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Abstract: As a common geological hazard, debris flow is widely distributed around the world.
Meanwhile, due to the influence of many factors such as geology, geomorphology and climate, the
occurrence frequency and main inducing factors are different in different places. Therefore, the evalu-
ation of debris flow sensitivity can provide a very important theoretical basis for disaster prevention
and control. In this research, 43 debris flow gullies in Changping District, Beijing were cataloged
and studied through field surveys and the 3S technology (GIS (Geography Information Systems),
GPS (Global Positioning Systems), RS (Remote Sensing)). Eleven factors, including elevation, slope,
plane curvature, profile curvature, roundness, geomorphic information entropy, TWI, SPI, TCI, NDVI
and rainfall, were selected to establish a comprehensive evaluation index system. The watershed
unit is directly related to the development and activities of debris flow, which can fully reflect the
geomorphic and geological environment of debris flow. Therefore, the watershed unit was selected
as the basic mapping unit to establish four evaluation models, namely ACA–PCA–FR (Analytic
Hierarchy Process–Principal Component Analysis–Frequency Ratio), FR (Frequency Ratio), SVM
(Support Vector Machines) and LR (Logistic Regression). In other words, this research evaluates
debris flow susceptibility by comparingit with two traditional weight methods (ACA–PCA–FR and
FR) and two machine learning methods (SVM and LR). The results show that the SVM evaluation
model is superior to the other three models, and thevalueofthe area under the receiver-operating
characteristic curve (AUC) is 0.889 from the receiver operating characteristic curve (ROC). It verifies
that the SVM model has strong adaptability to small sample data. The study was divided into five
regions, which were very low, low, moderate, high and very high, accounting for 22.31%, 25.04%,
17.66%, 18.85% and 16.14% of the total study area, respectively, by SVM model. The results obtained
in this researchagree with the actual survey results, and can provide theoretical help for disaster
prevention and reduction projects.

Keywords: debris flow susceptibility assessment; SVM; LR; ACA–PCA–FR; Beijing

1. Introduction

Debris flow is a special flood that flows along slopes or gullies with a large amount of
sediment, debris and other solid materials mixed with water. Debris flow is also a sudden
geological disaster that often occurs in mountainous areas, bringing huge losses to the
people. The debris flow in Zhouqu County, Gansu Province, China in 2010 resulted in
1487 deaths, and the direct economic loss alone was up to 400 million Yuan, which was the
most disastrous geological disaster in China in the past 20 years [1]. In recent years, the
frequency of debris flow in China is high, which seriously threatens the safety of life and
property. Zhang et al. [2] counted all 10,927 debris flow disasters in China from 2005 to
2015 and found that the peak occurrence period of debris flow disasters in China was from
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May to September each year, which was the same time as the rainy season in most parts
of China.

The research on debris flow susceptibility has mainly gone through three stages [3]:
(1) In 1976, the United Nations entrusted the International Federation of Engineering
Geology to research debris flow susceptibility [4], and since then it has gradually become
an important part of the evaluation and prevention of debris flow disaster. KOVACS
et al. [5] used the qualitative evaluation method to analyze debris flow susceptibility in
the 1980s, which provided ideas for debris flow susceptibility assessment. (2) With the
successful application of mathematical statistical methods and the 3S technology [6] in
the susceptibility analysis of debris flow, debris flow susceptibility assessment gradually
developed towarda comprehensive quantitative evaluation. These methods transition from
qualitative to semi-quantitative and quantitative, and have been applied for a long time
with a wide range of applications. The commonly used methods include the certainty
factor (CF) [7], the analytic hierarchy process (AHP) [8], the information content model
(ICM) [9], the principal component analysis (PCA) [10] and the frequency ratio method
(FR) [11]. Li et al. [12], based on the analytic hierarchy process and principal component
analysis method for elevation, combined eight influencing factors, such as slope, to give
weight, and then the results of debris flow susceptibility assessment in Mentougou District
of Beijing are obtained by the information content model. Li et al. [13] compared debris
flow susceptibility in Pinggu District of Beijing by using the certainty factor (CF), the
Information value (IV) model and the logistic regression (LR) method, and the results
show that the sensitivity result obtained by the logistic regression (LR) model is the most
accurate. The calculation process of these methods is complex and the calculation time is
long [14]. Moreover, in the case of many damage points and evaluation factors, the above
methods cannot gain advantages in the calculation of complex and big data. (3) With the
rapid development of computer technology, more intelligent algorithms were put forward
and widely used [15]. Among them, the machine learning algorithms were very widely
used, and many scholars had applied them to the study and prediction of debris flow
susceptibility. The commonly used machine learning algorithms were: support vector
machine (SVM) [16], logistic regression (LR) [17], random forests (RF) [18], decision tree
(DT) [19] and artificial neural network (ANN) [20]. Qiu et al. [21] improved and obtained
more accurate GA-SVM and CF-GA-SVM basedon SVM. By comparing with SVM and
LR models, debris flow susceptibility in the Jalong corridor area was researched. The
results showed that the SVM model has higher accuracy than the LR model in the case
of small sample data, and the improved SVM model has the most accurate prediction
result. Ke et al. [22] used LR, SVM, RF and enhanced regression tree (RT) models to
research debris flow susceptibility in Sichuan Province, China. The results showed that
the enhanced RT model was more accurate than other models in prediction. Compared
with mathematical statistical methods, machine learning methods were faster to calculate,
capable of self-organizing learning, and more accurate when predicting and evaluating
debris flow susceptibility [23]. Ahmad et al. [24] used Logistic Regression (LR), Shannon
Entropy (SE), Weights-of-Evidence (WoE), and Frequency Ratio (FR) models to assess
the geohazards susceptibility along the Upper Indus Basin; the results showed that the
Logistic Regression model performed the best of all the models. Pal et al. [25] selected
an ensemble of Bayesian generalized linear model (BGLM), sparse partial least squares
(SPLS), boosted tree (BT), and random forest (RF) algorithms to evaluate debris flow and
landslide hazards in Iran. Ciccarese et al. [26] put forward Frequency Ratio [FR], Weight of
Evidence [WOE] and Logistic Regression [LR] models to map the debris flow hazard in
Italy. Vianello et al. [27] used the Rock Engineering System (RES) method for debris flow
susceptibility mapping in the Western Italian Alps.

Although there are many debris flow susceptibility assessment models, how to choose
the model suitable for the study area is the most important [28]. Based on field investigation,
remote sensing interpretation and historical data, the catchment unit was selected as the
basic mapping unit in this research. After reading a large amount of scholarly literature on
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debris flow susceptibility assessment, rainfall, elevation, slope and another 11 factors were
chosen to establish the FR, ACA–PCA–FR, SVM and LR models, and finally the debris flow
susceptibility mapping results were obtained. The results show that the SVM model has
the best performance among the four models, and the AUC value of the SVM model is the
largest, which is 0.889. The result verifies that the SVM model has strong adaptability to
small simple data and is very suitable for the evaluation of geological disasters. Finally,
according to the results of the SVM model, the study area is divided into five regions, which
are very low, low, moderate, high and very high zones, and accounted for 22.31%, 25.04%,
17.66%, 18.85% and 16.14%, respectively, of the total study area. Combined with the actual
investigation and relevant data, the susceptibility assessment results obtained in this paper
are reliable and can provide better help for disaster prevention and reduction in this region.

2. Study Area

The study area is located in the mountainous area of Changping District, which is
located in the northwest of Beijing. The southernmost part of Changping district is only
40 km away from downtown Beijing. Changping District gradually forms a gentle slope
zone from northwest to southeast, with mountains and half mountains in the west and
north, and plains in the southeast, as presented in Figure 1 [29]. Changping District has
a warm-temperate, semi-humid continental monsoon climate. Due to climate influence,
the distribution of rainfall time is uneven in the study area. The average annual rainfall is
584.2 mm and is concentrated in summer. The rainfall from June to August is 443.3 mm,
accounting for 76% of the rainfall. The temperature and rainfall show similar change laws.
The average temperature of Changping District for many years has been 11.5–11.8 ◦C. The
coldest month is January, with an average temperature of−4.1 ◦C. The hottest month is July,
with an average temperature of 25.7 ◦C. Dolomite, granite, andesite, sandstone and alluvial
diluvium are mainly exposed in the study area, as presented in Figure 2. The strength
of rock mass is affected by fault and weathering, and broken rock blocks are produced.
According to relevant data records, a large amount of rainfall in a short periodis the main
cause of debris flow outbreak in the study area, and geological and geomorphic conditions
are the basic conditions for the debris flow outbreak.

According to historical debris flow gully data, 43 debris flow gullies were investigated
in this study, with a maximum area of 5.79 km2 and a minimum area of 0.10 km2. In the
field survey, the vegetation in the study area is relatively lush. There are loose rocks in
the gully, mainly from the broken rocks on both sides of the debris flow gully. There are
several collapses on the slopes on both sides. There are some villages scattered in the study
area, and the population density is relatively low. However, a quarry was found in the
survey, which needs attention. The basic situation of debris flow gullies during the field
investigation is presented in Figure 3. The basic data of 43 debris flow gullies can be found
in Table A1 of Appendix A.

According to incomplete statistics, from 1950 to 1999, there were more than 200 debris
flows in 29 times in Beijing, which killed 515 people and destroyed more than 8200 houses,
as presented in Figure 1. On average, a disastrous debris flow occurred every 1.8 years.
From 21 to 22 July 2012, most regions in China suffered heavy rain, including Beijing
and its surrounding areas, which suffered the strongest rainstorm and flood disaster in
61 years. According to survey data, the rainstorm caused 79 deaths, 10,660 houses collapsed,
1.602 million people were affected, and the economic loss was 11.64 billion yuan [30].
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Figure 1. Debris flow distribution in Beijing and geographical location of study area. (a) The location
of the research area in the whole of Beijing; (b) The location of the research area in the whole of China.
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Figure 2. The geological and tectonic map of the study area. 

 

Figure 3. Field investigation in the study area. (a) Waste broken slag; (b) loose material source in 
the channel; (c) water erosion in the channel; (d) small collapse on both sides of the channel. 
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Figure 2. The geological and tectonic map of the study area.

Figure 3. Field investigation in the study area. (a) Waste broken slag; (b) loose material source in the
channel; (c) water erosion in the channel; (d) small collapse on both sides of the channel.

3. Materials and Methods
3.1. Modeling Flow Chart

The debris flow susceptibility assessment mainly includes four processes: debris
flow extraction and cataloging, model building, susceptibility mapping and result verifi-
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cation [31]. Among them, the establishment of the debris flow susceptibility assessment
model is very important, which is directly related to the scientific reliability of debris flow
assessment results. According to the historical debris flow disaster point data, this paper
investigated 43 known debris flow gullies in detail, based on field surveys and the 3S
technique, and also used the Borderline-SMOTE algorithm to generate 43 non-debris flow
trenches [32], and established four models, FR, ACA–PCA–FR, SVM and LR, respectively.
Then, the susceptibility assessment result chart was obtained according to the established
model. Finally, the model was compared and verified by receiver-operating characteristic
curve (ROC) and area under curve (AUC) values. The modeling flow chart of this research
is presented in Figure 4.

Figure 4. The modeling flow chart of this research.

3.2. Mapping Unit

The previous research on debris flow susceptibility mostly takes the valley watershed
as the natural catchment basin [33]. Considering that the formation area and circulation
area of debris flow in the study area are not distinguished, and the distribution of material
sources is relatively wide, the use of the catchment unit as the evaluation unit can flexibly
reflect the regional hydrological characteristics and surface topography by adjusting the
water collection, and the evaluation results cover the whole area, with a wider application
range [34]. At present, in the study of debris flow, relevant scholars have selected catchment
units and achieved good results [35]. Thus, this research selects the catchment unit as the
basic mapping unit. The main steps to extract the catchment units in the study area are as
follows: (1) Carrying out hydrological analysis on DEM dataand dividing the catchment
units according to different catchment volumes; (2) Comparing the terrain conditions and
combining with the field investigation, finding the most practical extraction threshold;
(3) Through manual comparison and identification, adjacent units are merged to obtain the
modified division results. In this study, 5000, 10,000, 15,000 and 20,000 were, respectively,
set as the thresholds for water-catchment extraction. After comparing the results, it was
found that the watershed units divided when the threshold was 10,000 were the most
reasonable. Therefore, 10,000 was selected as the extraction threshold, and the study area
was, finally, divided into 273 catchment units.
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3.3. Determination of Causative Factors

The number of factors that affect the development of debris flow is large and complex,
and the factors are interrelated and interact with each other [36]. The causative factors of
debris flow in this paper are mainly based on the distribution and development status of
debris flow disasters in the study area. After referring to a large number of susceptibility
assessment documents, 11 impact factors are selected, including elevation (H), slope, plane
curvature (Pl.Cv), profile curvature (Pr.Cv), roundness (Rd), geomorphic information
entropy (GIE), TWI, SPI, TCI, NDVI and rainfall (Rf). The elevation data is from the
digital elevation data (DEM) of 91 Weitu software; with a resolution of 7.3 m × 7.3 m,
the elevation directly reflects the topographic relief changes in the study area, and to a
certain extent, reflects the changes in valleys, vegetation and the state of deposits [37]. The
slope is one of the important factors affecting the occurrence of debris flow. In general,
the probability of debris flow occurring in the area with a steep terrain slope is greater
than that in the area with a gentle terrain slope. Secondly, the terrain slope also affects
the distribution, migration and accumulation of material sources on the slope, as well as
the erosion of runoff on the slope [38]. The slope can be extracted from DEM. Pl.Cv and
Pr.Cv represent the concavity and convexity of the terrain surface, which indirectly affect
the development range of debris flow [39]. When the Pl.Cv value is positive, it indicates
that the terrain surface is convex upwards, while negative values indicate that the terrain is
concave downwards. When the value is 0, the surface is horizontal. Pr.Cv is opposite to the
plane curvature. Pl.Cv and Pl.Cv can be extracted from DEM. Roundness can be used to
reflect the shape characteristics of debris flow basins [40]. It refers to the ratio of the area of
a basin to the area of a circle with the same circumference, which can be calculated by the
following equation:

Rd =
4πA

L2 (1)

where Rd is the roundness of the watershed; A is the area of each catchment unit; and L is
the week of each catchment unit. In 1899, Davis et al. [41] put forward the theory of the
geomorphic cycle and believed that the evolution process of the surface could be divided
into three stages: initial uplift stage, weathering erosion stage and stable stage. These
three stages were defined as the young, middle-aged and old age of watershed evolution,
respectively. Ai et al. [42] combined analogical information entropy and the Straler integral
theory, and proposed the calculation method of geomorphic information entropy GIE:

S =
Gmean − Gmin

Gmax − Gmin
(2)

GIE = S − lnS − 1 (3)

where S is the Straler integral value. Gmean is the average elevation of the small watershed;
and Gmax and Gmin are the highest and lowest elevation values of the small watershed,
respectively. The value of GIE is the same as the Straler integral value, which can reflect the
development stage of the watershed. The larger the value is, the more stable the basin is;
otherwise, the more intense the erosion is. When GIE < 0.111, the watershed development
stage is juvenile; when 0.111 < GIE < 0.400, the development stage of the watershed is the
prime period; when GIE > 0.400, the watershed development stage is the old age stage.
The topographic wetness index (TWI) is defined as the theoretical measurement of flow
accumulation and soil moisture at a point in the watershed [43]. Topographic moisture
indices are commonly used to quantify topographic control over hydrological processes
and as indicators of soil conditions and sediment and material accumulation. Therefore,
debris flow susceptibility can be estimated as a function of the response of topography to
hydrology in a region. Beven and Kirkby et al. [44] (1979) proposed the following formula
to calculate TWI:

TWI = ln(
As

tans
) (4)
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SPI = As × tans (5)

TCI = k × lnAs (6)

where As is the specific catchment area; S is slope Angle; k is curvature; and TWI, SPI and
TCI are dimensionless exponents.The stream power index (SPI) reflects the erosion ability
of water flow to soil [45]. The higher the SPI value, the more the runoff concentration
may lead to soil erosion, and the greater the probability of debris flow. The topographic
characteristic index (TCI) mainly represents the migration ability of the river, to reflect the
possibility of debris flow [46]. Rainfall is the most important factor for the formation of
debris flow in the study area [47]. According to the historical debris flow disaster data, the
occurrence of debris flow in the study area is mainly caused by continuous heavy rainfall in
a short period. Therefore, this paper obtained the 24 h maximum rainfall data of the study
area through Beijing Changping hydrological stations. Then, the rainfall factor map was
obtained by the Kriging interpolation method in the Arcgis10.5. The Normalized Difference
Vegetation Index (NDVI) reflected the size of the vegetation cover density in the study
area [48]. The larger the NDVI value, the better the vegetation on the surface, which can
effectively preserve the soil and water, so the more unfavorable it is to the occurrence of
debris flow. The NDVI data used in this paper were acquired from Landsat8 OLI images
with a resolution of 30 m. The spatial distribution of impact factors in this study area is
presented in Figure 5.

3.4. Methods
3.4.1. Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) carries out the multi-criteria decision analysis
method of relative importance calculation by decomposing all relevant elements in the
whole process of weighting [49]. At present, the AHP method has been widely used
in geological hazard mapping. When the AHP method is used to evaluate the risk of
geological disasters, the corresponding hierarchical model should be established first. Then,
the importance of the two influencing factors is compared subjectively and a judgment
matrix is established. The judgment matrix can be expressed as:

A =
(
aij
)
=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (7)

where A is the judgment matrix; aij is the result of the comparison between the importance
of factor i and factor j, which has the following characteristics:

aij =
1
aji

(8)

The relative importance of each factor can be rated on a scale of 1 to 9, from less im-
portant to more important. Finally, the following formula is used to check the consistency:

CI =
λmax − n

n− 1
(9)

CR = CI/RI (10)

where CR is the random consistency ratio, when CR < 0.1, the consistency test passes; CI is
the consistency index; n is the order of the judgment matrix; λmax is the largest eigenvalue
of the judgment matrix. RI is the average random consistency index, as shown in Table 1.
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Figure 5. Maps showing causative factors in this study area with GIS.

Table 1. Average random consistency indicator value table.

n 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

3.4.2. Frequency Ratio (FR)

Frequency ratio (FR) is a binary statistical method used to calculate the probability
relationship between the dependent variable and the independent variable, and it is a
simple and effective zoning model for the debris flow hazard. Secondly, the frequency
ratio method can also be used for multi-classification spatial data prediction [50]. This
method determines the correlation between the hazard degree of debris flow and different
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evaluation indices by calculating the FR value. When the FR value is greater than 1, it
indicates that the correlation between the debris flow risk degree and the evaluation index
is high; when the FR value is less than 1, it indicates that the correlation between the
debris flow risk degree and the evaluation index is small. The FR value can be calculated
according to the following formula:

FR =
n/N
m/M

(11)

where n is the number of debris flow in the subinterval of the evaluation index; N is the
total number of debris flow in the study area; m is the number of grids occupied by each
evaluation index subinterval; and M is the total number of grids in the study area.

3.4.3. Principal Component Analysis (PCA)

In the research of practical problems, people always hope to use the factors involved in
the problem as much as possible, in order to avoid the problem of unreliable analysis results
due to insufficient information. However, the more complicated the consideration problem
becomes, the higher the requirement for calculation and modeling analysis. This can also
lead to a large amount of redundant information leading to unreliable results, so before
establishing a model for data preprocessing, people remove the correlation between sample
characteristic dimensions. PCA is a common method of data preprocessing, and it is used
to process high-dimensional data in many fields [51]. When processing high-dimensional
data, it can be represented by fewer principal components, and the dimensionality of
sample data can be reduced under the premise of little data loss, to greatly simplify the
cost of data calculation and research.

3.4.4. Support Vector Machine (SVM)

Support Vector Machine (SVM) is based on statistical learning theory [52]. It has
the following advantages: (1) low requirements of data volume; (2) strong generalization
ability; (3) strong adaptability to high-dimensional samples; and (4) strong learning ability
and fast convergence. By transforming each evaluation index from low-dimensional space
to high-dimensional space, it realizes the linear segmentation of data. By this method,
nonlinear problems in low-dimensional space can be analyzed and evaluated. SVM is
widely used in the research of debris flow hazard zoning because of its low requirement for
data volume [53–59].

3.4.5. Logistic Regression (LR)

The main idea of the logistic regression (LR) model is to determine the possibility of
debris flow in the future after converting each factor into a logical variable [60–65]. Logistic
regression uses the maximum likelihood to find the best-fit function. The simplified logistic
regression method is shown as follows:

P =
1

(1 + e−y
) (12)

where P is the sensitivity index of debris flow, whose value is between 0 and 1. The
larger the p-value, the greater the possibility of debris flow. y is the weighted sum of each
evaluation index, which can be expressed as follows:

y = c0 + c1x1 + c2x2 . . . + cjxj (13)

where c0 is a constant term, c1, c2, . . . , cj is the logistic regression coefficient; x1, x2, . . . , xj
is the value of each evaluation index.
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4. Result Analysis
4.1. Calculation Results ofWeights

The main step of the ACA–PCA–FR model is to obtain the weight of 11 influencing
factors through the combination of AHP and PCA. FR is used to obtain the weight of each
subclass in each influencing factor. Finally, the susceptibility map is obtained by stacking
all factor maps. Based on the historical data and field investigation results of the research
area, this paper ranked the 11 influencing factors in order of importance, Rf > H > slope >
Pl.Cv > Pr.Cv > Rd > GIE > TWI > TCI > SPI > NDVI. The established judgment matrix is
shown in Table 2.

Table 2. Judgment matrix of impact factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Weight

X1 1 2 3 4 4 5 6 5 6 7 3 0.260
X2 1/2 1 2 3 3 4 2 2 3 3 3 0.154
X3 1/3 1/2 1 2 2 3 2 3 3 4 2 0.118
X4 1/4 1/3 1/2 1 2 2 3 2 3 2 3 0.095
X5 1/4 1/3 1/2 1/2 1 2 3 3 2 3 2 0.084
X6 1/5 1/4 1/3 1/2 1/2 1 2 2 3 2 3 0.066
X7 1/6 1/2 1/2 1/3 1/3 1/2 1 2 3 3 2 0.060
X8 1/5 1/2 1/3 1/2 1/3 1/2 1/2 1 2 3 4 0.055
X9 1/6 1/3 1/3 1/3 1/2 1/3 1/3 1/2 1 4 3 0.044
X10 1/7 1/3 1/4 1/2 1/3 1/2 1/3 1/3 1/4 1 2 0.031
X11 1/3 1/3 1/2 1/3 1/2 1/3 1/2 1/4 1/3 1/2 1 0.033

X1 = Rf, X2 = H, X3 = slope, X4 = Pl.Cv, X5 = Pr.Cv, X6 = Rd, X7 = GIE, X8 = TWI, X9 = TCI, X10 = SPI, X11 = NDVI.

Through calculations, the consistency index CI = 0.1208 and the consistency ratio
CR = 0.0795 were obtained. Since CR < 0.10, the consistency of the judgment matrix A was
acceptable.

The objective weights can be obtained by AHP. The data of 11 influencing factors
of 273 water catchment units in the study area were imported into the SPSS software for
principal component analysis, and the weights of 11 influencing factors were calculated
by the software, as shown in Table 3. Finally, the combined weight value is obtained by
averaging the weights obtained by the two methods. It can be seen from the results that the
combined weight is more reasonable than the weight value obtained by AHP and PCA, as
shown in Figures 6 and 7.

Table 3. Results of combined weights of each impact factor.

Factors
Weight

AHP PCA Average

Rf 0.260 0.083 0.172
H 0.154 0.101 0.127

Slope 0.118 0.091 0.104
Pl.Cv 0.095 0.082 0.088
Pr.Cv 0.084 0.079 0.082

Rd 0.066 0.092 0.079
GIE 0.060 0.086 0.073
TWI 0.055 0.105 0.080
TCI 0.044 0.099 0.072
SPI 0.031 0.088 0.059

NDVI 0.033 0.093 0.063

4.2. Distribution of Debris Flow in Different Classes of Factors

In the process of FR and ACA–PCA–FR modeling, it is necessary to count the ratio
of the debris flow grid number in each category and the ratio of each category to the total
grid number in each influencing factor. In this paper, each influencing factor is divided into
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six categories according to the natural discontinuous method, and the frequency ratio of
each subcategory of each influencing factor is obtained through the distribution of 43 debris
flow trenches investigated in the field, as shown in Figure 8 and Table 4.The FR model is
used to make a statistical calculation of the frequency ratio method for 11 evaluation factors
by using the probability statistics method.Then, it makes a superposition of the evaluation
factors to get the debris flow sensitivity susceptibility map.

Figure 6. Results of combined weights of each impact factor.

Figure 7. Weights of each impact factor.

4.3. Correlation Analysis

Before the susceptibility assessment of debris flow, many studies carried out indepen-
dent tests for the evaluation indices selected. However, many susceptibility assessment
models are sensitive to the multicollinearity of evaluation indices, such as the LR model.
The linear correlation of each evaluation index will increase the prediction error of debris
flow susceptibility assessment. Some studies use independent tests to test the mutual
independence of each evaluation index [66]. For example, by using the variance inflation
factor (VIF) and the conditional independence test [67], evaluation indices with high linear
correlation can be proposed. However, compared with these methods, the PCA method
can also eliminate the multicollinearity problem among evaluation indices, and has less
information loss on the original evaluation indices, that is, the principal components ob-
tained by this method are obtained through all the pre-selected price indices instead of
reducing the dimension by directly eliminating some evaluation indicators. Therefore, the
PCA method was used to reduce the dimension of the pre-selected evaluation indices, and
the re-selected evaluation indices were transformed to make them independent of each
other. Then, the sensitivity zoning of debris flow is carried out by using the evaluation
index after the dimensionality reduction to eliminate the influence of linear correlation
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among factors on the prediction results.The correlation matrix of impact factors is shown
in Table 5.

Figure 8. Distribution of debris flow in different classes of factors.
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Table 4. The frequency ratio of different classes of influence factors.

Factor Class
Study Area Debris Flows Area

FR
Count Ratio (%) Count Ratio (%)

Elevation
(m)

<246 1,763,582 12.77 32,373 3.54 0.278
246–352 2,943,221 21.30 32,857 3.60 0.169
352–447 2,749,383 19.90 232,606 25.47 1.280
447–571 2,615,987 18.94 314,927 34.48 1.821
571–773 2,147,022 15.54 164,597 18.02 1.160
>1066 1,596,180 11.55 136,007 14.89 1.289

Slope (◦)

<10 355,183 2.57 328 0.04 0.014
10–18 1,706,124 12.35 5503 0.60 0.049
18–22 2,289,905 16.58 113,069 12.38 0.747
22–25 3,142,477 22.75 232,494 25.45 1.119
25–28 3,564,604 25.80 441,176 48.30 1.872
>28 2,757,082 19.96 120,797 13.23 0.663

Pl.Cv

<0.020 989,053 7.16 34,787 3.81 0.532
0.020–0.034 2,834,110 20.51 278,744 30.52 1.488
0.034–0.046 3,350,592 24.25 357,437 39.13 1.614
0.046–0.057 4,254,670 30.80 204,989 22.44 0.729
0.057–0.078 2,036,610 14.74 35,319 3.87 0.262

>0.078 350,340 2.54 2091 0.23 0.090

Pr.Cv

<0.0018 776,090 5.62 34,546 3.78 0.673
0.0018–0.033 2,850,849 20.64 135,740 14.86 0.720
0.033–0.046 4,174,347 30.22 454,510 49.76 1.647
0.046–0.057 3,751,047 27.15 235,962 25.83 0.951
0.057–0.078 1,892,812 13.70 50,186 5.49 0.401

>0.078 370,230 2.68 2423 0.27 0.099

TWI

<4.7 3,530,258 25.55 334,721 36.65 1.434
4.7–4.9 3,486,820 25.24 381,479 41.77 1.655
4.9–5.1 3,477,971 25.17 161,005 17.63 0.700
5.1–5.6 2,304,522 16.68 35,393 3.88 0.232
5.6–6.5 748,518 5.42 441 0.05 0.009

>6.5 267,286 1.93 326 0.04 0.018

SPI

<321 7,044,594 50.99 681,341 74.6 1.463
321–652 3,294,696 23.85 197,750 21.65 0.908

652–1187 1,661,894 12.03 23,440 2.57 0.213
1187–2079 626,998 4.54 8392 0.92 0.202

2079–32,259 1,063,258 7.70 353 0.04 0.005
>32,259 123,935 0.90 2091 0.23 0.255

TCI

<−1.76 1,830,826 13.25 201,634 22.08 1.666
−1.76–1.6 2,956,309 21.40 291,421 31.91 1.491
−1.6–1.44 3,267,552 23.65 228,035 24.97 1.056
−1.44–1.24 2,652,379 19.20 170,634 18.68 0.973
−1.24–0.87 2,401,896 17.39 21,315 2.33 0.134

>−0.87 706,413 5.11 328 0.04 0.007

Roundness

<0.23 1,149,635 8.32 576 0.06 0.008
0.23–0.32 2,869,935 20.77 249,892 27.36 1.317
0.32–0.42 2,807,727 20.32 174,583 19.11 0.941
0.42–0.55 2,830,499 20.49 110,037 12.05 0.588
0.55–0.81 2,530,300 18.32 188,650 20.65 1.128

>0.81 1,627,279 11.78 189,629 20.76 1.763

GIE

<0.33 1,518,871 10.99 151,473 16.58 1.508
0.33–0.43 4,122,934 29.84 328,981 36.02 1.207
0.43–0.5 3,229,952 23.38 354,525 38.82 1.660
0.5–0.56 2,467,237 17.86 74,420 8.15 0.456

0.56–0.64 1,953,781 14.14 3199 0.35 0.025
>0.64 522,600 3.78 769 0.08 0.022
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Table 4. Cont.

Factor Class
Study Area Debris Flows Area

FR
Count Ratio (%) Count Ratio (%)

Rainfall
(mm)

<74.5 2,053,685 14.87 12,687 1.39 0.093
74.5–80.4 2,559,075 18.52 293,259 32.11 1.733
80.4–86.1 2,344,335 16.97 126,493 13.85 0.816
86.1–94.2 2,629,605 19.03 255,501 27.97 1.470
94.2–103.4 1,974,843 14.29 104,323 11.42 0.799

>103.4 2,253,822 16.31 121,104 13.26 0.813

NDVI

<0.35 454,500 3.29 0 0 0.000
0.35–0.38 2,669,162 19.32 122,156 13.37 0.692
0.38–0.39 3,380,910 24.47 315,819 34.58 1.413
0.39–0.41 3,899,555 28.23 284,587 31.16 1.104
0.41–0.43 2,474,058 17.91 150,116 16.44 0.918

>0.43 937,190 6.78 40,689 4.45 0.657

Table 5. Parameter correlation matrix.

Factors GIE H NDVI Pl.Cv Pr.Cv Slope Rf SPI TCI TWI Rd

GIE 1.000 −0.550 −0.317 0.199 0.188 −0.727 0.191 0.166 0.658 0.696 −0.257
H −0.550 1.000 0.155 −0.170 −0.139 0.603 −0.535 −0.115 −0.488 −0.524 0.210

NDVI −0.317 0.155 1.000 −0.029 −0.041 0.378 −0.277 −0.116 −0.383 −0.432 0.116
Pl.Cv 0.199 −0.170 −0.029 1.000 0.980 −0.112 0.133 0.277 −0.019 −0.040 −0.032
Pr.Cv 0.188 −0.139 −0.041 0.980 1.000 −0.089 0.105 0.311 −0.046 −0.056 −0.024
Slope −0.727 0.603 0.378 −0.112 −0.089 1.000 −0.299 −0.005 −0.821 −0.904 0.388

Rf 0.191 −0.535 −0.277 0.133 0.105 −0.299 1.000 −0.143 0.183 0.130 −0.041
SPI 0.166 −0.115 −0.116 0.277 0.311 −0.005 −0.143 1.000 0.078 0.132 −0.021
TCI 0.658 −0.488 −0.383 −0.019 −0.046 −0.821 0.183 0.078 1.000 0.923 −0.300
TWI 0.696 −0.524 −0.432 −0.040 −0.056 −0.904 0.130 0.132 0.923 1.000 −0.362
Rd −0.257 0.210 0.116 −0.032 −0.024 0.388 −0.041 −0.021 −0.300 −0.362 1.000

5. Discussion

In this paper, the natural break point method was used to classify the susceptibility
assessment results of debris flow obtained by the four models into five susceptibility areas,
which were very low, low, moderate, high and very high susceptibility areas. Finally, the
susceptibility assessment map was obtained, as shown in Figure 9. The percentage of
the five susceptibility areas in the total area can be obtained by extraction, as shown in
Figure 10. As can be seen from the figure, the susceptibility results of FR and ACA–PCA–FR
are very similar. On the whole, the areas of high and very high susceptibility areas in the
two methods are large, accounting for about 50% of the total area. The 43 debris flow
gullies in the field survey are all located in the highly sensitive area, which is reasonable.

SVM and LR are two machine learning languages widely used in the evaluation of
geological hazards. In this study, the results obtained by SVM and LR models are similar.
On the whole, the areas of high and very high susceptibility areas in these two methods
are significantly smaller than the traditional weight assignment methods, accounting for
34.99% and 29.95% of the total area, respectively. However, the 43 debris flow gullies in the
field survey are located in the high susceptibility area, so it is also reasonable.

However, in the process of field investigation, the vegetation in the study area is very
dense, and the sources in the gullies are relatively few. There are relatively more sources
in the gullies with a large area. Therefore, from the perspective of field investigation, the
results obtained by SVM and LR models are more reasonable than the sensitivity results
obtained by FR and ACA–PCA–FR models. In order to further verify the accuracy of the
four sensitivity models, ROC curves were drawn, and AUC values were calculated for the
susceptibility results obtained from the four models.
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Figure 9. Debris flow susceptibility maps produced by four models.

Figure 10. Distribution of the different debris flow susceptibility classes from the four models.
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The ROC curve, also known as the receiver characteristic curve, is widely used in
medical laboratories and disease prediction [68]. The individual of each disaster point
and its evaluation factor subgroup is equivalent to the subject in the medical laboratory.
The occurrence and non-occurrence of debris flow are taken as two categories (positive
category and negative category) for analysis [69]. The ROC curve and the area under the
curve (AUC) corresponding to each mode were obtained. AUC is the standard to judge the
advantages and disadvantages of the four models used. When AUC = 0.5, it means that
the model results have no reference value, while when it is less than 0.5, it means that the
model does not conform to the real situation. When AUC is greater than 0.5, the closer its
value is to 1, the more accurate the model effect is.

The ROC curve and AUC value drawn by the four models are shown in Figure 11. It
can be seen from Figure 11 that the prediction accuracy of the SVM model is better than
the other three models, with the largest AUC value of 0.889, followed by LR (AUC = 0.842),
ACA–PCA–FR (AUC = 0.829), FR (AUC = 0.797). The results show that SVM has low
requirements on the amount of data and can still maintain very high accuracy in the case
of a small sample data, which is very suitable for the evaluation of geological disasters.
Meanwhile, the AUC values of the SVM and LR models are larger than those of LR
and ACA–PCA–FR, indicating that the performance of the machine learning algorithm
is significantly better than that of the traditional weight method. In addition, the main
difference between FR and ACA–PCA–FRis that when determining the weight of each
influence factor, the FR model adopts the frequency ratio method, while ACA–PCA–FR
determines the weight through the combination of the subjective weight determined by
AHP and objective weight determined by PCA. According to the AUC value, it can be
concluded that the method of subjective and objective combination weighting is better than
the method of objective weighting.

Figure 11. The ROC curves of four debris flow susceptibility models.

According to the above results, the susceptibility results obtained from the SVM model
were taken as the final evaluation results, among which the very low, low, moderate, high
and very high susceptibility zones accounted for 22.31%, 25.04%, 17.66%, 18.85% and
16.14%, respectively, of the total area of the study area.

The main advantages of logical regression are simple implementation, wide applica-
tion, small amount of calculation, fast speed, low storage resources, and the ability to solve
multicollinearity problems. The main disadvantage is that it is easy to be under-fitted, and
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the accuracy is generally not high. It can not handle a large number of multi-class features
or variables well. For nonlinear features, it needs to be converted.

The main advantages of the support vector machine are high classification accuracy,
accurate classification in small sample size, good generalization ability, and easy to solve
nonlinear problems, classification and regression problems of high-dimensional features.
The main disadvantage is that there is no universal and effective standard for the selection
of kernel functions of support vector machines. At the same time, because there is no
reliable sample selection mode, the sample selection method also has a great impact on the
evaluation results.

Compared with LR model, SVM model has better accuracy and reliability, and also has
better classification ability: SVM tends to divide more watershed units into unstable units,
and the over-prediction characteristics of SVM should be fully considered in practical work;
however, LR is relatively conservative, and tends to predict more basin units as stable units,
and it is easier to divide dangerous areas into stable areas. Therefore, the characteristics
of the two models should be fully considered in practical work. Both models have certain
limitations, and the single model has defects in varying degrees. In the study area, for the
advantages, disadvantages and application conditions of different models, using multiple
models to solve problems will also be a problem that needs further study in the future.

Comparing this paper with the research of Ahmad et al. [24], the theme of the two
articles is to compare with machine learning and mathematical statistics methods to assess
debris flow susceptibility. Among them, there are FR model and LR model in both articles,
and seven of the influence factors used are the same. Both articles have concluded that
the machine learning model is better than the mathematical statistics model, which also
verifies that the conclusion of this paper is indeed correct. The difference is that this paper
also makes a deeper comparative study between different machine learning models and
different mathematical statistical models, in order to better apply them to the evaluation of
geological hazards.

6. Conclusions

Based on field investigations and the 3S technology, this research selects 11 influence
factors, such as elevation and slope, and selects the catchment unit that is suitable as the
basic mapping unit. By setting different flow thresholds for comparative research, the study
area is finally divided into 273 catchment units. Then, four models, R, ACA–PCA–FR, LR
and SVM, are established, respectively. In the LR and SVM models, 43 debris flow gullies
surveyed in the field are taken as known debris flows. The same number of 43 non-debris
flow gullies were obtained based on the Borderline-SMOTE algorithm. These two kinds of
data were substituted into the model as test data. Finally, the sensitivity evaluation results
of the study area were obtained, and the results were verified by the ROC curve and AUC
value, and the following conclusions were drawn:

1. Among the four models, the SVMmodel has the best performance and the highest
prediction accuracy, with AUC = 0.889, followed by LR (AUC = 0.842), ACA–PCA–FR
(AUC = 0.829) and FR (AUC = 0.797). The results show that SVM can still maintain
very high prediction accuracy in the case of small sample data, learning can be strong
and have a fast convergence, and has strong adaptability to high-dimensional samples,
which is very suitable for the evaluation and analysis of geological disasters.

2. Among the four models, the results of the FR and ACA–PCA–FR models are relatively
similar. These two methods are traditional weight evaluation methods. According
to the field survey results and AUC values, the accuracy of these two methods is
relatively low. The results of LR and SVM, as two widely-used machine learning
algorithms, are similar, more consistent with the field survey results, and the AUC
value is relatively high, so in this study, the machine learning algorithm is more
accurate and reasonable.

At the same time, this paper also has some shortcomings. Because it is difficult to
obtain historical data and the number of known debris flow gullies is small, this directly
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affects the reliability of machine learning algorithms. However, there is no doubt that more
reasonable and efficient algorithms can be put forward to assess debris flow susceptibility
in the future.

Author Contributions: Formal analysis, F.G.; funding acquisition, J.C.; methodology, F.G.; project
administration, J.C.; software, Y.L.; supervision, Q.W.; validation, F.G.; visualization, Y.Z.; writing—
original draft, F.G.; writing—review and editing, J.C., X.S. and Q.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the key project of the National Natural Science Foundation of
China (Grant no. U1702241).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank anonymous reviewers for their comments and
suggestions, which helped to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The basic statistics of 43 debris flow gullies have been given in Table A1.

Table A1. The basic statistics of 43 debris flow gullies.

No. H (m) Slope (◦) Pl.Cv Pr.Cv TWI SPI TCI Rd GIE Rf NDVI

1 243.65 20.13 0.04 0.18 5.04 51.76 −1.55 0.42 0.66 85.36 0.41
2 505.38 25.92 0.05 0.04 4.63 219.43 −1.78 0.37 0.42 89.65 0.38
3 1038.43 25.57 0.04 0.06 4.67 206.57 −1.84 0.43 0.21 75.51 0.39
4 602.15 26.64 0.03 0.06 4.70 381.37 −1.90 0.46 0.39 90.60 0.38
5 931.01 26.22 0.04 0.05 4.71 135.54 −1.74 0.43 0.21 77.37 0.40
6 749.67 30.09 0.05 0.00 4.56 219.89 −1.58 0.42 0.47 80.98 0.44
7 1008.40 25.66 0.01 0.01 4.84 273.88 −1.46 0.43 0.21 77.23 0.41
8 967.57 27.50 0.03 0.06 4.77 286.41 −1.65 0.41 0.31 80.01 0.41
9 869.67 26.78 0.03 0.06 4.72 156.73 −1.74 0.45 0.52 80.43 0.41

10 784.33 26.03 0.00 0.04 4.48 80.38 −2.18 0.45 0.53 80.58 0.41
11 437.44 24.66 −0.02 0.09 4.81 119.62 −2.06 0.56 0.47 87.57 0.46
12 269.94 28.29 −0.01 0.08 4.52 148.31 −2.30 0.68 0.46 79.67 0.48
13 263.18 27.44 −0.06 0.04 4.54 153.34 −2.46 0.43 0.45 79.76 0.48
14 418.28 27.99 0.06 −0.01 4.54 309.73 −1.56 0.38 0.36 78.21 0.44
15 738.46 26.25 −0.02 0.09 4.70 160.45 −2.17 0.63 0.19 75.40 0.46
16 820.86 27.17 0.04 0.02 4.64 187.79 −1.68 0.63 0.19 76.35 0.41
17 546.49 27.14 0.00 0.00 4.54 123.96 −1.85 0.39 0.36 74.29 0.46
18 392.30 27.96 0.01 0.07 4.72 295.73 −1.97 0.46 0.35 78.19 0.43
19 307.44 28.72 −0.02 0.07 4.49 171.67 −2.53 0.68 0.46 79.39 0.46
20 630.33 27.45 0.03 0.06 4.70 213.02 −1.87 0.50 0.25 88.02 0.42
21 388.86 26.87 0.02 0.09 4.68 174.03 −1.96 0.43 0.39 83.89 0.43
22 565.62 29.21 0.02 0.01 4.64 568.68 −2.01 0.55 0.25 70.20 0.35
23 473.61 27.67 0.04 0.06 4.74 265.07 −1.73 0.56 0.25 85.87 0.38
24 532.11 31.21 0.02 −0.01 4.64 196.51 −1.52 0.41 0.16 82.79 0.42
25 389.12 23.22 0.05 0.06 4.73 163.41 −1.84 0.59 0.25 83.82 0.42
26 432.29 23.28 0.05 0.05 4.88 249.88 −1.75 0.57 0.33 82.15 0.40
27 598.21 26.25 −0.04 0.01 4.69 97.54 −1.89 0.45 0.29 92.20 0.36
28 532.19 27.01 0.04 0.08 4.72 246.06 −1.84 0.36 0.33 80.85 0.41
29 397.58 29.74 −0.13 0.14 4.47 137.77 −3.18 0.45 0.36 91.34 0.40
30 564.05 29.76 −0.11 0.05 4.42 108.60 −2.72 0.45 0.29 92.24 0.34
31 411.35 25.69 0.03 0.07 4.77 320.24 −1.93 0.55 0.32 94.10 0.38
32 525.73 25.93 0.07 0.08 4.70 140.00 −1.75 0.45 0.29 89.90 0.41
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Table A1. Cont.

No. H (m) Slope (◦) Pl.Cv Pr.Cv TWI SPI TCI Rd GIE Rf NDVI

33 410.43 15.58 0.07 0.04 5.21 81.75 −1.08 0.54 0.34 106.72 0.41
34 404.58 13.64 0.08 0.12 5.39 138.10 −1.26 0.48 0.34 106.59 0.41
35 461.08 25.49 0.02 0.11 4.70 123.40 −2.14 0.52 0.30 102.13 0.40
36 508.76 26.66 0.03 0.06 4.66 261.97 −1.91 0.60 0.19 102.29 0.39
37 453.55 23.81 0.02 0.04 4.97 223.28 −1.41 0.72 0.38 109.66 0.37
38 655.98 28.49 0.00 −0.02 4.67 222.83 −1.62 0.55 0.25 70.36 0.36
39 379.86 23.35 0.06 0.13 4.82 148.32 −1.74 0.55 0.34 108.49 0.40
40 387.34 20.13 0.06 0.05 4.99 117.33 −1.16 0.58 0.38 105.98 0.41
41 470.47 24.17 0.01 0.07 4.80 162.16 −1.93 0.69 0.36 102.31 0.40
42 411.80 24.66 0.02 0.03 5.03 319.65 −1.32 0.62 0.30 90.49 0.39
43 413.66 20.88 0.01 0.11 4.91 68.87 −1.87 0.70 0.32 98.69 0.43
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