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Abstract: There is great uncertainty about the future effects of climate change on the global economic,
social, environmental, and water sectors. This paper focuses on watershed vulnerabilities to climate
change by coupling a distributed hydrological model with artificial neural networks and spatially
distributed indicators for the use of a predictive model of such vulnerability. The analyses are
complemented by a Monte Carlo evaluation of the uncertainty associated with the projections of the
global circulation models, including how such uncertainty impacts the vulnerability forecast. To test
the proposal, the paper uses current and future vulnerabilities of the Turbio River watershed, located
in the semi-arid zone of Guanajuato (Mexico). The results show that nearly 50% of the watershed
currently has medium and high vulnerabilities, and only the natural areas in the watershed show
low vulnerabilities. In the future, an increase from medium to high vulnerability is expected to
occur in urban and agricultural areas of the basin, with an associated uncertainty of ±15 mm in the
projected precipitation.

Keywords: vulnerability; climate change; watersheds; uncertainty; Monte Carlo simulation

1. Introduction

Watershed vulnerabilities to climate change in the economic, social, environmental,
and water sectors, and their associated uncertainties in calculations, are great hydrological
challenges in the 21st century [1]. Millions of people (and sectors) around the world,
including the economic, social, environmental, and water sectors, are affected each year by
climate disasters [2]. In recent decades, the impacts of climate change have already become
visible, mainly in the increase in temperatures [3], and the increase and/or decrease in
precipitation in various regions across the world [4,5]. Consequently, the already-stressed
hydrological systems and resources are under greater pressure [6]. For instance, many
world regions face issues due to water scarcity and flooding events [7]. Despite multiple
scientific efforts [2], assessing the vulnerability to climate change is not an easy task due to
the large number of variables involved and the associated growing uncertainty, especially
in the future.

The most common methodology to quantify vulnerability to climate change is based
on a set of indicators combined into a single index [8]. For example, multiple linear
regression has been used to determine aquifer vulnerability to nitrate pollution in ground-
water [9], principal component analysis to create spatially explicit aggregate indices of
vulnerability [10], and analytical hierarchy processes mixed with fuzzy comprehensive
evaluation methods have been applied to achieve the drought vulnerability assessment [11].
In particular, such composite indices are used in environmental and risk models inte-
grated with geographic information. Among them, the following instances stand out:
the sustainability synthetic territorial index, which is a composite indicator that includes

Water 2023, 15, 711. https://doi.org/10.3390/w15040711 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15040711
https://doi.org/10.3390/w15040711
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-9662-0017
https://orcid.org/0000-0001-8230-6414
https://orcid.org/0000-0002-0921-7420
https://doi.org/10.3390/w15040711
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15040711?type=check_update&version=2


Water 2023, 15, 711 2 of 19

the environmental, economic, and institutional nature [12]; the vulnerability of the area
surrounding an industrial site using a multi-criteria decision approach [13]; the climate
change vulnerability to predict the variation in risk perception [14]; and the prediction of
groundwater vulnerability in a spatial context [15].

Vulnerability to climate change estimated by the existing state-of-the-art models does
not consider all the variables involved in the system, limiting its accuracy. In an attempt to
use climatic variables in the vulnerability assessment, general circulation models (GCMs)
are the most used methods to project future climate [16–18]. GCMs simulate the climate
variables by solving complex differential equations capable of basing their projections
on representative concentration pathway (RCP) scenarios [19] that represent greenhouse
gas emissions. GCMs are major sources used to explore the complexity of climate and
give quantitative measures of future weather [18]. However, their uses are limited at the
watershed scale because GCM projections are global in scale. Still, future projections of
climate change are some of the main challenges regarding the correct quantifications (as
they occur to watershed vulnerabilities). To this end, downscaling is a method that adapts
climatic variables to local, fine-scaled conditions, such as those at a river basin scale [20].

GCM downscaling via flexible methods, such as artificial neural networks (ANNs),
have become popular in recent years [20]. The downscaling technique has been applied to
adapt the GCM projections to a basin scale [18,19,21]. Authors such as [22–24] recommend
investigating the uncertainties associated with the projections of meteorological variables
with ANN. Uncertainty in hydrological predictions can originate from several main sources,
and it has been reported that the primary sources of uncertainty come from model input
data [25–27]. Data uncertainty propagates to hydrological analyses that may lead to wrong
interpretations. Hence, the generation of quantitative measures of confidence in a model’s
results is essential to guiding the weight that should be given to the model in decision-
making [28,29]. The Monte Carlo simulation is a statistical method used for the simulation
of stochastic processes that can be used to calculate uncertainty. In hydrological analyses,
the method draws samples of possible data values from defined uncertainty models. Each
sample is used to compute the derived value of interest [28].

This paper proposes calculating the current watershed vulnerability to climate change
by coupling a distributed hydrological model, artificial neural network, and spatially
distributed indicator, as well as their evolution in the near future, according to the GCM
projections and Intergovernmental Panel on Climate Change (IPCC) scenarios. The paper
includes a combination of artificial neural networks and the Monte Carlo method to quantify
the uncertainty associated with downscaling global circulation models and determine how
this uncertainty affects the vulnerability forecast.

2. Methodology

This paper proposes the creation of a distributed vulnerability to climate change by
coupling a distributed hydrological model and an ANN model with spatially distributed in-
dicators. Reference [30] can be considered an antecedent of this work. However, the current
proposal incorporates a significant step forward as the downscaling is approached by the
use of ANN models. In addition, the current paper works with historical weather station
records and GCM projections directly and annually calculates distributed vulnerabilities
for all simulation models. The downscaling process only considers the spatial resolution of
the GCM precipitation projections for the Inter-Comparison of Coupled Models-Phase-5
Project (CMIP5), which include the RCP4.5, RCP6.0, and RCP8.5 emission scenarios [31]. In
addition, we used the Monte Carlo simulation to model the uncertainty associated with
such projections and an analysis of its impact on the vulnerability quantification. Ultimately,
the work was developed within a framework that encompassed a predictive vulnerabil-
ity model (MPDV2.0) and ANN downscaling, as well as integrated GCM projections in
CMIP5 [32] and IPCC scenarios [33]. The foregoing followed the scheme shown in Figure 1,
where the hydrological simulation for current conditions was conducted first and, as a
result, the current vulnerability of the basin was assessed by taking the raster maps of
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percolation and direct rainfall. A second phase of this work addresses future watershed
vulnerabilities to climate change. To this end, a GCM downscaling with ANN will correct
the model bias in the training and validation processes by decreasing the error; moreover,
the number of points with information was increased in the downscaling by taking the
GCM nearest points to each station, but not all of the points. The input/output of the ANN
was the downscaled time series for the selected station. If the process was repeated at each
station and there were more stations than GCM points, then the number of output time
series was the same as the available stations. This downscaled time series was used as the
input of the hydrological model so future percolation and rainfall maps were generated
during the simulation. Finally, the near future distributed vulnerability was calculated
using the hydrological analysis of the projected weather input.

Figure 1. Conceptual scheme of the assessment of present and future vulnerabilities, executed
in MPDV2.0.

2.1. Distributed Vulnerability Assessment

A predictive vulnerability model, such as MPDV2.0, calculates the distributed vulner-
ability of the watershed (MPDV2.0 is described in [30]) in contrast to the other methodolo-
gies [34–37]. The effects of climate and land-use changes are included in the vulnerability
expression. MPDV2.0 calculates vulnerability based on the IPCC vision [38], which gener-
ally explains it using the degree of exposure to a threat, GE, and the sensitivity to such a
threat, S. The approach considers the basin features that make the system more vulnerable
to climate change from the point of view of each sector, and the capacity of the adaptation
of the system, CA. In this regard, CA represents the features of the basin and the actions
that mitigate the effects of climate change. Equation (1) combines all of these components
to represent the watershed vulnerabilities to climate change impacts,

V = f (GE, S, CA). (1)
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The variables of Equation (1) were obtained experimentally upon the 25 drought indi-
cators proposed by [39] and, consequently, adapted to estimate the vulnerability following
the steps in [30]. The indicators include socioeconomic, environmental, and water contribu-
tions to climate change vulnerability estimation. Every indicator consists of a division of
maps with unique features of the basin; the arithmetic division is made with each corre-
sponding raster cell. Once the raster maps are divided and the indicators obtained, they are
standardized for comparison purposes in case they are computed in multiple watersheds.
If the indicator is of type CA, it includes all indicators that minimize the vulnerability to
climate change; and the first case of Equation (2) shall be used; for the rest of the indicators
that maximize vulnerability, the second case shall be used. The Equation implemented
to perform standardization on a given dataset, X = {x1, . . . xn}, follows the expression of
Equation (2),

x∗i (xi) =

{
xmax−xi

xmax−xmin
, If indicator ∈ CA, minimize vulnerability

xi−xmin
xmax−xmin

, otherwise, maximize vulnerability
(2)

where x∗i is the normalized value of the variable values, xi is the i-th value of dataset X,
xmin and xmax are the minimum and maximum values of the dataset. For each normalized
indicator, a weight will be obtained using Equation (3),

wi =

√
σ2

i

∑m
i=1

√
σ2

i

, (3)

where wi is the weight of the i-th normalized indicator;
√

σ2
i is the standard deviation

of the set of the i-th indicator values, and n is the number of indicators selected. The
MPDV2.0 calculates the weighted mean from the normalized indicators that belong to the
same sector, the results are economic (EV), social (SV), environmental (AV), and water (HV)
vulnerabilities using the expression of Equation (4),

V =
n

∑
i=1

x∗i wVj For V = {EV, SV, AV, HV}, (4)

where wVj is the weight of the j indicator in the V sector.
Percolation and direct runoff were considered for computing the indicators for the

cases of AV and HV. Changes in water availability through hydrological simulation were
represented in every raster cell of the basin. Finally, MPDV2.0 calculated the global
vulnerability, averaging the vulnerabilities of Equation (4).

2.2. Spatially Distributed Indicators

We calculated each indicator using the formulations presented in [30]; the indicator
values were spatially distributed in raster cells of 90× 90 m. The geographic information
used in estimating the indicators was obtained from the National Institute of Statistics
and Geography (INEGI) available at https://www.inegi.org.mx/ accessed on 8 February
2023 and from the National Water Information System of the National Water Commission
(SINA-CONAGUA) available at http://sina.conagua.gob.mx/sina/ accessed on 8 February
2023. They are government departments that allow free downloading of information at
scales of 1:50,000 and 1:250,000. As the available information covers the country, the maps
are clipped with the watershed of the case study. Table 1 shows the economic, social,
environmental, and water indicators for calculating vulnerability.

https://www.inegi.org.mx/
http://sina.conagua.gob.mx/sina/
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Table 1. Equations and sources of information used in the calculation of indicators [30].

Name, Equation, and Units

In
di

ca
to

rs

Economic

Population density:
PD = Number of inhabitants

Area(km2)
; (habkm−2)

Economically active population:
EAP =

EAP unemployed
Total EAP ; (%)

Length of rural roads:
LRR = Length ; (km)

Agricultural area for irrigation:
AAI = Amount ; (ha)

Agriculture area with technified irrigation:
ATI = Amount ; (ha)

Social

Population without medical services:
PWMS =

Population with medical services
Total population ; (%)

Population in poverty:
PP =

Population in poverty
Total population ; (%)

Illiterate population:
IP =

Illiterate population of the same age
Inhabitants of the same age ; (%)

Houses without drinking water:
HDW =

Houses number without drinking water
Total number of houses ; (%)

Houses without drainage and no restroom:
HDR =

Houses number without drainage and no restroom
Total number of houses ; (%)

Houses without electricity:
HWE =

Houses number without electricity
Total number of houses ; (%)

Houses with land floor:
HLF = Houses number with land floor

Total number of houses ; (%)

Environmental

Degree of exploitation of the basin:
DEB = Annual volume of surface extractions

Average annual runoff volume ; (dimensionless)

Degree of exploitation of groundwater:
DEG =

Annual volume of groundwater extractions
Average annual recharge of the aquifer ; (dimensionless)

Deforestation:

DEF = Deforested area (km2)

Total area(km2)
; (%)

Protected natural areas:

ANP =
Protected vegetation cover area(km2)

Total area(km2)
; (%)

Water

Degree of exploitation of the basin:
DEB = Annual volume of surface extractions

Average annual runoff volume ; (dimensionless)

Degree of exploitation of groundwater:
DEG =

Annual volume of groundwater extractions
Average annual recharge of the aquifer ; (dimensionless)

2.3. Downscaling GCM Time Series

One of the problems associated with GCMs is their large-scale resolution [40]. Hence,
a downscaling process is required to lower such a resolution, fitting the variables simulated
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in the atmosphere with the variables measured in the basin, where a precipitation regimen
can be identified. Among the multiple ways to approach downscaling, these highlighted
methods are based on machine learning. This is the case with the excellent results provided
by the ANN [41–43].

This paper proposes the use of an ANN multi-layer perceptron (MLP). MLP is the
artificial neural network most used for practical applications and it consists of layers
of adaptive weights with full connectivity between layers. The ANN-MLP structure is
composed of the input and hidden and output layers of interconnected neurons. Among
the multiple activation functions for neuron-level operations, the most common for the
hidden layer is a hyperbolic tangent function, i.e., a sigmoid function suitable for the
output layer. An ANN-MLP training phase starts by initializing the weights of the neuron’s
interconnections to small random values. Those weights interact with each other moving
forward through the neuron connections, from the input to the output layers. Then, a
backpropagation process recomputes the weight values from the output to the input. The
backpropagation involves the evaluation of the derivatives of an error function, computed
at the output layer, with respect to the neural connection weights and biases. This process
reduces the error at each iteration [44].

The process continues through the application of a downscaling process to the future
projections of the GCMs of the CMIP5 project using ANN models. The output of this
method is expected to correct the bias and reduce the error of climatic variables in the GCM.
The ANN model is a traditional multilayer perceptron (MLP), which has a structure of
I-H-O; where the inputs are a climatic variable from I points in the GCM model, H is the
size of the hidden layer and the output of the network is the observed climatic variable
in O stations. The GCM time series are extracted from the available points that cover the
surface of the basin and then the ANN is trained with the observed times series, taking
only the GCM data near the group of stations.

This paper proposes a Monte Carlo simulation, as shown in Figure 2, to estimate and
control the uncertainty associated with the overall process. The proposal generates multiple
random time series data from GCM projections, augmented by resampling.

Figure 2. Monte Carlo methodology.

Equations (5) and (6) show the case of using two rainfall generators to modify the
input of the GCM rainfall time series. New Monte Carlo time series were created for each
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one. Particularly, Equation (5) represents the high uncertainty in rainfall inputs and (6)
generates a similar time series to the GCM with a ±n of variation from the GCM,

G1i = xi ∗ r1, (5)

G2i = xi + r2, (6)

where G is the random Monte Carlo precipitation for rainfall generators 1 and 2, xi is the
GCM precipitation, r1 is a random number generated between 0 and 1, r2 is a random num-
ber generated in a range of r2 ∈ [−n, n], and n is the uncertainty in the input precipitations
to be tested.

The rainfall generators were applied to every precipitation record, changing the
random number in each record to improve randomness. This process generates a new time
series that is the input of the validated ANN. The structure of ANN is not modified in
this process, so the generation of the downscaled time series is very fast. The procedure is
replicated for each station and RCP4.5, RCP6.0, and RCP8.5 emission scenarios until the
Monte Carlo process finishes (Figure 2).

3. Case Study

The Turbio River sub-basin is approximately located in the center of Mexico, as
Figure 3 shows. This sub-basin is of particular relevance since it presented over-exploitation
problems on the surface and groundwater in recent decades [30]. Overall, it is an important
system for the country given its large agricultural and industrial production. In addition,
the Turbio River sub-basin includes important urban areas. Figure 3 shows the case of Leon,
a city with nearly 2 million inhabitants. Economic, industrial, and urban development
significantly altered the ecosystems in the Turbio River sub-basin. Consequently, it has
generated great uncertainty among decision-makers concerning the impact of climate
change on future water, environmental, and socioeconomic aspects.

Figure 3. Location of the Turbio River sub-basin used as a study area including the rain gauges (◦)
and stream-flow gauge (∆).

The sub-basin has an area of 2983 km2 and is located between elevations 1708 and
2868 m. The accumulated average annual rainfall varies from 560 to 807 mm, with a very
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marked seasonality, peaking in the rainy season (June to September) with an occurrence of
90% of the annual rainfall. The mean variation of the minimum and maximum temperatures
in the sub-basin is from 9.56 ◦C to 25.59 ◦C [30]. The particularly limited information at this
sub-basin will allow for a better evaluation of the robustness of the proposed methodology.

Rainfall data were obtained from the National Weather Service (https://smn.conagua.
gob.mx/es/ accessed on 8 February 2023) and we obtained the projections of the CMIP5
project GCMs from the Earth System Grid Federation (https://esgf-node.llnl.gov/projects/
esgf-llnl/ accessed on 8 February 2023). In order to generate the downscaling, the inputs
used to train and validate the ANN were the monthly rainfall obtained from the 24 meteo-
rological stations (Figure 3) and the GCM projections. We used the monthly scale, so the
seasonal tendency is clearly represented in the hydrological model; this study also focuses
on the quantification of yearly water availability to estimate the vulnerabilities and feed the
ANN with monthly data (to speed up the process of downscaling). The downscaling was
computed for the period 1982–2006, considering the emission scenarios RCP4.5, RCP6.0,
RCP8.5, and the projections of 13 GCM precipitation scenarios.

Hydrological modeling was conducted using the TETIS model (see [45,46] for more
information about the TETIS model) and daily flow data were measured at the Las Adjuntas
gauge, which is located at the mouth of the sub-basin (Figure 3). The flow data measured
can be freely downloaded from the website of CONAGUA National Data Bank of Surface
Waters (https://www.imta.gob.mx/bandas accessed on 8 February 2023). The calibration
of the hydrological model was computed on a monthly scale using the flow data.

4. Results and Discussion
4.1. Hydrology Model Performance

The selected calibration period ranged from May 2004 to March 2008. The NSE serves
as the objective function of the hydrological model calibration [47] as it normalizes the
model performance into an interpretable scale [48]. Table 2 presents the average of the
effective parameters resulting from the calibration process [45,46,49]. In terms of efficiency,
Figure 4a shows that the model reaches a NSE of 0.70 for the calibration period. The model
performance can be judged as satisfactory if the NSE > 0.5 for the watershed scale [50]. The
validation process of the hydrological model uses the period from May 2011 to October 2014.
Figure 4b shows the good performance of the model, with a NSE of 0.68 in extrapolating
the flow estimation out of the calibration period.

Table 2. Hydrological model’s effective mean parameters obtained by calibration.

Parameter Correction Factor Parameter Equation Effective Parameter

Static storage FC1 H∗u(i) = FC1 · Hu 382.090 (mm)
Vegetation cover index FC2 Λ∗ = FC2 · λv 0.008 (−)

Infiltration capacity FC3 k∗s(i) = FC3 · ks 113.981 (mmh−1)
Overland flow velocity FC4 u∗(i) = FC4 · u 5.158 (ms−1)

Percolation capacity FC5 k∗p(i) = FC5 · kp 7.216 (mmh−1)
Interflow velocity FC6 k∗ss(i) = FC6 · kss 124.17 (mmh−1)

Deep aquifer permeability FC7 k∗ps(i) = FC7 · ks 0.067 (mmh−1)
Connected aquifer permeability FC8 k∗sa(i) = FC8 · kps 0.010 (mmh−1)

River channel velocity FC9 v∗(t) = FC9 · v(t) 0.031 (mms−1)

https://smn.conagua.gob.mx/es/
https://smn.conagua.gob.mx/es/
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://www.imta.gob.mx/bandas


Water 2023, 15, 711 9 of 19

0

5

10

15

20

25

30

07/2004 01/2005 07/2005 01/2006 07/2006 01/2007 07/2007 01/2008

Calibration

NSE=0.7009

Q
 (

m
3
/s

)

Time (month)

Qobs

Qsim

(a)

0

2

4

6

8

10

12

14

16

07/2011 01/2012 07/2012 01/2013 07/2013 01/2014 07/2014

Validation

NSE=0.6776

Q
 (

m
3
/s

)

Time (month)

Qobs

Qsim

(b)

Figure 4. Efficiencies of hydrological modeling in (a) the calibration period and (b) the validation
(−Qobs = measure discharge and •Qsim = simulated discharge).

4.2. GCM Models and Downscaling

According to the methodology, once the hydrological model was built, calibrated, and
validated, downscaling was carried out with the ANN. From the 13 CMIP5 models shown
in Table 3, the best GCM was selected [30]. We used only one GCM to reduce the complexity
in the ANN structure, reduce computation time, and control ANN errors. For this, the
Pearson correlations (R) are compared between measured and historical data from 13 GCM
models. The control period ranges from 1982 to 2014. As a result of the comparison,
the best correlation (R > 0.6) was obtained with CSIRO-Mk3-6-0. Consequently, the
analysis continues with the selection of the CSIRO-Mk3-6-0 model for the downscaling and
climate projections.

Table 3. List of GCMs considered in the selection of the final model [30].

GCM Model Country

BCC-CSM1 China

MIROC-ESM-CHEM
MIROC-ESM

MIROC5
Japan

CanESM2 Canada

CNRM-CM5 France

CSIRO-MK3-6 Australia

GFDL-CM3
GISS-E2-R USA

HADGEM2-Es United Kingdom

INM-CM4 Russia

MPI-ESM-LR Germany

MRI-CGCM3 Japan

NCC-NorESM1 Norway

IPSL-CMA-LR France

ANNs and CSIRO-Mk3-6-0 model projections for the RCP scenarios approached down-
scaling models for the daily data measured in the 24 rain gauges shown in Figure 3. The
training period was confirmed by 24 years (1982–2014) for rainfall and 21 years (1982–2014)
for evapotranspiration. The monthly rainfall was calculated from the daily observed and
each station was trained individually. However, the model efficiency was considered as
not good enough. To improve such a performance, the downscaling process used multiple
combinations of information gathered at weather stations. The trained ANN had a total of
288 neurons in the hidden layer, which was equal to the months during the training period.
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The number of iterations was not limited and the average number of iterations required
was 1500 for each ANN. The ANN training process was repeated until the convergence
of the efficiency coefficients. The training results showed a maximum R equal to 0.92 as
shown in Figure 5.
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Figure 5. Examples of correlations (R) showing the efficiency obtained by the ANNs in the
training period.

Downscaling with the ANNs managed to obtain a better fit to the measured rainfall
data, and reduced the overestimation, this was confirmed with Monte Carlo (Table 4) and
projected precipitations (Figure 6). Hence, significant reductions in the training period
(1982–2006) were observed at all the stations: RMSE varied at a range of 14 to 49.7, an
F from 0.54 to 0.82, and a bias from −3.16% to 8.22%. In the case of evapotranspiration, the
performance was acceptable, with an R of up to 0.82 and a bias between −1.06% and 0.08%.

The validation period was confirmed by 8 years (2006–2014) for precipitation, and
3 years (2003–2006) for evapotranspiration. For precipitation validation, climate change
was considered and historical data were compared with RCP4.5, RCP6.0, and RCP8.5
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emission scenarios. The results show a tendency for the ANNs to underestimate precipita-
tions (Tables 4 and 5) in comparison to overestimation. However, ANNs maintain good
efficiencies with coefficients ranging between 0.47 and 0.81. On the other hand, the model
again underestimates evapotranspiration; downscaling with the ANNs achieves an average
R of 0.52.

Table 4. Comparison of average efficiency coefficients of CSIRO-Mk3-6-0 model and Monte Carlo
downscaling for rainfall.

CSIRO-Mk3-6-0
ANNs and Monte Carlo

Minimum Mean Maximum

R 0.6156 0.6520 0.7121 0.7713
Bias 101.3 −4.9 2.0 9.1

Variance 13,538.2 3019.4 3430.2 3872.2
Underestimation −39.5 −46.9 −40.7 −35.1
Overestimation 75.9 25.7 30.3 35.1

RMSE 100.2 43.8 48.6 53.1

Table 5. Minimum, mean, and maximum coefficients of the monthly rainfall outputs for the Monte
Carlo iterations, using random generator 2.

Rain Gauge R Bias Variance Underestimation Overestimation RMSE Maximum Mean

11,020

MIN 0.640 −6.0 2621.4 −44.8 24.0 44.9 176.7 46.3

MEAN 0.695 0.6 3029.3 −39.3 28.6 49.5 205.9 49.5

MAX 0.752 7.4 3425.3 −33.6 33.8 53.5 221.2 52.9

11,023

MIN 0.668 −5.6 2751.4 −47.0 25.7 41.3 217.0 50.1

MEAN 0.730 1.7 3022.3 −39.4 29.1 45.8 241.0 53.2

MAX 0.787 8.9 3302.2 −33.7 33.4 50.4 244.6 56.4

11,045

MIN 0.618 −13.2 3420.1 −52.4 26.8 49.8 206.4 50.0

MEAN 0.689 −5.6 3972.4 −45.4 32.5 56.6 251.2 54.4

MAX 0.764 2.4 4458.6 −40.2 38.2 62.2 259.2 59.0

11,049

MIN 0.600 −2.1 2818.6 −44.3 27.8 44.2 215.1 52.5

MEAN 0.672 5.4 3342.4 −38.4 33.1 50.1 284.2 56.9

MAX 0.745 12.9 3837.6 −32.3 39.5 55.7 371.9 60.9

11,159

MIN 0.715 −1.7 2881.8 −41.0 21.7 39.4 179.0 49.7

MEAN 0.756 3.9 3179.6 −35.4 26.4 44.2 214.0 52.6

MAX 0.809 9.1 3501.3 −30.9 29.8 47.6 249.7 55.2

14,083

MIN 0.405 −27.8 239.2 −23.3 8.3 22.0 65.4 13.9

MEAN 0.539 −20.1 343.2 −20.5 10.4 24.7 131.0 15.2

MAX 0.669 −9.4 501.5 −18.1 13.5 27.5 146.4 17.0

4.3. Uncertainty Analysis and Projections

We evaluated the uncertainty associated with precipitation and evapotranspiration
projections because previous research has shown that these projections have significant
uncertainties associated with them [17]. However, we considered that it was essential for
future research to include the uncertainty associated with the other components show-
cased by the methodology presented here. The evaluation period was from 1982 to 2015.
Figures 7 and 8 show the time series of a 1000-iteration Monte Carlo simulation calculated
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using random generator 1 from Equation (5), and random generator 2 from Equation (6).
The Monte Carlo time series generated with Equation (5) has a bias between 55% and 115%.
This interval shrunk to 82% and 90%, given Equation (6). Generator number 1 represents
the highest uncertainty with a bias of the ANN time series between −10% and 4%. The
bias calculated using generator number 2 is between −6% and 9%. Similar behaviors were
observed with the RMSE coefficients for the other stations. Generator number 2 reduces
the errors across the simulation in most of the cases (Table 5). These results prove that the
error was reduced by at least three times when using ANN downscaling.
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Figure 6. Projected precipitation using ANNs and the CSIRO-Mk3-6-0 model.
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Figure 7. Results of the Monte Carlo simulation for random generator 2 (rain gauge: 11,020).

Underestimation/overestimation and maximum precipitation were calculated for each
time series. The maximum value is always reached at different fixed points at every station
and ANN does not predict the rainfall above that value. Overall, the average overestimation
of all stations is 30.3 mm, while the average underestimation is 40.7 mm for generator
number 2 with a proposed input uncertainty of ±15 mm. In contrast, generator number 1
estimates an overestimation of 28.8 mm and an underestimation of 47.7 mm. As a result of
the proposed methodology, the ANN-combined approach reduces the overestimation by
60% in comparison to the CSIRO-Mk3-6-0 model and there is an underestimation of−5 mm
in the average of the overall stations when using ANN downscaling (Table 4). RMSE and
variance confirm the results. However, the underestimations of all stations did not improve
as expected with the ANN-combined methodology and, in most cases, it remained at a
similar level when compared to directly using the GCM model.

Finally, monthly climate projections using ANNs for the RCP4.5, RCP6.0, and RCP8.5
emission scenarios were generated for precipitation and evapotranspiration from 2015 to
2035. We only evaluated in the previous period (near future, the year 2035) to counteract
the increased uncertainties of climate projections and achieve a better interpretation of
the performances of the ANNs. However, it is important to continue investigating how
the ANN performances behave when projecting into the distant future. Figures 6 and 9
show the results of the projections using the ANNs. In both, it can be seen that the
projections follow the same trends as in the training and validation for each rain gauge. We
observed few changes over time; ANN corrects the overestimates of precipitation and the
underestimates of evapotranspiration.

Figure 8. Results of Monte Carlo simulation for random generator 1 (rain gauge: 11,020).
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Figure 9. Projected evapotranspiration using ANNs and the CSIRO-Mk3-6-0 model.

4.4. Vulnerability to Climate Change Impacts

The current and future sub-basin water and environmental vulnerabilities were quan-
tified and the social and economic sectors were added on top. The final result is the global
vulnerability to the effects of climate change on precipitation and evapotranspiration con-
sidering the accumulated effects over the sectors. This process was done with the MPDV2.0
model for the years 2014 to 2035. MPDV2.0 classifies the vulnerability as low vulnerability
(0 ≤ indices ≤ 0.35), medium vulnerability (0.36 ≤ indices ≤ 0.65), and high vulnerability
(0.66 ≤ indices ≤ 1.0). Considering the uncertainty associated with the projections of the
ANNs and CSIRO-Mk3-6-0 model, the results show that 51.2% of the area of the sub-basin
represents low vulnerability, 47.8% represents medium vulnerability, and only 1% repre-
sents high vulnerability (Figure 10). The highest vulnerabilities usually occur in an urban
environment, followed by agricultural areas (Figure 10). We can also observe that the
sub-basin presents the lowest vulnerabilities in the protected areas, considering the great
importance of conserving these natural habitats. The vulnerability shows insignificant
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increases in the near future, as could be expected, considering that in the three scenarios,
there is no immediate action to further reduce greenhouse gas emissions than considering
the uncertainty associated with the GCM projections for the RCP4.5, RCP6.0, and RCP8.5
emission scenarios. However, increases in the areas with high vulnerability are observed
for the three RCP scenarios. For instance, the RCP6.0 scenario presents areas with medium
vulnerability that were reduced and became high in the year 2031, as Figure 11 shows. It
can also be seen that the largest increments in the area occupied by high vulnerability for
each scenario were: RCP4.5 (0.83%, year 2023), RCP6.0 (1.01%, year 2031), y RCP8.5 (1.31%,
year 2022). Consequently, the RCP8.5 emission scenario produces the greatest increments
in vulnerability, which is the most extreme scenario. A comparison of the figures shows
that the more extreme the RCP scenario, the more pronounced the changes in vulnerability.

Figure 10. Global vulnerability indices in the Turbio River sub-basin (year 2022, RCP6.0).

The vulnerabilities of 2015, 2022, 2023, 2031, and 2035 are identified as critical for
each RCP scenario. The first three years present similar spatial vulnerability distributions,
mainly for the RCP4.0 and RCP6.0 emission scenarios. In 2023, the highest vulnerabilities
increased by 0.83% in the RCP4.5 scenario; for RCP8.5 a decrease of 1.03% was observed.
The year 2031 presented the greatest vulnerabilities for the sub-basin, and the RCP6.0
scenario had the highest rates (Figure 11). We observe a similar spatial distribution for
2035, where projected rainfall has very important influence. The assessment shows that the
global vulnerability in a sub-basin region has high spatial and temporal variability. Hence,
the area occupied by high vulnerability increases considerably in the next year, while it
almost disappears in the following year.

The environmental, socioeconomic, and water vulnerability evaluations allow us to es-
timate a global vision of vulnerability and determine the vulnerability particularly focused
on the hydrological system. To carry this out, five vulnerability maps were generated for
each year in the period from 2014 to 2035 (22 years). That is a total of 110 different maps for
each RCP emission scenario. In addition, the change in the area occupied by each type of
vulnerability was calculated to evaluate the differences between 2014 and 2031. In 2031,
high vulnerability presented a 10% increase in economic vulnerability. Figure 12 shows
that the greatest change occurred in the water vulnerability to climate change, less than a
21% of the area occupied by low vulnerability became medium vulnerability.
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Figure 12. Environmental (a), economic (b), hydrological (c), and social (d) vulnerability indices for
the year 2031 (RCP6.0).

5. Conclusions

The main proposal of this paper revolves around the combination of distributed hy-
drological models and ANNs for assessing the evolution of spatially distributed indicators
on the impacts of climate change in river basin areas. One of the main novelties of the
current proposal is the use of a Monte Carlo simulation method to assess the uncertainty of
the process, particularly the uncertainty associated with a GCM downscaling process that
is not captured, in principle, by the ANN model.

The results obtained with the coupled MPDV2.0 model show that the 48.8% Turbio
River sub-basin already presents medium and high vulnerability areas at the current
climatic conditions, specifically in agricultural and urban areas. In addition, increases
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in medium and high vulnerabilities are projected for the near future, particularly in the
aforementioned areas. Based on the current conditions, an increase of 9.3% in medium and
highly vulnerable areas is projected for the year 2031. Above all, a significant increase in
water and environmental vulnerability is projected due to the decrease in precipitation
and a significant increase in evapotranspiration. The projections of precipitation with the
ANNs and the CSIRO-Mk3-6-0 model present an uncertainty of 15 mm per month.

The uncertainty associated with the projections suggests that it will be necessary
to continue the estimation and control of the watershed vulnerabilities in the long term.
The recommendation is to evaluate the model in future intervals of five or ten years; this
period is necessary for public organizations to obtain the required social, economic, and
environmental data. Then the model should be updated, analyzing how the reality and the
models behave and projecting it again under the corrections made and the latest data.

For this particular case study, the climate information was analyzed on a monthly
time scale, while the social and economic information and the final vulnerabilities had an
annual scale, so one of the disadvantages of the methodology is that the vulnerability time
scale is set by the longest scale. In addition, the Monte Carlo simulation requires a large
amount of computational resources to calculate each iteration and the data created in each
random scenario should be analyzed. For this, future research will focus on the in-depth
analysis on the use of computational statistical methods to improve the efficiency of the
overall process.
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