved, then either terminate the procedure if the convergence has been
achieved or shrink the trust level by a percentage, for instance, 80%.
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3.1. Formulation of a QP Problem

Replacing the water head in (6) and (8) with (9) gives:

Pit = Pi(qit, Vit, Qit)

= (Aiαi) · qitVit − (Aiβi) · qitQit + Ai · (Ẑu
i − αiV̂

(0)
i + βiQ̂

(0)
i − Ẑd

i ) · qit

= A(p)
i qitVit + B(p)

i qitQit + C(p)
i qit

(11)

and

qit ≤ c(0)i hit + d(0)i
= (c(0)i αi) ·Vit − (c(0)i βi) ·Qit + c(0)i · (Ẑu

i − αiV̂
(0)
i + βiQ̂

(0)
i − Ẑd

i ) + d(0)i
= A(0)

i ·Vit + B(0)
i ·Qit + C(0)

i
qit ≤ c(1)i hit + d(1)i
= (c(1)i αi) ·Vit − (c(1)i βi) ·Qit + c(1)i · (Ẑu

i − αiV̂
(0)
i + βiQ̂

(0)
i − Ẑd

i ) + d(1)i
= A(1)

i ·Vit + B(1)
i ·Qit + C(1)

i

(12)

Substituting (11) for the hydropower output in (1) gives an equivalent objective,

max f (x) = W1 · F + W2 ·
N

∑
i=1

T−1

∑
t=0

[A(p)
i qitVit + B(p)

i qitQit + C(p)
i qit] (13)

with x representing the decision variables including: Vit, Qit, qit, etc.
The firm hydropower output (5) will be linearized around the base solution (x0) that

represents the values of decision variables: V(0)
it , Q(0)

it , q(0)it and V(0)
it , and updated with

N
∑

i=1

[
A(p)

i q(0)it Vit + B(p)
i q(0)it Qit

+[A(p)
i V(0)

it + B(p)
i Q(0)

it + C(p)
i ](qit − q(0)it ) + C(p)

i q(0)it

]
≥ F

(14)

Thus, the QP problem will have a quadratic objective (13) subject to linear constraints:
(2)–(4), (10), (12), (14) and a trust corridor,

V(0)
it − ∆i ≤ Vit ≤ V(0)

it + ∆i (15)

where the trust level (∆i) can be initiated as

ˆ
∆i = 0.5

(
Vdead

i +
1
T

T

∑
t=1

Vmax
it

)
(16)

Solving the QP problem will give its optimum, denoted as x1 to represent the decision

variables: V(1)
it , Q(1)

it and q(1)it , which will determine the original objective with,

F(1) = min
t

N

∑
i=1

[A(p)
i q(1)it V(1)

it + B(p)
i q(1)it Q(1)

it + C(p)
i q(1)it ] (17)

3.2. Finding a Feasible Solution

A feasible solution to the quadratic programming will be determined by solving a
problem that

maxW1 ·Y−W2 ·
N

∑
i=1

T−1

∑
t=1

(Vit −Vmax
it )2 (18)
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subject to: (2)–(4), (10), (12), (14) and the generating yield (Y),

N

∑
i=1

qit ≥ Y (19)

aimed to approximately maximize the firm hydropower output and the generating effi-
ciency by operating reservoirs at their maximum water levels.

4. Case Studies
4.1. Engineering Background

The models and solution techniques presented in this work are applied to four cas-
caded hydroplants on the Lower Jinsha River in China, as summarized in Table 1. The
Jinsha River has an annual runoff of 4750 m3/s on average, abundant and stable over the
years. It is rich in hydropower resources, with a total drop of 3300 m, dropping more than 1
m every kilometer. It flows downstream and contributes to a total exploitable hydropower
resource of 100 TW. The lower reaches of the Jinsha River are the most important trans-
portation and regional economic centers in southwest China. Two major storage reservoirs,
Baihetan and Xiluodu, have annual operability, making it very important to coordinate the
cascaded reservoirs to maximize the benefits of the third-monthly hydropower scheduling.

Table 1. Basic parameters of cascaded hydropower reservoirs.

Number Name Installed Capacity
(MW)

Storage Capacity
(GL)

Dam Height
(m)

Water Level (m)
Operability

Flood Normal Dead

1 Wudongde 10,200 7408 270 952 975 950 Seasonal
2 Baihetan 16,000 20,600 289 785 825 760 Annual
3 Xiluodu 12,600 12,670 285.5 560 600 540 Annual
4 Xiangjiaba 6400 5163 380 370 380 370 Seasonal

4.2. Comparison with Dynamic Programming (DP)

The results derived from the SQP will be compared with those produced by the well-
known dynamic programming (DP), which, unfortunately, is not favorable for handling
multiple reservoirs and therefore applied to only the Wudongde Hydroplant for compari-
son purposes. Two methods will calculate the water head, hydropower output, and the
generating discharge capacity in the same way to ensure a fair and accurate comparison.
The DP problem is solved twice: first to maximize the firm power output since it is the
top priority, and second to maximize the hydropower production while meeting the firm
hydropower output derived the first time, that is, the total hydropower output of all the
hydroplants must be no less than the firm hydropower output in each third of a month.

Figure 3 illustrates the results of the third-monthly hydropower outputs derived with
the SQP and DP methods, which are very consistent, with only 0.2% at maximum of the
difference between the two processes. The hydropower output of Wudongde Hydroplant
is flat in dry seasons to maximize the firm hydropower yield and generates more during
flood seasons to maximize the annual hydropower production.

As demonstrated in Figure 4, the third-monthly forebay water levels derived by the
DP and SQP for Wudongde Reservoir during the year are also very consistent, with the
difference between them within 0.01m. The water level changes within the lower and upper
bounds (dotted red lines) and follows a regular pattern: drawing down during dry seasons
and then refilling the storage to its full capacity at the end of the flood season. The DP is
well known and capable of securing the global optimum for a small-scale problem, and
the consistent results suggest that the present SQP is also capable of securing the global
optimum.
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4.3. Solution Efficiency

The models and procedures are coded in C++ on Microsoft Visual Studio 2019 and
run under the Intel Core i5-8250U computer environment, with the Gurobi 9.5.1 as the
quadratic programming solver. Table 2 summarizes the problem scales and the solution
efficiency in four case studies, with one, two, three, and four reservoirs included. Each case
study involves two models to be solved: Model 1 to derive an initial solution, and Model 2
to be a quadratic programming problem that is successively solved. The two models have
the same number of variables, but Model 2, with the trust corridor constraints included,
has more constraints than Model 1. The results show that the computational time increases
somewhat linearly as the number of reservoirs increases, and it takes about 1 min to solve
the problem involving all four cascaded hydropower reservoirs, while the DP takes about
4 min to secure the optimum to the problem involving only one reservoir.
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Table 2. Algorithm performance index parameters.

Number of
Reservoirs

Computing
Time(s)

Number of Variables Number of Constraints

Model 1 Model 2 Model 1 Model 2

4 61.784 725 725 1348 1644
3 46.478 544 544 1020 1242
2 17.981 363 363 1242 840
1 7.444 182 182 364 438

4.4. Convergence of the Method

Figure 5 illustrates the converging process of the objective function value, which
is monotonically increasing and ensured a fast convergence to a limit, with the second
iteration contributing to the most significant improvement by about 20% while the following
iterations improved by only about 1%, and the convergence is achieved at the fourth or
fifth iteration.
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Figure 6 shows the convergence process of water levels in the first four iterations. For
all four reservoirs, the third-monthly water levels converge to be in a narrow corridor after
only one iteration, suggesting a very fast convergence of the procedure.
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4.5. Results in Detail

Figure 7 shows the third-monthly hydropower outputs scheduled over a year for
cascaded individual hydroplants on the Jinsha River. The cascaded hydropower reservoirs
coordinate very well to maximize the firm hydropower output at the top priority by
regulating their storage capacities to give a constant power yield during the dry seasons,
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and then make full use of their installed capacities to convert the coming inflows into
hydropower energy as much as possible during the flood seasons.

Water 2023, 15, x FOR PEER REVIEW 12 of 16 
 

 

 
(d) Xiangjiaba 

Figure 6. The convergence of water levels of the reservoirs. 

4.5. Results in Detail 

Figure 7 shows the third-monthly hydropower outputs scheduled over a year for 

cascaded individual hydroplants on the Jinsha River. The cascaded hydropower reser-

voirs coordinate very well to maximize the firm hydropower output at the top priority by 

regulating their storage capacities to give a constant power yield during the dry seasons, 

and then make full use of their installed capacities to convert the coming inflows into 

hydropower energy as much as possible during the flood seasons.  

  

Figure 7. Third-monthly hydropower schedules in a year. 

Figure 8 illustrates the optimal scheduling process of the four cascaded hydropower 

reservoirs. The cumulative area of the generating discharge (marked green) and the spill-

age (marked orange) represents the outflow from the reservoir. As indicated by the water 

balance, a reservoir draws down its storage when the outflow is greater than the inflow, 

or keeps it unchanged when they are the same, or refills its storage capacity when the 

inflow is larger than the outflow. Each reservoir regulates its water level between the 

lower bound, which is enforced at the dead level, and the upper bound, which is enforced 

368

370

372

374

376

378

380

382

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

W
at

er
 l

ev
el

 (
m

)

Third-monthly

1st 2nd 3rd 4th

0

10,000

20,000

30,000

40,000

50,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

H
y
d

ro
p

o
w

er
 (

M
W

)

Third-monthly

Xiangjiaba

Xiluodu

Baihetan

Wudongde

Figure 7. Third-monthly hydropower schedules in a year.

Figure 8 illustrates the optimal scheduling process of the four cascaded hydropower
reservoirs. The cumulative area of the generating discharge (marked green) and the
spillage (marked orange) represents the outflow from the reservoir. As indicated by the
water balance, a reservoir draws down its storage when the outflow is greater than the
inflow, or keeps it unchanged when they are the same, or refills its storage capacity when
the inflow is larger than the outflow. Each reservoir regulates its water level between the
lower bound, which is enforced at the dead level, and the upper bound, which is enforced
at its normal level during dry seasons, and at its flood-control level during flood seasons,
following a reasonable pattern of emptying its storage capacity during dry seasons and then
refilling it during flood seasons. The Baihetan and Xiluodu demonstrate greater flexibility
in regulating their storages, which change more smoothly to their full extent over the year.
The plentiful runoffs during flood seasons incur spillages in large amounts, which cannot
be avoided since the hydroplants have fully used their storage and installed capacities.
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5. Conclusions

This work formulates a third-monthly hydropower scheduling model into a quadratic
programming (QP) problem, which incorporates nonlinear functions, including the gen-
erating discharge capacity that is linearly concaved with two planes defined as functions
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of storage and release of a reservoir, the total firm hydropower output that is approx-
imated with the first-order expansion and successively updated before solving the QP
problem, along with the hydropower output that is expressed as a quadratic function of
three variables: the storage, the release, and the generating discharge.

The models and procedures are applied to four cascaded hydropower reservoirs on
the Jinsha River, with the results suggesting:

(1) Successive quadratic programming (SQP) can derive results consistent with dynamic
programming (DP), which is well known and capable of securing the global optimal
solution to a small-scale problem.

(2) The present procedure has the computational time increasing linearly as the number
of reservoirs increases, taking about 1 min to solve the problem involving all four
cascaded hydropower reservoirs.

(3) The convergence of the SQP can be achieved at the fifth iteration, with objective
functional value monotonically increasing and improving the most significantly in
the second iteration by about 20%, while in the following iterations by only about 1%.

(4) The cascaded hydropower reservoirs coordinate very well to maximize the firm
hydropower output at the top priority by regulating their storage capacities to give
a constant power yield during the dry seasons, and then making full use of their
installed capacities to convert the coming inflows into hydropower energy as much as
possible during the flood seasons.

It is worth noting that the present model only presents a simplified real-world problem,
based on which the present solution procedure is verified to ensure consistent results with
the DP formulation that may have strength over the present modeling in approaching a
real-world problem.

Under a deterministic optimization framework, the present model and procedure are
more recommended in preliminary assessment with historical inflows observed than in a
year-ahead hydropower scheduling, since the monthly inflows in a coming year are often
too uncertain to be accurately forecasted. However, it is possible that the modeling tech-
niques and procedure in this work can be extended to an hourly hydropower scheduling
problem, since the hourly inflows can now be forecasted at very high accuracy.
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