
Citation: Sun, J.; Ye, F.; Nedjah, N.;

Zhang, M.; Xu, D. A Practical Yet

Accurate Real-Time Statistical

Analysis Library for Hydrologic

Time-Series Big Data. Water 2023, 15,

708. https://doi.org/10.3390/

w15040708

Academic Editor: Renato Morbidelli

Received: 5 January 2023

Revised: 8 February 2023

Accepted: 9 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

A Practical Yet Accurate Real-Time Statistical Analysis Library
for Hydrologic Time-Series Big Data
Jun Sun 1, Feng Ye 1,*, Nadia Nedjah 2 , Ming Zhang 3 and Dong Xu 4

1 School of Computer and Information, Hohai University, Nanjing 211100, China
2 Department of Electronics Engineering and Telecommunications of the Engineering Faculty, State University

of Rio de Janeiro, Rua São Francisco Xavier 524, Marcanã, Rio de Janeiro 20550-013, Brazil
3 Water Resources Department of Jiangsu Province, Nanjing 210029, China
4 College of Water Conservancy & Hydropower Engineering, Hohai University, Nanjing 211100, China
* Correspondence: yefeng1022@hhu.edu.cn

Abstract: Using different statistical analysis methods to examine hydrologic time-series data is the
basis of accurate hydrologic status analysis. With the wide application of the Internet of Things
and sensor technologies, traditional statistical analysis methods are unable to meet the demand for
real-time and accurate hydrologic data analysis. The existing mainstream big-data analysis platforms
lack analysis methods oriented to hydrologic data. In this context, a real-time statistical analysis
library based on the new generation of big data processing engine Flink, called HydroStreamingLib,
was proposed and implemented. Furthermore, in order to prove the efficiency and handiness of the
proposed library, a real-time statistical analysis system of hydrologic stream data was developed
based on the concepts available in the proposed library. The results showed that HydroStreamin-
gLib provides users with an efficient, real-time statistical verification method, thus extending the
application capabilities of Flink Ecology in some specific fields.

Keywords: hydrologic information; statistical analysis; Flink; stream data; time series

1. Introduction

Hydrologic data are the core content for studying physical hydrologic processes, and
simulating and predicting disasters, as well as monitoring water quantity and quality [1].
It is of great significance to analyze and master the temporal distribution of data on water
level, velocity, etc. from rivers and lakes for water resource management and flood control.
Accurate and real-time hydrologic forecasting also plays a vital role in the operation and
maintenance of key infrastructures, such as dams and hydropower stations [2]. Statistical
analysis is not only a common method for hydrologic time-series data analysis, but the
basis for accurate hydrologic status analysis and decision. Through statistical analysis of
hydrologic time-series data, the relevant characteristics of hydrologic time series, such as
normality, stationarity, and trend, can be mastered [3]. With the change of global climate
and the increase in extreme severe weather, the uncertainty of hydrologic information
becomes more prominent and the demand for real-time performance of hydrologic models
becomes more stringent. Therefore, it is necessary to conduct real-time statistical testing of
hydrologic sequential data.

Hydrologic model testing is the process of evaluating the performance and accuracy
of a hydrologic model. The objective of hydrologic model testing is to determine whether
the model can accurately simulate the behavior of the hydrologic system it represents,
and to identify areas where the model may need to be improved. This is achieved by
comparing the outputs of the model with observed data from the hydrologic system, such
as streamflow, rainfall, and other meteorological variables. The results of hydrologic model
testing can be used to validate the model, to identify its limitations and strengths, and to
make improvements to the model so that it can better reflect the behavior of the real-world

Water 2023, 15, 708. https://doi.org/10.3390/w15040708 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15040708
https://doi.org/10.3390/w15040708
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1656-6397
https://doi.org/10.3390/w15040708
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15040708?type=check_update&version=2

Water 2023, 15, 708 2 of 17

system. In order to validate the accuracy of a hydrologic model, it is often tested against
observed hydrologic data. This is where the relationship between statistical tests and model
tests comes into play. By performing statistical tests on the observed data, one can gain a
better understanding of its properties and characteristics. This information can then be
used to inform the development and selection of a suitable hydrologic model.

However, there are currently two key problems in real-time analysis of hydrologic
time-series data. The first is the inadequate application of statistical tests and the second
is the lack of a method for real-time statistical testing of large-scale hydrologic stream
data [3]. When studying hydrologic time-series data, some researchers often ignore data
parameter tests and unsafely assume that some hydrologic analysis and modeling methods
meet certain characteristics, often using just a single test method to conduct subsequent
analysis and decision [3]. However, as hydrologic data are easily affected by various
uncertain factors—such as environmental factors, human factors, and equipment failure—
they usually do not fully possess the prescribed characteristics, and the usage of a single
statistical test method often yields inaccurate analysis results.

Research works based on general hydrologic data analysis mainly uses SPSS [4],
MATLAB [5], and other tools to analyze historical data based on long time scales, such
as a year, a season, or a month. With the increase in the number of sensors deployed
in hydrologic stations and their sampling frequency, the scale of hydrologic time-series
data has expanded rapidly. Hydrologic data have problems, such as outliers, data out of
order, and repetition. Under the condition of high concurrency, traditional solutions are
difficult to use for calculating these characteristics effectively [6]. Mainstream big-data
computing engines, such as Apache Flink [7] and Apache Spark [8], can be effectively
applied to large-scale data stream processing scenarios. Spark is a multi-language
engine for executing data engineering on single-node machines or clusters. Flink is
known as a third-generation stream computing framework, which can be used for
stateful computation on unbounded and bounded data streams. Flink supports exactly-
once semantics and the unique Checkpoint mechanism, providing high reliability and
fault tolerance. However, Flink’s standard and extended libraries only support a small
quantity of statistical test methods, making it difficult for users to conduct comprehensive
statistical analysis of a hydrologic temporal sequence of data in order to ensure the
accuracy of a characteristic test [3].

Having a well-designed and well-executed data management system can help ensure
the accuracy, reliability, and scalability of time-series data analysis. In this paper, we adopt
a time-series database to manage large-scale hydrologic time-series data. A time-series
database is a database designed specifically to handle timestamped data, also known as
time-series data. Time-series data are a sequence of data points collected at regular intervals
over a period of time. A time-series database has several features that make it well-suited
for time-series data, including high write throughput, indexing and querying on time,
efficient compression, and scalability.

Therefore, in order to meet the real-time requirements and the need for accurate
hydrologic data analysis, we proposed a Flink-based hydrologic data analysis library,
termed HydroStreamingLib, which includes 19 kinds of validation algorithm applicable
to hydrologic data in several categories. Hydrologic practitioners can easily construct
real-time statistical analysis systems through this library. Considering that most hydrologic
practitioners are not familiar with Flink, we built a highly available real-time analysis
statistical system based on HydroStreamingLib at the same time. The contribution of this
work can be summarized as follows:

• We proposed and implemented HydroStreamingLib, a library for hydrologic time-
series analysis based on Apache Flink. The library contains 19 different hydrologic
time-series testing methods in four categories, which expands the ecology of Flink in
the hydrologic field.

• Based on HydroStreamingLib, a hydrologic stream data verification system was con-
structed, which can be applied to the statistical testing of large-scale, high-velocity

Water 2023, 15, 708 3 of 17

hydrologic stream data and provide real-time visualization of test results. It realizes
a complete solution from data collection, transmission, and analysis to persistence
and visualization.

• We applied HydroStreamingLib to a real-world problem and evaluated the algorithms
available in the proposed library to analyze different aspects. Compared with other
general methods and tools, HydroStreamingLib achieved better results in real datasets.

The remaining contents of this paper are organized as follows: Section 2 introduces
the research work related to this paper. In Section 3, the functions and implementation
of HydroStreamingLib are introduced in detail. In Section 4, an example of hydrologic
real-time analysis system based on HydroStreamingLib is described. In Section 5, data
analysis and performance comparison experiments are carried out with the normality test
method as an example. In Section 6, the proposed work is summarized and prospected.

2. Related Works

Statistical test methods are often used to analyze hydrologic time series. Different
statistical analysis methods are used to analyze the normality, trend, and stationarity, as
well as other characteristics of hydrologic data, to evaluate the status of hydrologic data
and facilitate subsequent research on water resources.

In [9], Machiwal et al. present a study of the precipitation variation trend of 31 grid
points in the arid coastal areas of India over 35 years. Eight trend tests, including Kendall’s
rank order correlation (KRC), Spearman’s rank order correlation (SROC), Mann–Kendall
(MK), four improved MK tests, and innovation trend analysis (ITA), were used to test the
trend of precipitation data. Tosunoglu et al. [10] undertook a study of the trend of runoff
parameters in Turkey’s Coruh Basin and tested the maximum duration of annual runoff
and annual maximum runoff, respectively, by using the modified MK test and ITA method;
however, the results obtained from the MK test and ITA method were inconsistent with
each other. The results demonstrated the effectiveness of the ITA method in determining
drought and water resource management. Machiwal et al. [11] investigated the uniformity
of precipitation records of four monsoon months and seasons at 16 stations in the Saraswati
River Basin in Gujarat. Cluster analysis results showed that the data from four rain stations
within four months had significant geographical differences and interannual precipitation
dynamic differences. Gois et al. [12] tested the normality and homogeneity of rainfall time-
series data in Rio de Janeiro through two parameter test methods and two non-parameter
test methods, and evaluated the test methods.

For the above work, the data are only tested for a long time-span, and the amount of
tested data is small, which cannot meet the premise of guaranteed fine-grained analysis
of hydrologic data. With the development of big-data technology, large-scale hydrologic
environmental data have become easy to obtain, but working out how to effectively analyze
and visualize the massive dataset has become a big challenge.

Brömssen et al. [13] propose several different types of methods for visualizing large-
scale environmental data and illustrated these methods by showing the variable trends
related to acidification recovery in Swedish river data during 1988–2017, proving that the
trend of large-scale environmental data can be comprehensively explained by a generalized
additive model with a few specific graphs. The above work is based on historical fixed
data. It is noteworthy to mention that there are only a few works regarding the inspection
of stream data, so the real-time performance of inspection and analysis is not guaranteed.

In recent years, real-time data analysis systems have been applied in medical care,
finance, smart cities, and other fields [14–16]. These works utilize big-data frameworks
to build real-time data analysis systems, in order to ensure reliable and fast real-time
information processing as data volume and complexity expand. However, the current
mainstream big-data framework does not provide great support for the data analysis needs
of the hydrology field.

RStudio [17] is an integrated development environment for R, a programming lan-
guage for statistical computing and graphics. RStudio integrates the statistical analysis

Water 2023, 15, 708 4 of 17

library in R language to provide a variety of statistical analysis methods. However, as a
stand-alone analysis platform, the performance of RStudio, as it will be shown, is far lower
than that of HydroStreamingLib when dealing with statistical analysis of large-scale data.

SparkR [18] is a statistical analysis tool with Spark as the core, which provides a
library of various statistical methods. It uses Spark’s distributed computing engine to
enable large-scale data analysis from the R shell. In contrast to SparkR, HydroStreamin-
gLib uses Flink as its computing engine. As a new generation of big-data computing
engine, Flink is more suitable for real-time statistical analysis of stream data, with higher
computational efficiency [7].

Currently, with the increasing deployment of hydrologic sensor nodes, large-scale
stream data need to be verified and computed in real time. Note that traditional schemes
cannot guarantee the real-time performance and correctness of the verification under high
load. Therefore, we proposed and implemented HydroStreamingLib and a sample system
based on Flink. This study is different from existing related works, as it applied hydrologic
statistical test methods to data streams and analyzed hydrologic data within a shorter
time span.

3. The Proposed Library

This section mainly introduces the functions and implementation of HydroStreamin-
gLib. It is based on the Flink framework and allows users to build a distributed computing
platform for hydrologic time-series analysis by calling it. HydroStreamingLib can also be
used for simultaneous, real-time stream data and large-scale historical hydrologic time-
series analysis.

Data-processing based on Flink is mainly divided into three parts: data import (Source),
algorithm component (Operator) and data export (Sink) [19]. HydroStreamingLib is an
algorithmic component, and it supports a variety of data sources and data export forms. The
location of HydroStreamingLib in Flink is shown in Figure 1. An example implementation
of the system platform will be discussed in Section 4.

Water 2023, 15, 708 4 of 18

In recent years, real-time data analysis systems have been applied in medical care,
finance, smart cities, and other fields [14–16]. These works utilize big-data frameworks to
build real-time data analysis systems, in order to ensure reliable and fast real-time infor-
mation processing as data volume and complexity expand. However, the current main-
stream big-data framework does not provide great support for the data analysis needs of
the hydrology field.

RStudio [17] is an integrated development environment for R, a programming lan-
guage for statistical computing and graphics. RStudio integrates the statistical analysis
library in R language to provide a variety of statistical analysis methods. However, as a
stand-alone analysis platform, the performance of RStudio, as it will be shown, is far lower
than that of HydroStreamingLib when dealing with statistical analysis of large-scale data.

SparkR [18] is a statistical analysis tool with Spark as the core, which provides a li-
brary of various statistical methods. It uses Spark’s distributed computing engine to ena-
ble large-scale data analysis from the R shell. In contrast to SparkR, HydroStreamingLib
uses Flink as its computing engine. As a new generation of big-data computing engine,
Flink is more suitable for real-time statistical analysis of stream data, with higher compu-
tational efficiency [7].

Currently, with the increasing deployment of hydrologic sensor nodes, large-scale
stream data need to be verified and computed in real time. Note that traditional schemes
cannot guarantee the real-time performance and correctness of the verification under high
load. Therefore, we proposed and implemented HydroStreamingLib and a sample system
based on Flink. This study is different from existing related works, as it applied hydrologic
statistical test methods to data streams and analyzed hydrologic data within a shorter time
span.

3. The Proposed Library
This section mainly introduces the functions and implementation of Hy-

droStreamingLib. It is based on the Flink framework and allows users to build a distrib-
uted computing platform for hydrologic time-series analysis by calling it. Hy-
droStreamingLib can also be used for simultaneous, real-time stream data and large-scale
historical hydrologic time-series analysis.

Data-processing based on Flink is mainly divided into three parts: data import
(Source), algorithm component (Operator) and data export (Sink) [19]. Hy-
droStreamingLib is an algorithmic component, and it supports a variety of data sources
and data export forms. The location of HydroStreamingLib in Flink is shown in Figure 1.
An example implementation of the system platform will be discussed in Section 4.

Figure 1. HydroStreamingLib in the Flink stack. Figure 1. HydroStreamingLib in the Flink stack.

3.1. Statistical Test Methods

A total of 19 different hydrologic time-series analysis methods are implemented in
HydroStreamingLib, including normality analysis, stationarity analysis, trend analysis and
homogeneity analysis. The list of methods is shown in Table 1.

Water 2023, 15, 708 5 of 17

Table 1. Statistical methods.

Characteristic Methods

Stationarity
Student’s t Test

Simple t Test
Mann–Whitney Test

Normality

Kolmogorov-Smirnov Test
Jarque–Bera Test

Geary’s Test
Coefficient of Variation Test

Trend

Kendall Rank Order Correlation Test
Adjacency Test

Difference Sign Test
Mann–Kendall Test

Spearman’s Rank Order Correlation Test
Turning Point Test

Inversions Test

Homogeneity

Bartlett’s Test
Bayesian Test
Dunnett’s Test
Hartley’s Test

Von-Neumann’s Test

Normality analysis, stationarity analysis, trend analysis, and homogeneity analysis
are all statistical techniques used to analyze time-series data. Normality analysis tests the
assumption that the data are normally distributed. This is important in many statistical
techniques that rely on this assumption.

Stationarity analysis is used to determine if time-series data are stationary, meaning
that the mean, variance, and autocovariance are constant over time. Stationarity is an
important assumption in many time-series models, including the ARIMA and ARMA
models. Trend analysis is used to identify and analyze trends in the time-series data. This
can involve fitting a trend line to the data or using statistical techniques, such as the moving
average or exponential smoothing. Trend analysis is useful for understanding long-term
patterns in the data and can be used for forecasting purposes. Homogeneity analysis
is used to test if time-series data are homogeneous, meaning that they have consistent
characteristics over time. This can be important in climate studies; for example, where
changes in the data could indicate changes in the underlying climate.

In summary, these techniques can be used to analyze different aspects of time-series
data and are useful for understanding the underlying patterns and trends in the data.

3.2. Data Importation and Preprocessing

HydroStreamingLib provides multiple forms of data access, including reading real-
time data from external systems and message queues, or emulating historical data from
a database. Hydrologic data from the sensor has strong real-time performance, high
sampling frequency, etc. When the data are imported there may be some repetition, which
can cause delays and unavoidable errors. Abnormal data will have a detrimental effect on
the hydrologic time-series analysis and may cause characteristic judgment errors. Therefore,
it is necessary to preprocess data to reduce the influence of abnormal data patterns.

The data preprocessing module of HydroStreamingLib provides additional exception
handling capabilities, such as calling algorithms to remove duplicates, providing multiple
outlier detection methods, and applying missing-value filling methods.

3.2.1. Data Duplication

The cause of data duplication is usually related to the communication handshake
protocol between the sender and the receiver. Since sensor data are sampled at a certain

Water 2023, 15, 708 6 of 17

frequency, data duplication means that the data receiver receives multiple data with the
same timestamp. If the data are not processed, the final analysis result will be affected to a
certain extent.

The proposed HydroStreamingLib provides data duplication processing algorithms,
designed for streaming data. Since the hydrologic sensor data are uniquely identified by a
timestamp, when data from more than one sensor with the same timestamp appear in the
preprocessing window, these data are judged as duplicate and thus removed. The algorithm
maintains a timestamp array in the preprocessing window that bookkeeps the timestamps
of all the data in the window. When new data arrive, their timestamp is compared with
those held in the array. If the comparison results in a hit, the data are removed.

3.2.2. Data Anomaly

Hydrologic sensors that are exposed to harsh outdoor environments for extended
periods of time may experience problems such as physical damage, electronic malfunctions,
network transmission delay, and sensor degradation as a result of the adverse conditions.
Meanwhile, hydrologic sensors are prone to interference and loss. So, abnormal data are
inevitable in daily work. These abnormal data often contain values that are impossible to
occur in practice. These outliers greatly affect the accuracy of subsequent statistical analysis,
making anomaly removal one of the key steps for accurate and efficient data preprocessing.

In hydrological time series, outliers usually take the form of point anomalies; that
is, the data at a certain timepoint differ significantly from the data collected during the
period before and/or after it. At present, there are many works on anomaly detection in
time series, most of which are based on similarity measurement and deep learning [20,21].
However, the high complexity of these approaches makes them unsuitable for high-speed,
real-time streaming data [22]. Therefore, HydroStreamingLib provides high-performance
algorithms based on statistical analysis for real-time anomaly detection, including ESD [23],
BoxPlot [24], Hbos [25], and the Tukey test [26].

3.2.3. Missing Data

In the case of hydrologic sensors, there are two main reasons for missing data. The first
is sensor failure or damage, which leads to a period of time during which the hydrological
indicators record that data are not received. The other is data loss caused by network
congestion or a receiver that does not receive data during the transmission. The statistical
analysis of hydrological sensor data is very dependent on the continuity regarding the
integrity of the received data. Therefore, if the data are missing, data in the studied
time range will show a certain feature fully and correctly, thus affecting the final analysis
of results.

In addition to the impact with regards to missing sensor data, if the received data
also contains outliers, their deletion during the process of anomaly removal will further
increase the proportion of missing data. In order to solve both problems, the approach
proposed in this paper deals with different situations. When the missing data in the current
window exceed a certain proportion, the data in that period is considered to lose statistical
significance and the window is discarded altogether. Otherwise, if this proportion of
missing data is not significant, the missing values will be obtained via a linear interpolation.
Assume that there are n data in the window, and there are i consecutive missing values. So
let Mi (2 ≤ i ≤ n − 1) be a window data value, wherein M1 is the previous normal value
of the missing data in this group, and Mn is the last normal value of the missing data in
this group. Then, we yield Mi using Equation (1):

Mi =
(i − 1)× Mn + (n − i)× M1

n − 1
(1)

3.3. Distributed Implementation

This section takes the Kolmogorov–Smirnov Test as an example to discuss the dis-
tributed implementation of the algorithm. Firstly, it receives data continuously from the

Water 2023, 15, 708 7 of 17

external system, and the data contain multiple features (timestamp, sensor ID, measure-
ment value, redundant information). Time and water level are registered according to the
timestamp. Secondly, map operation is performed to extract information and package it
into classes that can be recognized by Java. KeyBy operation is then performed to divide
data according to sensor ID. The time window is divided and the data in the time window
are preprocessed to remove outliers and redundant values. Then K–S test calculation is
performed on the data in the window. The window size provides four timescales of 1 h,
1 day, 7 days, and 30 days. Finally, reduction operations are performed to integrate the
calculation results and output them to the external system.

3.4. Characteristic Discrimination

HydroStreamingLib provides a variety of commonly used probability distribution
tables for calculating p-values under different degrees of freedom to determine the charac-
teristics of data flows. HydroStreamingLib returns a test value or p-value and provides the
ability to check for normality, stationarity, tendency, homogeneity, etc. In the method of
characteristic discrimination, the minority is subordinate to the majority while some factors
of weak test methods are considered; such weak test methods are given low weight.

4. Hydrologic Real-Time Analysis System

Considering that most hydrologic practitioners are not familiar with big-data frame-
works, it may be difficult for them to construct an integrated distributed real-time analysis
system. Therefore, in this paper we provide an all-in-one solution for hydrologic practition-
ers who have no experience with big-data frameworks. Based on HydroStreamingLib, we
perform a hydrologic real-time statistical analysis system from data acquisition to visual
display. The basic process of the system is shown in Figure 2. Hydrologic data are collected
by hydrologic sensors in rivers, and the hydrologic time-series data are transmitted to the
Flink cluster for processing through the message queue Kafka. Flink receives and analyzes
the data of different topics. In the Flink cluster, the data flow of each station is divided into
sub-streams according to the station’s identity. Meanwhile, the hydrologic time-series data
of different sub-streams are aggregated according to the four time dimensions of hour, day,
week and month. HydroStreamingLib is called to calculate the statistical value and identify
the properties of the data in each time window. Finally, the test results are inputted into the
message queue Kafka, and the test results of the real-time data displayed by the platform
are verified. At the same time, the data are stored in the time-series database IoTDB for
historical data querying. The system runs on a distributed cluster, and Flink allows work
for a given computation, insert, or query to be divided into smaller sub-tasks that can be
run concurrently on different nodes to reduce the overall processing time and improve the
performance of the solution [27].

Water 2023, 15, 708 8 of 18

Figure 2. System architecture.

4.1. Data Aggregation Based on Time Window
In streaming data processing, low latency and resource requirements are in eternal

conflict. On one hand, blindly pursuing the performance of streaming data processing
needs expensive computing resources to support it. On the other hand, if computing re-
sources are limited, the real-time performance of streaming data processing is difficult to
guarantee. Therefore, a solution for how to improve the performance of streaming data
processing while keeping the computing resources unchanged is a hot issue in streaming
computing research. Since hydrological time series essentially reflects the trend of a cer-
tain hydrological value changing over time, the time nature of the data should not be lost
when the hydrological sensor data are processed, so as to ensure that the processed data
can keep the various characteristics of the original time series in time. Using the aggrega-
tion idea and the window operator of Flink, we proceed with the data aggregation method
based on time window. Its main steps of the method are as follows:

Step 1. A rolling time window 𝑊 is established for the hydrologic data stream 𝑆 =𝑇 , 𝑉 flowing into Flink, and the window size is set to 1 h (the window size can be de-
termined according to the actual situation, and the default value in this paper is 1 h),
where 𝑇 is the sampling timestamp of the sensor, and 𝑉 is the sampled hydrologic
value.

Step 2. The average value over an hour of hydrological data is calculated in 𝑊 ,
which is used to measure the centralized location of window data. Since the data have
undergone a series of preprocessing prior operations, the mean value has good robustness
at this time.

Step 3. After the data stream 𝑆 is calculated by 𝑊 , the output data stream 𝑆 =𝑇 , 𝑉 , 𝑇 is the timestamp with an interval of one hour, and 𝑉 is the mean sequence
of hydrologic data every hour. At this point, a new scroll window 𝑊 is created with a
window size of 24 h.

Step 4. The average of each day’s hydrologic data is calculated in 𝑊 . After the data
stream 𝑆 is calculated by 𝑊 , its output data stream 𝑆 = 𝑇 , 𝑉 , 𝑇 is a timestamp
with an interval of one day, and 𝑉 is the mean series of daily hydrological data.

Step 5. The data stream 𝑆 contains the aggregated mean value of daily hydrological
data, which can meet the statistical analysis in the time range of weeks, ten days, and
months commonly used in the field of hydrology. If necessary, a new time window can
be aggregated to 𝑆 so that it can continue to be created in a higher time dimension.

After aggregating hydrologic time-series data, some short-term water level change
information will be lost. However, for statistical analysis with higher time dimensions,
such as a week, ten days, or a month as the time range, the water level change information
during an hour is not important and will not seriously affect the analysis results. There-
fore, this redundant information can be removed to improve the computational efficiency.

4.2. Message Queue
The system uses a distributed message queue, Apache Kafka [28], as the data inflow

and outflow pipeline. Kafka is a distributed message queue based on publish-and-sub-
scribe mode, which is mainly applied in the field of real-time processing of big data. Kafka

Figure 2. System architecture.

4.1. Data Aggregation Based on Time Window

In streaming data processing, low latency and resource requirements are in eternal
conflict. On one hand, blindly pursuing the performance of streaming data processing
needs expensive computing resources to support it. On the other hand, if computing
resources are limited, the real-time performance of streaming data processing is difficult to
guarantee. Therefore, a solution for how to improve the performance of streaming data

Water 2023, 15, 708 8 of 17

processing while keeping the computing resources unchanged is a hot issue in streaming
computing research. Since hydrological time series essentially reflects the trend of a certain
hydrological value changing over time, the time nature of the data should not be lost when
the hydrological sensor data are processed, so as to ensure that the processed data can keep
the various characteristics of the original time series in time. Using the aggregation idea
and the window operator of Flink, we proceed with the data aggregation method based on
time window. Its main steps of the method are as follows:

Step 1. A rolling time window W0 is established for the hydrologic data stream
S0 = (T0, V0) flowing into Flink, and the window size is set to 1 h (the window size can
be determined according to the actual situation, and the default value in this paper is 1 h),
where T0 is the sampling timestamp of the sensor, and V0 is the sampled hydrologic value.

Step 2. The average value over an hour of hydrological data is calculated in W0, which
is used to measure the centralized location of window data. Since the data have undergone
a series of preprocessing prior operations, the mean value has good robustness at this time.

Step 3. After the data stream S0 is calculated by W0, the output data stream S1 = (T1, V1),
T1 is the timestamp with an interval of one hour, and V1 is the mean sequence of hydrologic
data every hour. At this point, a new scroll window W1 is created with a window size of 24 h.

Step 4. The average of each day’s hydrologic data is calculated in W1. After the data
stream S1 is calculated by W1, its output data stream S2 = (T2, V2), T2 is a timestamp with
an interval of one day, and V2 is the mean series of daily hydrological data.

Step 5. The data stream S2 contains the aggregated mean value of daily hydrological
data, which can meet the statistical analysis in the time range of weeks, ten days, and
months commonly used in the field of hydrology. If necessary, a new time window can be
aggregated to S2 so that it can continue to be created in a higher time dimension.

After aggregating hydrologic time-series data, some short-term water level change
information will be lost. However, for statistical analysis with higher time dimensions,
such as a week, ten days, or a month as the time range, the water level change information
during an hour is not important and will not seriously affect the analysis results. Therefore,
this redundant information can be removed to improve the computational efficiency.

4.2. Message Queue

The system uses a distributed message queue, Apache Kafka [28], as the data inflow
and outflow pipeline. Kafka is a distributed message queue based on publish-and-subscribe
mode, which is mainly applied in the field of real-time processing of big data. Kafka
distinguishes between producers and consumers. Producers can publish messages to
topics, which are then stored on a set of servers called brokers, from which consumers can
subscribe to one or more topics and use the subscribed messages by extracting data from
the brokers.

Kafka provides data caching, peak elimination, decoupling, and asynchronous com-
munication. It is mainly used to solve the problem of mismatch between upstream and
downstream data speeds and enables multiple applications to use the same data. Kafka
implements its fault tolerance mechanism based on a distributed architecture. The Leader
node in Kafka Broker synchronizes data to the Follower node. In the event of a Leader
node failure, the downstream API interface can still receive data. Kafka is used as a data
pipeline in this system.

4.3. Processing Module

The system uses Flink as a stream data processing tool. Flink [7] is a framework and
distributed processing engine for stateful computations over unbounded and bounded data
streams. Compared with other streaming data processing engines, Flink supports event-
time semantics. When the event arrives at the stream data processing engine, Flink allows
the actual event timestamp to be extracted and assigned to the corresponding window [7].
These features of Flink ensure the high efficiency and accuracy of real-time inspection of
distributed stream data. The processing process of Flink is shown in Figure 3.

Water 2023, 15, 708 9 of 17

Water 2023, 15, 708 9 of 18

distinguishes between producers and consumers. Producers can publish messages to top-
ics, which are then stored on a set of servers called brokers, from which consumers can
subscribe to one or more topics and use the subscribed messages by extracting data from
the brokers.

Kafka provides data caching, peak elimination, decoupling, and asynchronous com-
munication. It is mainly used to solve the problem of mismatch between upstream and
downstream data speeds and enables multiple applications to use the same data. Kafka
implements its fault tolerance mechanism based on a distributed architecture. The Leader
node in Kafka Broker synchronizes data to the Follower node. In the event of a Leader
node failure, the downstream API interface can still receive data. Kafka is used as a data
pipeline in this system.

4.3. Processing Module
The system uses Flink as a stream data processing tool. Flink [7] is a framework and

distributed processing engine for stateful computations over unbounded and bounded
data streams. Compared with other streaming data processing engines, Flink supports
event-time semantics. When the event arrives at the stream data processing engine, Flink
allows the actual event timestamp to be extracted and assigned to the corresponding win-
dow [7]. These features of Flink ensure the high efficiency and accuracy of real-time in-
spection of distributed stream data. The processing process of Flink is shown in Figure 3.

Figure 3. Flink processing flow.

The Flink data source, as the consumer of Kafka, reads the stream data from Kafka.
After obtaining the data, it divides the data according to the identity of the hydrologic
station and calls the calculation and discrimination module in HydroStreamingLib to cal-
culate the statistical test results and judge the characteristic. One of the basic calculation
discrimination modules is shown in Figure 4. Finally, the calculated results are put into
the message queue as Kafka’s producer for subsequent data storage and real-time display.

Figure 4. Discrimination module.

Figure 3. Flink processing flow.

The Flink data source, as the consumer of Kafka, reads the stream data from Kafka.
After obtaining the data, it divides the data according to the identity of the hydrologic
station and calls the calculation and discrimination module in HydroStreamingLib to
calculate the statistical test results and judge the characteristic. One of the basic calculation
discrimination modules is shown in Figure 4. Finally, the calculated results are put into the
message queue as Kafka’s producer for subsequent data storage and real-time display.

Water 2023, 15, 708 9 of 18

distinguishes between producers and consumers. Producers can publish messages to top-
ics, which are then stored on a set of servers called brokers, from which consumers can
subscribe to one or more topics and use the subscribed messages by extracting data from
the brokers.

Kafka provides data caching, peak elimination, decoupling, and asynchronous com-
munication. It is mainly used to solve the problem of mismatch between upstream and
downstream data speeds and enables multiple applications to use the same data. Kafka
implements its fault tolerance mechanism based on a distributed architecture. The Leader
node in Kafka Broker synchronizes data to the Follower node. In the event of a Leader
node failure, the downstream API interface can still receive data. Kafka is used as a data
pipeline in this system.

4.3. Processing Module
The system uses Flink as a stream data processing tool. Flink [7] is a framework and

distributed processing engine for stateful computations over unbounded and bounded
data streams. Compared with other streaming data processing engines, Flink supports
event-time semantics. When the event arrives at the stream data processing engine, Flink
allows the actual event timestamp to be extracted and assigned to the corresponding win-
dow [7]. These features of Flink ensure the high efficiency and accuracy of real-time in-
spection of distributed stream data. The processing process of Flink is shown in Figure 3.

Figure 3. Flink processing flow.

The Flink data source, as the consumer of Kafka, reads the stream data from Kafka.
After obtaining the data, it divides the data according to the identity of the hydrologic
station and calls the calculation and discrimination module in HydroStreamingLib to cal-
culate the statistical test results and judge the characteristic. One of the basic calculation
discrimination modules is shown in Figure 4. Finally, the calculated results are put into
the message queue as Kafka’s producer for subsequent data storage and real-time display.

Figure 4. Discrimination module. Figure 4. Discrimination module.

4.4. Data Storage and Real-Time Display

Apache IoTDB [29], a time-series database, is used in the system to store historical
data and inspection results. IoTDB uses timestamps as the unique identification of data and
provides a new tree file format called TsFile (time-series File). As the main storage format
of IoTDB, TsFile can optimize the organization of time-series data, reduce the storage size
and improve query performance. Hydrologic stream data sources and test results are
time-series data, which can be effectively managed on IoTDB for subsequent query and
visualization.

The system uses Vue and SpringBoot frameworks to implement a visual platform. Vue
is a set of progressive frameworks for building user interfaces for building platform front
ends. SpringBoot is an open-source application framework on the Java platform, which
is used to build the backend of the platform. SpringBoot listens to the data in the topic
corresponding to Kafka inspection results and transfers the data to Vue in real time. The
platform provides real-time data visualization, historical data query, and display.

4.5. Platform Hardware Requirements and Availability

The hardware requirements, price, and availability of a hydrologic statistical analysis
platform based on Flink would depend on several factors, such as the scale of the data, the
required processing power, the desired level of performance, and the available infrastructure.

Water 2023, 15, 708 10 of 17

In terms of hardware requirements, a Flink-based hydrologic statistical analysis plat-
form would typically require a cluster of machines with sufficient memory, CPU, and
storage capacity to handle the data and processing workload. The exact hardware specifica-
tions would depend on the specific requirements of the application, such as the size and
complexity of the data, the desired performance, and the budget.

The price of the application platform would also vary depending on several factors,
such as the hardware requirements, the cost of the software licenses, and any additional
services or support needed. It is worth noting that Flink is open-source software, which
can help reduce the cost of the software license.

In terms of availability, a Flink-based hydrologic statistical analysis platform can be set
up and deployed on-site or in a cloud environment, depending on the specific requirements
and infrastructure of the organization. Some popular cloud providers, such as Amazon
Web Services (AWS), Microsoft Azure, Alibaba Cloud, and Google Cloud Platform (GCP),
offer Flink as a managed service, which can simplify the deployment and management
of the platform. Hosting applications in the cloud platform improves availability and
allows for timely error correction and maintenance of the system when there are different
application requirements.

5. Experiment

We conducted experiments on the software package and the proposed system, and
this section mainly expounds the experimental results. First, the dataset and experimental
environment are introduced. Then, we discuss how we compared the computational
efficiency of HydroStreamingLib with that of commonly used statistical test algorithm
packages. We then describe how we used real datasets to simulate data flow to evaluate
the performance of the system based on HydroStreamingLib. After that, we describe how
we evaluated the performance of the system under higher loads.

5.1. Dataset and Experimental Environment

In this work, the water level data of 69 stations in the Chu River basin from 2016
to 2017 were collected and acquired. The dataset contained more than 20 million data
samples, including 69 different sensors; each sensor was numbered using an 8-digit number
format such as “12,910,280”. The sampling interval of this dataset was 5 min, and its format
is shown in Table 2 after redundant information was removed. Redundant information
includes the name of the collection device, the identity of the collection person, and
the description.

Table 2. Data formats.

Timestamp Station ID Water Level/m

2015-01-02 10:00:00 12910540 58.490
2015-04-23 13:55:00 62916400 5.480
2015-06-28 16:45:00 60403100 7.490

In this work, the experimental environment was set up on an Alibaba cloud cluster
composed of four nodes. The hardware environment of each node was Intel(R) Xeon(R)
Platinum 8269@2.50GHz CPU, 8 GB RAM and 50 GB HDD, and the system instance was
64-bit CentOS 7.6. The software environment was Apache Kafka 2.8.0, Apache Flink 1.13.1,
Apache IoTDB 0.12.2, Apache Spark 3.1.1, and Prometheus 2.28.0.

5.2. Statistical Anlysis of Water Level in Chuhe River

In this section, the water level time series collected by station #12910280 on the Chuhe
River during the second semester of 2016 was used as the dataset, which was simulated
into flow data and transmitted to the Flink platform. The proposed HydroStreamingLib
was used to analyze the time series for a 1-month time span. To demonstrate the results

Water 2023, 15, 708 11 of 17

of our statistical analysis, we selected three different statistical tests in each category as
examples. This part of the experiment was mainly used to prove the application of our
proposed HydroStreamingLib in practical application scenarios.

Table 3 shows the normality test results of the water level time series. It can be con-
firmed that the water level of all months showed obvious normality, except for November.
This indicates that during the second semester of year 2016, the water level time series,
sampled monthly, generally conforms to normal distribution.

Table 3. Result of normality test.

Month K–S Test J–B Test Geary’s Test Result

2016.7 0.1236 2.4358 0.963
√

2016.8 0.2054 2.4079 1.1314
√

2016.9 0.1899 3.3242 1.135
√

2016.10 0.1615 0.0902 0.8766
√

2016.11 0.3099 714.6828 0.5949 ×
2016.12 0.2172 3.5783 1.1199

√

Threshold 0.24 5.991 1 —

Table 4 shows the results of the stationarity test, which indicate that the water level
data during the months of September, November, and December were relatively stable.
The water level in November and December hardly fluctuated. So, the statistics of the two
sub-series are almost the same, showing a strong stationarity. Although the water level
data in September show a relatively clear change, the data series first shows a decreasing
trend, and then a rising one. This indicates that there is little difference in the mean and
variance between the two sub-series, so it also shows a certain stationarity.

Table 4. Results of stationarity test.

Month
Student t Test

Simple t Test Mann–Whitney Test Result
Subsequence 1 Subsequence 2 Subsequence 3

2016.7 1.6793 0.778 −2.4602 0.1524 0.0437 ×
2016.8 2.9517 0.7566 −3.7088 0.0 0.0 ×
2016.9 1.6185 −3.7532 2.1351 0.8519 0.7934

√

2016.10 −3.0603 0.0754 2.9856 0.0 0.0 ×
2016.11 0.2273 −0.0052 0.239 0.0121 0.9279

√

2016.12 1.637 −2.366 0.729 0.4429 0.6934
√

Threshold 1.833 1.833 1.833 0.05 0.05 —

The homogeneity test results, presented in Table 5, show that—except for October—
the time series regarding water levels for the remaining months exhibits uniformity. This
proves that the water level data received from the sensors during the second semester of
2016 well reflect the natural changes of the Chuhe River itself, rather than unnatural factors,
such as location changes and equipment failures.

Table 5. Results of homogeneity test.

Month
Dunnett’s Test

Bayesian Test Von-Neumann’s Test Result
Subsequence 1 Subsequence 2 Subsequence 3

2016.7 0.3537 0.2006 1.6949 2.6918 2.0144
√

2016.8 2.1877 2.7654 3.3344 1.1825 2.0237
√

2016.9 1.5643 1.9273 1.4739 4.0711 2.0716
√

2016.10 11.1853 13.6305 22.6544 13.3524 0.0456 ×
2016.11 2.1327 0.2324 1.5253 2.0354 0.7863

√

2016.12 2.7363 2.5679 2.6607 1.8434 1.9006
√

Threshold 2.15 2.15 2.15 2.42 2 —

Water 2023, 15, 708 12 of 17

Table 6 shows the trend test results of the water level time series. Unlike the other
three-feature testing algorithms, the null hypothesis of the trend testing algorithm was “the
time series has no trend”. The results in the table show that the water level data during the
months of July, August, and October exhibited an obvious trend, and there was a significant
rise during October. The remaining months show neither a rising nor a decreasing trend.
NaN in Table 6 indicates that the statistical characteristics of the time period could not
be calculated.

Table 6. Results of trend test.

Month SROC Test KRC Test Mann–Kendall
Test Result

2016.7 −2.6142 −2.9437 0.0034
√

2016.8 −18.6319 −7.0472 0.0
√

2016.9 −0.4335 −0.4103 0.6947 ×
2016.10 NaN 7.7608 0.0

√

2016.11 −1.3136 −1.6592 0.1007 ×
2016.12 −0.8942 −2.0517 0.0655 ×

Threshold 2.048 1.96 0.05 —

5.3. Contrast Experiment

In this experiment, the HydroStreamingLib proposed in this paper, RStudio, and
SparkR were used for statistical analysis of different scales of Chu River water level data.
This part of the experiment was mainly used to compare the computational performance
with the existing big-data statistical analysis framework.

We exploited the K–S test algorithm as the verification algorithm of the experiment.
Since RStudio only supports stand-alone use, we deployed it on a single server, while Hy-
droStreamingLib and Spark were deployed on different numbers of nodes for experiments.

The experimental results obtained after multiple experiments are shown in Table 7.
Experimental results showed that HydroStreamingLib and SparkR were significantly more
efficient in computing and processing data than RStudio in the standalone deployment.
When the data size was increased to 1024 MB, the calculation time of the validation algo-
rithm applied to RStudio was more than 1 h. SparkR with a 4-node computing cluster took
121 s, while HydroStreamingLib took only 65 s. Experiments showed that when processing
data of the same size, HydroStreamingLib was computationally more efficient than SparkR
and RStudio. Apache Flink and SparkR are both big-data processing frameworks, while
RStudio is a data analysis platform. Flink is designed to provide low-latency data process-
ing, making it well-suited for real-time data analytics applications. SparkR and RStudio,
by contrast, are not optimized for low-latency data processing and may not perform as
well for real-time data analytics. Flink provides in-memory processing, which enables fast
and efficient data processing. SparkR also supports in-memory processing, but RStudio
does not.

Table 7. Calculation time of K–S test algorithm on HydroStreamingLib, SparkR, and RStudio.

Data Amount (MB)
HydroStreamingLib Run Time (s) SparkR Run Time (s) RStudio Run

Time (s)1 Node 2 Nodes 3 Nodes 4 Nodes 1 Node 2 Nodes 3 Nodes 4 Nodes

32 7 5 3 2 19 16 13 7 179
128 29 18 15 12 62 35 27 21 711
512 109 56 37 31 249 131 108 79 >3600

1024 209 105 77 65 432 246 163 121 >3600

5.4. Parallel Performance Experiment

Performance parallelism is mainly measured using three classic metrics, namely
Speedup, Sizeup, and Scaleup. In this experiment, three index results of the proposed

Water 2023, 15, 708 13 of 17

system and SparkR were compared under different system configurations, varying the
numbers of nodes and different scales of data to evaluate the system parallel performance.
This part of the experiment mainly compared the parallel performance of HydroStreamin-
gLib with existing statistical analysis frameworks. The higher the parallelism, the more
scalable the system.

5.4.1. Speedup Ratio

The speedup metric is used to measure the ratio of time spent in a single node and
m nodes under the same scale dataset. If the speedup ratio increases linearly with the
increase in the number of nodes m, then we can conclude that the system can reduce the
computation time linearly by increasing the number of nodes. The speedup ratio is defined
as in Equation (2):

Speedup = t1/tm (2)

Wherein t1 represents the execution time using a single node and tm that when using
m nodes.

The speedup ratios of the system based on the proposed library and that based on
SparkR are shown in Figure 5. It was easy to conclude that, with the increase in the
number of nodes, the speedup ratios of the system and SparkR generally yielded a linear
increase. When the number of nodes increased to four, the speedup ratio fluctuated around
three. This shows that the computation time could be reduced approximately linearly by
increasing the number of nodes.

Water 2023, 15, 708 14 of 18

increase. When the number of nodes increased to four, the speedup ratio fluctuated
around three. This shows that the computation time could be reduced approximately lin-
early by increasing the number of nodes.

(a) The proposed system (b) SparkR

Figure 5. Comparison with regards to speedup.

5.4.2. Sizeup Ratio
The sizeup metric measures the increase in computation time of the node when the

number of nodes remains the same while the amount of data increases exponentially. The
sizeup ratio is defined as in Equation (3): 𝑆𝑖𝑧𝑒𝑢𝑝 = 𝑡 /𝑡 (3)

Wherein 𝑡 is the time taken to compute m units of data on n nodes and 𝑡 is the
time taken to compute one unit of data on n nodes.

Figure 6 shows the sizeup test results for the system based on the proposed library
and that based on SparkR. We concluded that, as the amount of data increased exponen-
tially, the increase ratio of computation time of the compared implementations was very
close. When the amount of data increased from 32 MB to 1024 MB, the sizeup ratio fluctu-
ated around 15.

(a) The proposed system (b) SparkR

Figure 6. Comparison with regards to sizeup.

5.4.3. Scaleup Ratio
The scaleup metric measures the ratio of the computation time of m units of data on

m nodes to the computation time of a single data unit on a single node. With the increase
in data volume, if the scalability index is lower than 1.0 but nearing 1.0, then one can
conclude that the distributed system has good adaptability to the amount of data. The
scaleup ratio is defined as in Equation (4):

1

2

3

4

1 2 3 4

Sp
ee

du
p

ra
tio

Number of nodes

32MB
128MB
512MB
1024MB
y=x

1

2

3

4

1 2 3 4

Sp
ee

du
p

ra
tio

Number of nodes

32MB
128MB
512MB
1024MB
y=x

0

5

10

15

20

25

30

32 128 512 1024

Si
ze

up

Data size (MB)

1 Node
2 Nodes
3 Nodes
4 Nodes

0

5

10

15

20

25

30

32 128 512 1024

Si
ze

up

Data size (MB)

1 Node
2 Nodes
3 Nodes
4 Nodes

Figure 5. Comparison with regards to speedup.

5.4.2. Sizeup Ratio

The sizeup metric measures the increase in computation time of the node when the
number of nodes remains the same while the amount of data increases exponentially. The
sizeup ratio is defined as in Equation (3):

Sizeup = tm/t1 (3)

Wherein tm is the time taken to compute m units of data on n nodes and t1 is the time
taken to compute one unit of data on n nodes.

Figure 6 shows the sizeup test results for the system based on the proposed library and
that based on SparkR. We concluded that, as the amount of data increased exponentially,
the increase ratio of computation time of the compared implementations was very close.
When the amount of data increased from 32 MB to 1024 MB, the sizeup ratio fluctuated
around 15.

Water 2023, 15, 708 14 of 17

Water 2023, 15, 708 14 of 18

increase. When the number of nodes increased to four, the speedup ratio fluctuated
around three. This shows that the computation time could be reduced approximately lin-
early by increasing the number of nodes.

(a) The proposed system (b) SparkR

Figure 5. Comparison with regards to speedup.

5.4.2. Sizeup Ratio
The sizeup metric measures the increase in computation time of the node when the

number of nodes remains the same while the amount of data increases exponentially. The
sizeup ratio is defined as in Equation (3): 𝑆𝑖𝑧𝑒𝑢𝑝 = 𝑡 /𝑡 (3)

Wherein 𝑡 is the time taken to compute m units of data on n nodes and 𝑡 is the
time taken to compute one unit of data on n nodes.

Figure 6 shows the sizeup test results for the system based on the proposed library
and that based on SparkR. We concluded that, as the amount of data increased exponen-
tially, the increase ratio of computation time of the compared implementations was very
close. When the amount of data increased from 32 MB to 1024 MB, the sizeup ratio fluctu-
ated around 15.

(a) The proposed system (b) SparkR

Figure 6. Comparison with regards to sizeup.

5.4.3. Scaleup Ratio
The scaleup metric measures the ratio of the computation time of m units of data on

m nodes to the computation time of a single data unit on a single node. With the increase
in data volume, if the scalability index is lower than 1.0 but nearing 1.0, then one can
conclude that the distributed system has good adaptability to the amount of data. The
scaleup ratio is defined as in Equation (4):

1

2

3

4

1 2 3 4

Sp
ee

du
p

ra
tio

Number of nodes

32MB
128MB
512MB
1024MB
y=x

1

2

3

4

1 2 3 4

Sp
ee

du
p

ra
tio

Number of nodes

32MB
128MB
512MB
1024MB
y=x

0

5

10

15

20

25

30

32 128 512 1024

Si
ze

up

Data size (MB)

1 Node
2 Nodes
3 Nodes
4 Nodes

0

5

10

15

20

25

30

32 128 512 1024

Si
ze

up

Data size (MB)

1 Node
2 Nodes
3 Nodes
4 Nodes

Figure 6. Comparison with regards to sizeup.

5.4.3. Scaleup Ratio

The scaleup metric measures the ratio of the computation time of m units of data on m
nodes to the computation time of a single data unit on a single node. With the increase in
data volume, if the scalability index is lower than 1.0 but nearing 1.0, then one can conclude
that the distributed system has good adaptability to the amount of data. The scaleup ratio
is defined as in Equation (4):

Scaleup = t1/tm (4)

Wherein tm is the time taken to compute m units of data on m nodes and t1 is the time
taken to compute one unit of data on a single node.

The obtained scaleup ratios for the compared systems are shown in Figure 7. It can
be noted that under different data amounts, with the increase in the number of nodes, the
scaleup ratios of the system based on the proposed library and that based on SparkR were
kept between 0.8 and 1.0, which indicated that both systems exhibited good scalability and
could provide support for data of different scales.

Water 2023, 15, 708 15 of 18

𝑆𝑐𝑎𝑙𝑒𝑢𝑝 = 𝑡1/𝑡 (4)

Wherein 𝑡 is the time taken to compute m units of data on m nodes and 𝑡 is the
time taken to compute one unit of data on a single node.

The obtained scaleup ratios for the compared systems are shown in Figure 7. It can
be noted that under different data amounts, with the increase in the number of nodes, the
scaleup ratios of the system based on the proposed library and that based on SparkR were
kept between 0.8 and 1.0, which indicated that both systems exhibited good scalability
and could provide support for data of different scales.

(a) The proposed system (b) SparkR

Figure 7. Comparison with regards to scaleup.

In summary, compared with RStudio and SparkR, the system based on the proposed
library had higher computational efficiency for statistical analysis of hydrological sensor
data, yet it could make timely and accurate statistical analyses of more data in the same
amount of time. In terms of parallel performance, the system based on the proposed li-
brary had similar performance to SparkR in terms of speedup, sizeup, and scaleup, which
showed that the system based on the proposed library could process large-scale data by
adding nodes, and thus had good parallel performance. The main reason for this was that
the combination of a big-data distributed computing framework and statistical analysis
methods could fully schedule computing resources and effectively deal with high concur-
rency application scenarios.

5.5. Evaluating the System on a Real Dataset
Based on the Chu River dataset, we evaluated the real-time analysis system multi-

dimensionally and monitored the key nodes of the system, such as Flink and Kafka,
through Prometheus. This part of the experiment was mainly used to verify the resources
consumed by the proposed system in real scenarios.

Due to the slow transmission rate of the original Chu River dataset, the transmission
rate of the source data was increased to 500 ms/piece in the experiment. The CPU usage
of each node is shown in Figure 8.

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1 2 4

Sc
al

eu
p

Number of nodes

32MB to 128MB
128MB to 1024MB

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 4

Sc
al

eu
p

Number of nodes

32MB to 128MB

Figure 7. Comparison with regards to scaleup.

In summary, compared with RStudio and SparkR, the system based on the proposed
library had higher computational efficiency for statistical analysis of hydrological sensor
data, yet it could make timely and accurate statistical analyses of more data in the same
amount of time. In terms of parallel performance, the system based on the proposed
library had similar performance to SparkR in terms of speedup, sizeup, and scaleup,
which showed that the system based on the proposed library could process large-scale
data by adding nodes, and thus had good parallel performance. The main reason for this

Water 2023, 15, 708 15 of 17

was that the combination of a big-data distributed computing framework and statistical
analysis methods could fully schedule computing resources and effectively deal with high
concurrency application scenarios.

5.5. Evaluating the System on a Real Dataset

Based on the Chu River dataset, we evaluated the real-time analysis system multi-
dimensionally and monitored the key nodes of the system, such as Flink and Kafka, through
Prometheus. This part of the experiment was mainly used to verify the resources consumed
by the proposed system in real scenarios.

Due to the slow transmission rate of the original Chu River dataset, the transmission
rate of the source data was increased to 500 ms/piece in the experiment. The CPU usage of
each node is shown in Figure 8.

Water 2023, 15, 708 16 of 18

Figure 8. CPU usage of each node under the real dataset.

According to the experimental results, the Flink node had the highest CPU usage,
reaching 8.4%. This is because data preprocessing and statistical calculation were com-
pleted by the Flink node. Kafka and IoTDB only provided data transmission and query
functions, so the CPU usage was not high.

The experiment tested the memory usage of key nodes of the system, and the exper-
imental results are shown in Figure 9. Kafka had the highest usage of memory, reaching
534 MB, while Flink and IoTDB had low usage of memory.

Figure 9. Memory usage of each node under the real dataset.

According to the overall experimental results, the resource occupation of the system
was not high in the case of a real dataset simulation, and the system could effectively cope
with a real hydrologic scenario on the existing server resources.

6. Conclusions
Hydrologic statistical analysis is significant because it helps in understanding the

patterns and relationships between different hydrologic variables, such as precipitation,
evaporation, runoff, and groundwater level, among others. It also enables the assessment
of the reliability and validity of the data obtained from hydrologic sensors, which can be
used to make informed decisions regarding water management, planning, and utilization.
With the development of Internet of Things technology, sensor data has increased signif-
icantly. Hydrologic data processing has become a kind of typical big-data scene, and the

4.3

8.4

2.7

0

1

2

3

4

5

6

7

8

9

Kafka Flink IoTDB

CP
U

 u
se

ag
e

/ %

Node

534
494

437

0

100

200

300

400

500

600

Kafka Flink IoTDB

M
em

or
y

us
ag

e
/ M

B

node

Figure 8. CPU usage of each node under the real dataset.

According to the experimental results, the Flink node had the highest CPU usage,
reaching 8.4%. This is because data preprocessing and statistical calculation were completed
by the Flink node. Kafka and IoTDB only provided data transmission and query functions,
so the CPU usage was not high.

The experiment tested the memory usage of key nodes of the system, and the experi-
mental results are shown in Figure 9. Kafka had the highest usage of memory, reaching
534 MB, while Flink and IoTDB had low usage of memory.

Water 2023, 15, 708 16 of 18

Figure 8. CPU usage of each node under the real dataset.

According to the experimental results, the Flink node had the highest CPU usage,
reaching 8.4%. This is because data preprocessing and statistical calculation were com-
pleted by the Flink node. Kafka and IoTDB only provided data transmission and query
functions, so the CPU usage was not high.

The experiment tested the memory usage of key nodes of the system, and the exper-
imental results are shown in Figure 9. Kafka had the highest usage of memory, reaching
534 MB, while Flink and IoTDB had low usage of memory.

Figure 9. Memory usage of each node under the real dataset.

According to the overall experimental results, the resource occupation of the system
was not high in the case of a real dataset simulation, and the system could effectively cope
with a real hydrologic scenario on the existing server resources.

6. Conclusions
Hydrologic statistical analysis is significant because it helps in understanding the

patterns and relationships between different hydrologic variables, such as precipitation,
evaporation, runoff, and groundwater level, among others. It also enables the assessment
of the reliability and validity of the data obtained from hydrologic sensors, which can be
used to make informed decisions regarding water management, planning, and utilization.
With the development of Internet of Things technology, sensor data has increased signif-
icantly. Hydrologic data processing has become a kind of typical big-data scene, and the

4.3

8.4

2.7

0

1

2

3

4

5

6

7

8

9

Kafka Flink IoTDB

CP
U

 u
se

ag
e

/ %

Node

534
494

437

0

100

200

300

400

500

600

Kafka Flink IoTDB

M
em

or
y

us
ag

e
/ M

B

node

Figure 9. Memory usage of each node under the real dataset.

Water 2023, 15, 708 16 of 17

According to the overall experimental results, the resource occupation of the system
was not high in the case of a real dataset simulation, and the system could effectively cope
with a real hydrologic scenario on the existing server resources.

6. Conclusions

Hydrologic statistical analysis is significant because it helps in understanding the
patterns and relationships between different hydrologic variables, such as precipitation,
evaporation, runoff, and groundwater level, among others. It also enables the assessment of
the reliability and validity of the data obtained from hydrologic sensors, which can be used
to make informed decisions regarding water management, planning, and utilization. With
the development of Internet of Things technology, sensor data has increased significantly.
Hydrologic data processing has become a kind of typical big-data scene, and the traditional
schemes have become difficult to use for processing and analyzing hydrologic time-series
data of high concurrency in real-time. However, statistical analysis of various characteristics
of hydrologic data is of great significance in establishing hydrologic models. In order to
perform the real-time calculation of hydrologic stream data, HydroStreamingLib was
proposed based on Flink DataStream API, and a distributed real-time statistical analysis
system for hydrologic time-series data was implemented based on the algorithms available
through the proposed library.

The exploitation of the proposed library resources was evaluated using real-world
problems and scenarios with higher concurrency and faster flow rates. The experimental
results showed that the algorithm library and the system based on it could conduct real-
time and accurate analysis of hydrologic time-series data in hydrologic big-data scenarios
with high concurrency and high flow rates.

Future research directions for a hydrologic statistical analysis system based on Flink
could include improving the accuracy and efficiency of the analysis algorithms, incor-
porating more diverse data sources, and exploring new ways to visualize and interpret
the results. Additionally, researchers could work on integrating the system with other
hydrologic modeling tools and expanding its use to a wider range of applications, such
as agriculture and meteorology. There is also room for investigation into the scalability
of the system, and how it could handle increasing amounts of data. Finally, research into
the security and privacy aspects of the system, particularly in the context of sharing and
accessing sensitive hydrologic data, could also be a future direction.

Author Contributions: Conceptualization, J.S. and F.Y.; methodology and analysis, J.S.; data curation,
J.S. and F.Y.; writing—original draft preparation, J.S.; writing—review and editing, J.S., F.Y. and N.N.;
supervision, F.Y.; project administration, F.Y., M.Z. and D.X.; funding acquisition, F.Y. and M.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2019YFE0109900);
the Water Science and Technology Project of Jiangsu Province (2022003, 2022057); the Jiangsu Province
Key Research and Development Program (Modern Agriculture) Project (BE2018301); and the National
Natural Science Foundation of China (52179076 and 51979186).

Data Availability Statement: The data supporting the findings of this study are not publicly available
due to privacy.

Acknowledgments: The authors wish to thank all members in our project team for their valuable
contributions during discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McMillan, H.K.; Westerberg, I.K.; Krueger, T. Hydrological data uncertainty and its implications. Wiley Interdiscip. Rev. Water

2018, 5, e1319. [CrossRef]
2. Liu, Z.; Cheng, L.; Lin, K.; Cai, H. A hybrid bayesian vine model for water level prediction. Environ. Model. Softw. 2021,

142, 105075. [CrossRef]

http://doi.org/10.1002/wat2.1319
http://doi.org/10.1016/j.envsoft.2021.105075

Water 2023, 15, 708 17 of 17

3. Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012.

4. Nie, N.H.; Bent, D.H.; Hull, C.H. SPSS: Statistical Package for the Social Sciences; McGraw-Hill: New York, NY, USA, 1975; Volume 227.
5. Toolbox, S.M. Matlab; Mathworks Inc.: Natick, MA, USA, 1993.
6. Wen, J.; Yang, J.; Jiang, B.; Song, H.; Wang, H. Big data driven marine environment information forecasting: A time series

prediction network. IEEE Trans. Fuzzy Syst. 2020, 29, 4–18. [CrossRef]
7. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch processing in a single

engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2015, 36, 28–38.
8. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J. Apache

spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
9. Machiwal, D.; Gupta, A.; Jha, M.K.; Kamble, T. Analysis of trend in temperature and rainfall time series of an Indian arid region:

Comparative evaluation of salient techniques. Theor. Appl. Climatol. 2019, 136, 301–320. [CrossRef]
10. Tosunoglu, F.; Kisi, O. Trend analysis of maximum hydrologic drought variables using Mann–Kendall and Şen’s innovative trend

method. River Res. Appl. 2017, 33, 597–610. [CrossRef]
11. Machiwal, D.; Parmar, B.; Kumar, S.; Meena, H.M.; Deora, B. Evaluating homogeneity of monsoon rainfall in Saraswati River

basin of Gujarat, India. J. Earth Syst. Sci. 2021, 130, 181. [CrossRef]
12. de Gois, G.; de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Sobral, B.S.; de Bodas Terassi, P.M.; Junior, A.H.S.L. Statistical normality and

homogeneity of a 71-year rainfall dataset for the state of Rio de Janeiro—Brazil. Theor. Appl. Climatol. 2020, 141, 1573–1591. [CrossRef]
13. von Brömssen, C.; Betnér, S.; Fölster, J.; Eklöf, K. A toolbox for visualizing trends in large-scale environmental data. Environ.

Model. Softw. 2021, 136, 104949. [CrossRef]
14. Aziz, K.; Zaidouni, D.; Bellafkih, M. Real-time data analysis using Spark and Hadoop. In Proceedings of the 2018 4th International

Conference on Optimization and Applications (ICOA), Mohammedia, Morocco, 26–27 April 2018; pp. 1–6.
15. Silva, B.N.; Khan, M.; Jung, C.; Seo, J.; Muhammad, D.; Han, J.; Yoon, Y.; Han, K. Urban planning and smart city decision

management empowered by real-time data processing using big data analytics. Sensors 2018, 18, 2994. [CrossRef] [PubMed]
16. Van Wyk, F.; Khojandi, A.; Kamaleswaran, R. Improving prediction performance using hierarchical analysis of real-time data: A

sepsis case study. IEEE J. Biomed. Health Inform. 2019, 23, 978–986. [CrossRef] [PubMed]
17. Racine, J.S. RStudio: A platform-independent IDE for R and Sweave. J. Appl. Econom. 2012, 27, 167–172. [CrossRef]
18. Venkataraman, S.; Yang, Z.; Liu, D.; Liang, E.; Falaki, H.; Meng, X.; Xin, R.; Ghodsi, A.; Franklin, M.; Stoica, I. Sparkr: Scaling r

programs with spark. In Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26
June–1 July 2016; pp. 1099–1104.

19. Alcalde-Barros, A.; García-Gil, D.; García, S.; Herrera, F. DPASF: A flink library for streaming data preprocessing. Big Data Anal.
2019, 4, 4. [CrossRef]

20. Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407.
21. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. 2021, 54, 38. [CrossRef]
22. Chen, J.; Wang, X.; Li, Q.; Han, W. A Markov Process-Based Anomaly Detection of Time Series Streaming Data. In Signal and

Information Processing, Networking and Computers; Springer: Berlin/Heidelberg, Germany, 2021; pp. 827–834.
23. Rosner, B. On the detection of many outliers. Technometrics 1975, 17, 221–227. [CrossRef]
24. Schwertman, N.C.; Owens, M.A.; Adnan, R. A simple more general boxplot method for identifying outliers. Comput. Stat. Data

Anal. 2004, 47, 165–174. [CrossRef]
25. Goldstein, M.; Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In Proceedings

of the Poster and Demo Track of the 35th German Conference on Artificial Intelligence (KI-2012), Saarbrucken, Germany, 24–27
September 2012; pp. 59–63.

26. Abdi, H.; Williams, L.J. Newman-Keuls test and Tukey test. Encycl. Res. Des. 2010, 2, 897–902.
27. Kipf, A.; Pandey, V.; Böttcher, J.; Braun, L.; Neumann, T.; Kemper, A. Scalable analytics on fast data. ACM Trans. Database Syst.

2019, 44, 1. [CrossRef]
28. Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB 2011: 6th

Workshop on Networking Meets Databases, Athens, Greece, 12–16 June 2011; pp. 1–7.
29. Wang, C.; Huang, X.; Qiao, J.; Jiang, T.; Rui, L.; Zhang, J.; Kang, R.; Feinauer, J.; McGrail, K.A.; Wang, P. Apache IoTDB: Time-series

database for internet of things. Proc. VLDB Endow. 2020, 13, 2901–2904. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TFUZZ.2020.3012393
http://doi.org/10.1145/2934664
http://doi.org/10.1007/s00704-018-2487-4
http://doi.org/10.1002/rra.3106
http://doi.org/10.1007/s12040-021-01671-6
http://doi.org/10.1007/s00704-020-03270-9
http://doi.org/10.1016/j.envsoft.2020.104949
http://doi.org/10.3390/s18092994
http://www.ncbi.nlm.nih.gov/pubmed/30205499
http://doi.org/10.1109/JBHI.2019.2894570
http://www.ncbi.nlm.nih.gov/pubmed/30676988
http://doi.org/10.1002/jae.1278
http://doi.org/10.1186/s41044-019-0041-8
http://doi.org/10.1145/3439950
http://doi.org/10.2307/1268354
http://doi.org/10.1016/j.csda.2003.10.012
http://doi.org/10.1145/3283811
http://doi.org/10.14778/3415478.3415504

	Introduction
	Related Works
	The Proposed Library
	Statistical Test Methods
	Data Importation and Preprocessing
	Data Duplication
	Data Anomaly
	Missing Data

	Distributed Implementation
	Characteristic Discrimination

	Hydrologic Real-Time Analysis System
	Data Aggregation Based on Time Window
	Message Queue
	Processing Module
	Data Storage and Real-Time Display
	Platform Hardware Requirements and Availability

	Experiment
	Dataset and Experimental Environment
	Statistical Anlysis of Water Level in Chuhe River
	Contrast Experiment
	Parallel Performance Experiment
	Speedup Ratio
	Sizeup Ratio
	Scaleup Ratio

	Evaluating the System on a Real Dataset

	Conclusions
	References

