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Abstract: Ferrate(VI) is a green and efficient water treatment agent for drinking and wastewater. It is
widely used in water treatment because it has multi-functional uses such as oxidation, algae removal,
disinfection, and adsorption flocculation. It does not cause secondary pollution to the environment.
This paper compares ferrate(VI) with other water treatment agents and discusses three methods of
preparing ferrate(VI). The removal, adsorption, and control of organic matter, algae, disinfection
by-products, and heavy metal ions in water when ferrate(VI) was used as an oxidant, disinfectant,
and coagulant were summarized. Ferrate(VI) has some advantages in removing toxic, harmful, and
difficult-to-degrade substances from water. Due to the disadvantages of ferrate(VI) such as oxidation
selectivity and instability, it is necessary to develop the hyphenated techniques of ferrate(VI). In
this review, three hyphenated techniques of ferrate(VI) are summarized: ferrate(VI)–photocatalytic
synergistic coupling, ferrate(VI)–PAA synergistic coupling, and ferrate(VI)–PMS synergistic coupling.

Keywords: ferrate(VI); water treatment; preparation; applications; hyphenated techniques

1. Introduction

With the rapid development of urbanization and industrialization, the demand for
commercial products has also increased dramatically. However, some unknown toxic
pollutants and their usage cause environmental issues yearly [1,2]. For example, various
micropollutants have been detected in surface water and certain new pollutants (such as
toxic hormone chemicals, skin care products, and toxins) [3,4]. Although the levels of these
pollutants in water are low, they can have a negative impact on human health, ecosystems,
and biodiversity [5,6].

Recently, the most common methods for treating pollutants in the water environment
are physical adsorption [7,8], biodegradation [9,10], and advanced oxidation [5,11]. The
physical adsorption technique is mainly used to remove pollutants from the water due to
the excellent adsorption ability of the adsorbent material, which may enrich the pollutants
in the adsorbent. There are two organic and carbon-based adsorbents [12], mostly used in
treating aqueous samples [13]. Although the adsorbed material has the advantages of low
cost and good adsorption performance, the removal of pollutants by physical adsorption
is based mainly on enrichment rather than degradation. Therefore, physical adsorption
requires secondary treatment if it is not completely removed in treating pollutants. It is
easy to cause recontamination problems, which hinders the wide application of adsorption
materials. Compared to physical adsorption, biological treatment can completely remove
contaminants. The biological treatment method is mainly based on the ability of microor-
ganisms to use water pollutants as organic carbon sources, and realize the decomposition
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and transformation of pollutants through the metabolism of the microorganisms them-
selves. However, the effect of biological treatment is easily affected by environmental
factors, the environmental requirements are high, the treatment cycle is long, and the
treatment of antibiotic-contaminated water bodies is prone to the production of resistant
bacteria and genes; additionally, there is a risk of biosafety [14]. Compared with the first
two, advanced oxidation methods produce hydroxyl radicals (·OH) with strong oxidiz-
ing capacity characteristics. Under certain reaction conditions, the pollutants are directly
mineralized or improved by oxidation, so that macromolecular refractory organic matter
is oxidized into low-toxicity or non-toxic small molecules, which has good application
prospects [15,16]. However, the advanced oxidation technique has various disadvantages
in the application of pollution removals, such as complex operation, high cost, and difficult
operating parameters. Additionally, the treatment impact is easily influenced by several
variables, and the effect is unstable [17].

Compared to the advanced oxidation method, the green chemical ferrate(VI) has
several advantages in treating pollutants from wastewater [18–20]. Ferrate(VI) is a hex-
avalent iron salt with a high redox potential that exhibits high oxidation and bactericidal
disinfection capabilities throughout the treatment process [21] and can also adsorb the
particles and cause flocculation [22]; it does not cause secondary pollution and has been
recognized as a green multi-functional water treatment agent.

This review summarizes the properties and applications of ferrate(VI), including the
preparation method of ferrate(VI) and the removal, control, and adsorption of organic
matter, algae, disinfection by-products, and heavy metal ions in water when ferrate(VI)
is used as an oxidant, disinfectant, and coagulant. At the same time, the combination of
ferrate(VI) and other substances is described, which can provide a reference for the further
application of ferrate(VI).

2. Properties of Ferrate(VI)
2.1. Structure of Ferrate(VI)

The iron valence state in ferrate(VI) is positive hexavalent, which has strong oxidation.
Among them, the UV-visible spectrum of potassium ferrate(VI) has a characteristic peak
absorption at 510 nm and 800 nm. Its Infrared Spectroscopy (IR) also has a strong absorption
peak at 800 cm−1 and a shoulder peak at 778 cm−1, which is the characteristic peak of
Fe–O bond telescopic vibration in potassium ferrite, so infrared spectroscopy can be used
to qualitatively and quantitatively determine potassium ferrate(VI). Figure 1 shows the
slightly distorted tetrahedral structure of FeO4

2− in solid ferrate(VI), determined using
X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) [23,24].
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2.2. Stability of Ferrate(VI)

The stability of ferrate(VI) is one of the problems limiting its large-scale preparation
and application. Because ferrate(VI) is poorly stable and difficult to store, most of the
current applied research on ferrate(VI) is limited to the laboratory. The storage environment
requirements for ferrate(VI) are more stringent and require low temperature and dry storage.
Once removed from the dry environment, ferrate(VI) is highly susceptible to the influence
of water molecules. Its stability will rapidly decrease and oxidative decomposition will
occur, with the following reaction Equation (1).

4FeO2−
4 + 10H2O→ 4Fe(OH)3 + 3O2 ↑ +OH− (1)

The main factors affecting the stability of ferrate(VI) include the temperature of the
solution, pH, and the coexistence of ions in the solution. The temperature has an important
influence on the stability of ferrate(VI); the higher the temperature, the faster the decompo-
sition rate of ferrate(VI) [25], so it is necessary to maintain a relatively low temperature in
the process of electrolysis and oxidation preparation of ferrate(VI). Ferrate(VI) exists in four
main forms, including H3FeO4

+, H2FeO4, HFeO4
−, and FeO4

2−. Under acidic conditions,
H3FeO4

+ and H2FeO4 are the main forms, while HFeO4
− and FeO4

2− are the main forms
under neutral or alkaline conditions. FeO4

2− is extremely unstable and easy to decompose
under an acidic environment, while FeO4

2− has strong stability when pH is controlled at
9~10. The main reaction equations for FeO4

2− under acid–base conditions are shown in
Equations (2) and (3) below.

Acidic : FeO2−
4 + 8H+ + 3e− → Fe3+ + 4H2O (2)

Alkaline : FeO2−
4 + 4H2O + 3e− → Fe(OH)3 + 5OH− (3)

In addition to the above influencing factors, the components in the ferrate(VI) solution
can also affect the rate of its decomposition. When the ferrate(VI) solution contains phos-
phate, it can hinder the decomposition rate of the ferrate(VI). At the same time, light also
has a particular influence on the stability of ferrate(VI) [23]; ultraviolet light irradiation will
accelerate the decomposition rate of ferrate(VI), so attention should be paid to avoiding
light during storage.

2.3. Oxidation of Ferrate(VI)

Ferrate(VI) is strongly oxidizing and its redox potential under acidic conditions is 2.20
V, which is higher than some common oxidants such as ozone (O3), hydrogen peroxide
(H2O2), chlorine (Cl2), chlorine dioxide (ClO2), and potassium permanganate (KMnO4) [26],
and a comparison of redox potentials are shown in Table 1.

Table 1. Redox potentials of commonly used oxidants/disinfectants.

Oxidants/Disinfectants Reaction Type E0/V

Cl2 Cl2(g) + 2e− → 2Cl− 1.358
ClO2 ClO2(aq) + e− → ClO−2 0.854

O3 O3 + 2H+ + 2e− → O4 + H2O 2.076

KMnO4
MnO−4 + 4H+ + 3e− → MnO2 + 2H2O 1.679
MnO−4 + 8H+ + 5e− → Mn2+ + 4H2O 1.507

Ferrate(VI) FeO2−
4 + 8H+ + 5e− → Fe3+ + 4H2O 2.20

FeO2−
4 + 4H2O + 3e− → Fe(OH)3 + 5OH− 0.76

It was found that the strong oxidizing property of ferrate(VI) can effectively remove
NH3, CN−, and SCN−, as well as carboxylic acid, phenol, amino acid, and organic nitrogen
compounds from water [27]. Sailo et al. [28] used ferrate(VI) to remove Bisphenol A, and
when the concentration ratio of ferrate(VI) to pollutants was increased to 3:1, the removal
rate of Bisphenol A reached 100%, and the apparent rate constant was 8.35× 102 M−1min−1.
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Additionally, with the increase in the amount of ferrate(VI) dosage, the removal effect will
also increase. At the same time, the strong oxidation of ferrate(VI) can destroy the cell wall
of bacteria and algae cells, and play a role in sterilization and algae. Zhou et al. [29] found
that ferrate(VI) pre-oxidation can remove algae cells by destroying the protective organic
layer. Therefore, ferrate(VI) is also an effective bactericidal disinfectant and algaecide. At
the same time, when used as a disinfectant, ferrate(VI) is not like disinfection by-products
(DBPs) that are harmful to the human body and produced during chlorination treatment,
such as trihalomethanes (THMs); on the contrary, ferrate(VI) can effectively control the
formation of chlorination disinfection by-products [30].

3. Preparation of Ferrate(VI)

Based on the performance and application advantages of ferrate(VI), the efficient
preparation of ferrate(VI) is also essential. At present, the preparation methods of ferrate(VI)
mainly include the dry oxidation method [31], the wet oxidation method [32], and the
electrochemical method [33]. Among them, the electrochemical method has a simple
operation process, simple preparation, and high yield [31].

3.1. Dry Oxidation

The dry oxidation method, also known as the solid-phase melting method, involves
the formation of ferrate(VI) by combining iron filings or iron compounds with caustic alkali
and peroxides (such as Na2O2) in a high-temperature environment. E. Martinez-Tamayo
et al. [34] used Na2O2 and FeSO4 to prepare sodium ferrate(VI) and then mixed it with a
saturated potassium hydroxide solution and purified it to obtain solid potassium ferrate(VI).
Talaiekhozani et al. [31] improved the reaction conditions. They found that, in the absence
of O2 and CO2, Na2O2 reacts with iron oxide at a temperature of 370 ◦C to form sodium
ferrate(VI), as shown in Equation (4). The reaction under these conditions can reduce the
possibility of explosion. L. Ninane et al. [35] reduced the cost of the preparation process
to meet the needs in the actual water. Moreover, ferrous sulfate, potassium hydroxide,
and calcium hypochlorite (or chlorine) are used as raw materials and the reaction time
is shortened. The main raw material, ferrous sulfate, is a by-product of the titanium
dioxide production process, so the cost of preparation can be reduced. The dry oxidation
method can generate large quantities of high ferrate(VI), still, it is carried out under
high temperature and high-pressure conditions, and most of the reaction processes are
exothermic, which increases the risk of explosion. The reaction also has high requirements
for the alkaline corrosion resistance of the equipment, resulting in high preparation costs
and difficulty in achieving industrial production [36].

3Na2O2 + Fe2O3
370 ◦C→ 2Na2FeO4 + Na2O (4)

3.2. Wet Oxidation

Wet oxidation is also known as hypochlorite oxidation. It is a process in which trivalent
iron ions are oxidized to ferrate(VI) using hypochlorite in a concentrated alkali solution. To
prepare a high concentration of sodium ferrate(VI) solution, a saturated KOH solution is
poured into the solution, which precipitates potassium ferrate(VI) due to its lower solubility
compared to sodium ferrate(VI). The reaction equation is shown in Equations (5)–(7) [37,38].

Fe3+ + 3OH− → Fe(OH)3 (5)

2Fe(OH)3 + 3NaClO + 4NaOH→ 2Na2FeO4 + 3NaCl + 5H2O (6)

Na2FeO4 + 2KOH→ K2FeO4 + 2NaOH (7)

As early as 1950, the preparation of ferrate(VI) using the wet method was reported [39],
and the purity also reached 96.9%, but the yield of ferrate(VI) was less than 15%. Wet
oxidation is one of the commonly used methods for the preparation of ferrate(VI) because
it uses easily available raw materials and has a simple process. However, the wet oxidation
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method also has disadvantages such as: the need for large reactors for the reaction, high
consumption of alkali, high preparation cost and low yield of ferrate(VI) [33], which makes
it challenging to use on large-scale applications. To improve the product and reduce the
cost of the preparation of ferrate(VI) by wet oxidation, further research is necessary. Tiwari
et al. [40] used strong alkali solutions of potassium hydroxide to replace sodium hydroxide,
simplifying the wet oxidation process and improving the yield and purity to 70% and 99%,
respectively. Similarly, Tong et al. [32] designed a novel reactor that can control the time
and temperature of the reaction, and the concentration of ferrate(VI) generated by the new
device, which is 7.6 × 10−2 M compared to conventional reaction units, is twice as much as
the old unit. The wet oxidation method requires the passage of chlorine gas into the reactor
to prepare a saturated hypochlorite solution, which presents specific safety hazards in the
preparation process. To address this problem, some scholars have turned their attention to
the use of persulfate ions instead of hypochlorite ions to oxidize Fe(III) to ferrate(VI) using
the free radicals generated by persulfate activation [41]. Although the purity of ferrate(VI)
prepared by the wet oxidation method reaches 96%, there are still problems of low yield
and high preparation cost, so a green and efficient preparation method is urgently needed.

3.3. Electrochemical Method

Compared with the preparation of dry and wet oxidation methods, electrochemical
methods have attracted much attention because of their simple operation, simple process,
and high product purity. The principle of this method is that under the solution condition
of strong alkali, the anode material (pure iron, cast iron, and wrought iron) is consumed,
causing the anode to undergo oxidation in the superpassivation potential region and
dissolve to form ferrate(VI). The main reaction formula in the electrolysis process is shown
in Equations (8)–(10) [42,43].

Anodereactions : Fe + 8OH− → FeO2−
4 + 4H2O + 6e− (8)

Cathodereaction : 2H2O + 2e− → H2 + 2OH− (9)

Generalreaction : Fe + 2OH− + 2H2O→ FeO2−
4 + 3H2 (10)

During the electrolytic preparation of ferrate(VI), the anode loses electrons and gener-
ates ferrate(VI). Therefore, the anode material’s composition can affect ferrate preparation
(VI). Talaiekhozani et al. [31] found that by increasing the iron anode material’s carbon
content, the prepared ferrate’s concentration and electrolytic efficiency (VI) improved. By
using iron rods with 0.9% carbon content as anodes, they achieved an electrolysis efficiency
of 70%, which was six times higher than iron rods, with only 0.08% carbon content. By
increasing the carbon content of the iron anode, small holes in the electrode are formed,
which promotes iron precipitation. In addition to the anode material’s effect on the effi-
ciency of ferrate(VI) generation, the anode morphology also affects the concentration of
ferrate(VI) generated [44]. Ding et al. [45] used a porous magnetic iron electrode as the
anode, and the results showed that the electrolysis efficiency was as high as 52.3% under the
same conditions. This porous magnetic iron electrode not only has a high carbon content,
but also contains a large number of small iron electrode pores, which are more conducive
to the precipitation of iron and help to slow down the passivation of the electrode. This
promotes the generation of high ferrate(VI). In addition, when the anode material contains
some non-metallic elements, the preparation effect can be improved. Diaz et al. [46] found
that the presence of silicon in cast iron slowed down the anodic passivation process when
studying the effect of different electrode materials on the formation of the passivation
layer during the generation of generating ferrate(VI). The concentration of lye is also very
important for the production of ferrate(VI) [47]. Sibel et al. [48] explored the effect of lye
concentration on electrolytic preparation and experimented with different concentrations
of NaOH, and the ferrate(VI) concentration increased with the increase of lye concentration.
However, the optimal concentration was 16 mol/L, and the resulting ferrate(VI) concentra-
tion was 1.98 mM. Although the higher concentration of lye can increase the concentration
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of ferrate(VI), at the same time, the increase in lye concentration will increase the viscosity
of the electrolyte, causing the electrons to overcome the resistance of the electrolyte, which
increases energy consumption, reduces the transfer efficiency, and inhibits the formation of
ferrate(VI), thereby increasing the preparation cost.

In the process of electrolysis, it is necessary to reduce costs and energy consumption.
Yang et al. [49] used a gas diffusion electrode (GDE) for cathodic electrolysis to prepare
ferrate(VI), which can increase the cathode potential and reduce the tank pressure, thereby
reducing the energy consumption in production, which is 31.96–56.67% compared to the
traditional electrolysis method. However, as the electrolysis time increases, a passivation
layer is formed on the surface of the anode, which hinders the formation of ferrate(VI) [50].
The use of periodic intermittent reverse current electrolysis instead of conventional con-
tinuous electrolysis with a DC power supply can slow down passivation. Pi et al. [51]
used periodic reverse current to prepare sodium ferrate(VI), which increased the rate of
ferrate(VI) synthesis and the concentration of the prepared sodium ferrate(VI) by 75.0%.

4. Application of Ferrate(VI) in Water Treatment

As a water treatment agent, ferrate(VI) is widely used, and Figure 2 shows a schematic
diagram of the treatment of wastewater by electrochemically prepared high ferrate [18].
Ferrate(VI) is a hexavalent iron salt with strong oxidation, and redox potential up to 2.20 V
under acidic conditions, and its oxidation performance is higher than other common strong
oxidants (such as ozone, chlorine, and potassium permanganate). The redox product of
ferrate(VI) is a non-toxic and harmless ferric iron salt that can be used as a flocculant to
improve the removal of pollutants [52], and does not produce toxic by-products compared
to chlorine and ozone treatment [53], so it also has good potential for use in pollutant
degradation and removal. Ferrate(VI) is often used as an oxidizing agent to remove
pharmaceuticals and personal care products, phenolic compounds, and algae.
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4.1. Ferrate(VI) as an Oxidant
4.1.1. PPCPs

Pharmaceuticals and personal care products (PPCPs) are an emerging class of pol-
lutants that include drugs such as antibiotics, β-blockers, antiepileptic drugs, and daily
care products such as skincare, cosmetics, hairspray, and hair dyes [54]. Although the
concentration of PPCPs in the environment is low, there are significant safety risks. When
PPCPs enter the human body through the food chain, they can cause harm to human
health, such as carcinogenic, teratogenic and mutagenic [55]. Ferrate(VI) is commonly
used to remove PPCPs from water. It has been shown to have a good removal effect on
contaminants such as theophylline [56], metoprolol [57], carbamazepine (CBZ) [58], and
sulfachloropyridazine (SCP) [32] from water.

SCP belongs to the sulfonamide class of antibiotics (SA), and ferrate(VI) has also
been effective in removing sulfonamide antibiotics [32]. SA is composed of heterocyclic N
aromatic rings linked by aniline and sulfa groups. Acosta-Rangel et al. [59] found that SA
can be completely removed within 5 min when the molar ratio of ferrate(VI) to SA is 6:1 and
the pH is 3. Similarly, Pi et al. [51] used the ferrate(VI) to remove SCP, and at a molar ratio of
15:1, the removal rate of SCP was as high as 90% under neutral conditions. The degradation
of SCP by ferrate(VI) is divided into two pathways: first, the SO2 in the sulfonamide group
is converted to SO4

2−, and the intermediate products of ferrate(VI), Fe(IV), and Fe(V) can
also convert SO2

3− to SO4
2−; second, the -NH2 in the aniline group is oxidized to -NHOH

and -NO, and finally to -NO2 [60]. Additionally, the oxidation of sulfonamide groups in
SCP by ferrate(VI) can reduce the toxicity of SCP, and the degradation schematic is shown
in Figure 3.
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Ferrate(VI) has a high removal rate for electron-rich pollutants in PPCPs, such as
phenol, olefins, amines, and aniline moieties. It has been found that roxithromycin and
oleandomycin in macrolide antibiotics contain amine groups, which are easily oxidized by
ferrate(VI) compared to other antibiotics. Therefore, ferrate(VI) has a better removal rate
for antibiotics containing amine structures [61]. Similarly, tetracyclines, chlortetracycline,
and oxytetracycline have phenol and olefin groups and are therefore easily removed by
ferrate(VI) oxidation [62].

However, the removal of pollutants by ferrate(VI) is susceptible to the pH. Ma et al. [63]
found that, in the degradation of tetracycline hydrochloride (TCH) using ferrate(VI), the
pH of the reaction solution had a large effect on the removal of TCH, and lowering the
pH of the reaction solution could improve the removal rate of TCH with an optimal pH
of 9–10 and a molar ratio of ferrate(VI) to TCH of 1:10, resulting in the removal rate of



Water 2023, 15, 699 8 of 23

TCH being 98.57%. Similarly, when ferrate(VI) is used to degrade PPCPs, the removal
rate can be improved by reducing the pH from 12 to 7 [28]. This is because the redox
potential of ferrate(VI) gradually increases as the pH decreases, and therefore the reactivity
also increases as the pH decreases. However, the pH value also affects the stability of
ferrate(VI); ferrate(VI) is unstable in an acidic environment and is prone to decomposition.
The higher the pH value, the more stable ferrate(VI) is. At pH 9~10, FeO4

2− is highly stable
and this is the best condition for removing TCH. Similarly, when chemical oxidation is
used to degrade pollutants, active species make a significant contribution to the removal of
pollutants. It has been found that when ferrate(VI) degrades pollutants, intermediate iron
species [Fe(IV) and Fe(V)] are involved in the reaction [64–66]. The activity of intermediate
iron species is several orders of magnitude higher than that of ferrate(VI), which facilitates
the degradation and removal of organic pollutants.

4.1.2. Phenolic Compounds

Phenolic compounds are widely used in the chemical industry, but they can be harmful
if they remain in the environment for an extended period. Ferrate(VI) has a good removal
effect on phenolic compounds and can effectively degrade phenolic compounds in a short
time [67]. When using ferrate(VI) to degrade phenolic pollutants, the dosage of ferrate(VI)
is an important influencing factor. Zheng et al. [20] found that a molar ratio of ferrate(VI) to
4-Tert-Butylphenol (4-tBP) greater than 10 can achieve complete degradation of 4-tBP within
5 min. Similarly, Li et al. [68] found that when the content of ferrate(VI) increased, the
removal rate of Bisphenol A (BPA) also increased, and BPA could be completely degraded
within 5 min under the optimal molar ratio of ferrate(VI):BPA = 5:1. Similarly, Widhiastuti
et al. [69] found that when the molar ratio of ferrate(VI):BPA in a composite reverse osmosis
concentrate is 50, the degradation rate of BPA exceeds 90%. In addition to the dosage, pH is
also an important factor that influences the effectiveness of ferrate(VI) in removing phenolic
compounds. Delaude et al. [43] found that when ferrate(VI) alone is used to remove phenol
from water, the effect is not significant. However, when sodium hypochlorite reagent is
added to the reaction solution, the removal rate of phenol can be significantly improved.
This is because the sodium hypochlorite solution is weakly alkaline, the ferrate(VI) is more
stable in the alkaline environment, and the rate of self-decomposition is inhibited, allowing
most of the ferrate(VI) to be used to oxidize phenol. Similarly, Sun et al. [70] once again
proved that ferrate(VI) is the most effective method for the removal of BPA under alkaline
conditions; in addition, the study also found that Fe(OH)3 is also conducive to the removal
of BPA. Fe(OH)3 is an effective coagulant, thus demonstrating that ferrate(VI) is effective at
removing phenolic compounds.

Most phenolic compounds contain benzene rings and hydroxyl groups, and ferrate(VI)
tends to react with these substances, so rapid degradation of phenolic compounds can be
achieved. Ferrate(VI) can gradually break down phenolic compounds into low-molecular
compounds, reducing the antibacterial properties of the decomposition products. As a
result, the toxicity of phenolic compounds after oxidation of ferrate(VI) can be reduced [71].

4.1.3. Algae

Reservoir eutrophication and algal bloom outbreaks in drinking water sources have
become significant threats to the current water ecological environment [72,73]. The over-
growth of algae can easily cause a series of problems such as foul odor and deterioration in
water quality. At the same time, algae itself is also a precursor of DBPs, so removing algae
is of great benefit for the control of DBPs.

Numerous studies have shown that ferrate(VI) is more effective at removing algae
than other methods. For example, Ma et al. [74] compared the effectiveness of potassium
ferrate(VI) (K2FeO4), polyferric chloride (PFC), and potassium permanganate (KMnO4)
in removing algae in water. The results showed that the removal effect of K2FeO4 on
algae was better than that of PFC and KMnO4, and the removal rate was as high as 92.4%.
Similarly, Emília et al. [73] used ferrate(VI) to remove chlorella, and when 8.34 micromole
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of ferrate(VI) was added, the removal rate of chlorella was 89%. The mechanism by which
ferrate(VI) removes algae is mainly through oxidation, which destroys the surface structure
of algae cells, this causes the extracellular sheath to crack and the intracellular substances
to discharge, which leads to the death of the algae [75]. Additionally, the reduction product
Fe(OH)3 of ferrate(VI) has a flocculation effect, which can further adsorb and remove algal
cells. Therefore, based on the advantages of ferrate(VI) algae removal, ferrate(VI) pre-
oxidation is usually used to remove algae [76]. He et al. [77] found that after the oxidation
treatment with ferrate(VI), not only was the structure of the algae cells destroyed, but the
particle size and zeta potential of the algae also increased by 20% and 55%, respectively,
which promotes the aggregation of algae and improves algae removal efficiency. Increasing
the dosage of ferrate(VI) or the reaction time can also improve the algae removal rate.
Dong et al. [78] used ferrate(VI) to remove cyanobacteria, and the dosage of ferrate(VI) was
increased or the oxidation time was prolonged; consequently, the removal of algal cells
and algal organic matter (AOM) by ferrate(VI) increased. Ferrate(VI) can effectively inhibit
algae growth, enhance the flocculation effect of water bodies, and increase the purification
capacity of a water body. At the same time, ferrate(VI) also reduces the concentration
of DBPs produced during subsequent chlorination. An amount of 32% of TCM, 33%
BDCM, 43% TCP, and 82% TCNM were controlled by Fe(VI) (0.03 mM) pre-oxidation,
respectively [77].

4.1.4. Reduction Products of Ferrate(VI)

The reduction product Fe(III) or iron hydroxide of ferrate(VI) has a strong coagulating
effect that can adsorb particles in water and reduce turbidity. Therefore, the reduced
product of ferrate(VI) can also be used as a coagulant. It has the following advantages when
used as a coagulant: (1) It produces low amounts of sludge and is low cost. In removing
turbidity, potassium ferrate(VI) produces much less sludge than other coagulants (FeSO4-
7H2O), iron nitrate [Fe(NO3)3], iron chloride (FeCl3), and aluminum sulfate [Al2(SO4)3]. (2)
It can rapidly reduce colloidal stability. The ferrate(VI) can destabilize the colloid within 1
min, while it takes 30 min to achieve the same effect using iron and ferrous salts [79].

Based on the strong oxidizing and reducing capabilities of ferrate(VI), it can be used in
the pre-oxidation, conventional, and deep treatment stages of water treatment processes. In
addition to removing trace pollutants from water, it can also save on the use of flocculants
and reduce costs. Ferrate(VI) is often used to remove sewage that is rich in heavy metals.
Tiwari et al. [80] found that, at a lower dosage, the use of ferrate(VI) was able to reduce many
metallic elements as well as toxic heavy metals in treated water. Similarly, Lan et al. [81]
added ferrate(VI) to wastewater containing arsenic and antimony, and the removal of
antimony increased with a longer contact time. This is because the addition of ferrate(VI)
decomposes itself over time, and the decomposition product, Fe(III), can effectively adsorb
and remove arsenic and antimony from the water. At the same time, pH is also one of the
factors affecting the removal of heavy metals. Pruce et al. [82] found that when the pH rises
from 5 to 10, the removal rate of Cd (II) is increased; when the pH is 10, Cd (II) is completely
adsorbed and removed. Similarly, M.R et al. [83] found that at high pH values, heavy
metals condense, promoting the adsorption of heavy metals by ferrate(VI). This is because,
under alkaline conditions, Fe(III), a product of ferrate(VI) decomposition, can combine with
OH− ions in solution to form Fe(OH)3 with coagulability. The amount of ferrate(VI) dosing
is proportional to the removal rate of heavy metals [84]. Prucek et al. [85] increased the
ratio of ferrate(VI) to antimony to 10:1, and after some time, the removal rate of antimony
reached 80%. In addition to heavy metals, ferrate(VI) can remove radionuclides from
water as a coagulant [62,86,87]. Petrov et al. [88] removed α and β radionuclides from
wastewater using potassium ferrate(VI). There are also indications that when used as a
scavenger, ferrate(VI) can remove almost all radionuclides except cesium [31]. With its
superior performance, ferrate(VI) can remove colloidal particles and adsorb heavy metal
ions in water without causing secondary pollution, making it a green and efficient water
treatment agent.
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Table 2 summarizes the oxidative removal conditions and removal rates of various
organic pollutants by ferrate(VI).

Table 2. Ferrate(VI) removal capacity of common pollutants in water.

Type of Pollutant Name of Pollutant pH
Molar Ratio of
Ferrate(VI) to

Pollutants
Time/min Removal

Rate/% References

Medicine

SMZ: 5–9 20:1 — 100 [89]
Mycin 4–9 5:1 — 80 [90]
SDZ 7 20:1 — 75

[59]Sulfonamide 3 6:1 15 100
Cotinine 6.5 — — 90

Sulfachloropyridazine 7 10:1 40 90 [51]
Atrazine 7 25:1 — 100 [32]

Phenolic
compounds

4-tBP — 10:1 5 100 [20]
p-Nitrophenol 5 3:1 50 80 [91]

Pentachlorophenol 9 — — — [92]
BPA 8 — 60 99 [69]

Tetrabromobisphenol A 7 4:1 3 99.06 [93]
Bisphenol F 7.5–10 3.33:1 5 94 [94]

Alcohols Ethanol 6 15:1 30 80 [95]
Chain

hydrocarbon
derivatives

Iminodiacetic acid 8–10 — — 90 [80]

Organophosphorus
pesticides Clorpyrifos 7 100:1 5 100 [47]

Aldehydes Benzaldehyde — — — 96 [96]

Dye wastewater
Rhodamine B 7 — 8 100

[97]Congo Red 9.2 5:1 20 98.2
Methyl Orange 6 — 60 99.2 [98]

Algae
Aeruginosa suspension 7 7:15 — 70.25 [99]

Chlorella sp. 8–9 3:1 — 46.2 [78]P. limnetica 8–9 3:1 — 58.1

4.2. Ferrate(VI) as a Disinfectant
4.2.1. Water Disinfection

Disinfection in the water treatment system is essential for removing bacteria and
viruses. During the treatment process, disinfectants are added to inhibit the growth of
microorganisms. Ferrate(VI) can be used as a strong oxidant and disinfectant for water
sterilization and disinfection. Compared with traditional chlorine disinfection, ferrate(VI)
effectively removes microorganisms, and reduces the precursors of disinfection by-products.
The schematic diagram in Figure 4 [100] illustrates the disinfection of microorganisms such
as bacteria by ferrate(VI). Furthermore, ferrate(VI) kills microorganisms by oxidizing their
nucleic acids and destroying their protein structures: on the one hand, ferrate(VI) kills
microorganisms by oxidizing the nucleic acids of bacteria and viruses and destroying
their protein structures; on the other hand, the iron hydroxide colloids obtained by fer-
rate(VI) reduction can adsorb bacteria and viruses and cause microorganisms to aggregate
and precipitate.

Ferrate(VI) has advantages over other disinfection when used as a disinfectant, and
the process is safer. Table 3 summarizes the advantages and disadvantages of ferrate(VI)
and other disinfectants.
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Table 3. Advantages and disadvantages of different disinfectants.

Disinfectant Name Advantages Disadvantages

Chlorine

Low cost
Strong disinfection ability
Raw materials are readily
available
Long-term preservation

Produces toxic DBPs
Dechlorination is required
Harm to health

Ozone

The by-product is oxygen,
which is non-toxic and
harmless
Strong disinfection capacity
and fast rate
Remove odors

High cost
A small amount of virus is
produced Harmful to the
human body
Corrosive equipment

Ferrate(VI)

Strong disinfection ability
No disinfection by-products
The reaction product has a
coagulation effect
The process is simple, the
footprint is small, and the cost
is low

Ferrate(VI) yields are low
Ferrate(VI) has poor stability
and is difficult to store for a
long time

When ferrate(VI) is used to disinfect wastewater, not only can it remove organic matter
from the wastewater, but it can also sterilize it. Ferrate(VI) mainly kills microorganisms in
two ways: 1. By using strong oxidation, it oxidizes the cell wall, DNA, and other important
microbial structures, thereby inactivating them; 2. The ferrate(VI) reaction product is ferric
iron, which has a strong coagulating effect under alkaline conditions, and can remove
colloidal substances such as microorganisms. Talaiekhozani et al. [101] conducted research
using ferrate(VI) as a disinfectant and showed that a ferrate(VI) concentration controlled
at 0–50 ppm can kill all microorganisms in water. Ferrate(VI) can destroy the surface
structure of bacteria with its strong oxidation, and can rapidly inactivate Escherichia coli,
total coliform, Bacillus subtilis, etc. [31]. When using ferrate(VI) for disinfection, pH is
an important influencing factor. When the pH was 8.2, 6 mg/L of ferrate(VI) eliminated
99% of E. coli from the water. However, when the pH decreased to 7, the disinfection
effect of ferrate(VI) increased, eliminating 99.9% of E. coli flora and 97% of bacteria in the
water [31]. This is because ferrate(VI) becomes more active at lower pH levels. This shows
that ferrate(VI) is highly effective at removing microorganisms such as bacteria from the



Water 2023, 15, 699 12 of 23

water. Li et al. [102] compared ferrate(VI)-treated water with chlorinated treated water
to study the bacterial communities in each. In the chlorinated samples, the number of
viable bacteria increased with the increase in chlorine dosage, while in the ferrate(VI)-
treated samples, the trend decreased with the increasing ferrate(VI) dose. This suggests that
ferrate(VI) is more effective at removing microorganisms such as bacteria more significantly
than chlorine, and can reduce the formation of DBPs.

4.2.2. Control Application of Disinfection By-Products

Chlorine is a commonly used disinfectant in wastewater treatment plants, due to
its low cost and high disinfection efficiency. However, during the disinfection process, it
reacts with natural organic matter (NOM) in water to form volatile trihalomethanes (THMs)
and refractory halogenacetic acids (HAAs) [103,104], as well as haloacetonitriles (HANs)
and haloaldehydes (HKs). It has been shown that the use of ferrate(VI) (0.03 mM) in pre-
oxidation can reduce the amounts of TCM and BDCM by 32% and 33%, respectively [77].
The mechanism by which ferrate(VI) can inhibit the formation of chlorine disinfection
by-products is through the transfer of amines, alcohols, and amino acids from NOM to
carbonyl compounds, which are then further oxidized to acids that are highly resistant to
chlorine, thereby hindering the production of THMs.

When ferrate(VI) is used as a disinfectant, it can effectively control the formation
of disinfection by-products. Ferrate(VI) removes total organic carbon (TOC) better than
chlorine and produces relatively small amounts of THMs. Li et al. [105] studied the effect
of ferrate(VI) on the formation of DBPs in sewage plants. The contents of trichloromethane
(TCM), dichlorobromomethane (DCBM), dibromochloromethane (DBCM), and tribro-
momethane (TBM) in water samples decreased with the addition of ferrate(VI) concentra-
tion, and ferrate(VI) pre-treatment could effectively reduce the amount of THMs generated
during chlorination. The control mechanism of ferrate(VI) on DBPs is mainly the oxidation
of its precursors to achieve removal. The control mechanism of ferrate(VI) on disinfection
by-products is summarized in Table 4. The effect of ferrate(VI) on the control of DBP
production is mainly influenced by the amount and pH of the ferrate(VI) dosing. Similarly,
Li et al. [105] found that the levels of TCM, DCBM, DBCM, and TBM decreased with
increasing ferrate(VI) concentration when ferrate(VI) was added to the water samples. The
pH of the solution also affected the production of DBPs. Dong et al. [78] found in their
experiments that the yield of DBPs in Chlorella solution gradually decreased when the
pH was increased from 7 to 9. However, Ding et al. [45] found that the best removal of
dichloroacetonitrile (DCAN) by ferrate(VI) was achieved at pH 6.5. The control of DBPs by
ferrate(VI) varies under different pH conditions. Under acidic conditions, the pre-oxidation
of ferrate(VI) was effective in reducing the generation of THMs; on the contrary, for HANs,
a lesser amount was generated under alkaline conditions. This is related to the fact that
the precursors of HANs, tryptophan or kynurenine, are more active under acidic condi-
tions [106]. Therefore, when using ferrate(VI) to control DBPs, the pH should be determined
according to the properties of the DBPs.
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Table 4. Control mechanism of ferrate(VI) on DBPs.

Disinfection Method Type of DBPs Name of DBPs Precursors Mechanism of Action References

Chlorine disinfection

THMs

Chloroform

NOM, AOM, Phenols,
Benzene, Amino acids

The action of ferrate(VI) completely removes hydrophobic
organic molecules and partially removes hydrophilic organic

molecules, and reduces the formation potential of THMs, thus
controlling the amount of THMs produced

[107]Bromodichloromethane

Bromomimetic

HAAs
Chloroacetic acid

Ferrate(VI) reduces the amount of DBPs produced by chlorine
disinfection by oxidizing organic matter in the water to acids

that are highly tolerant to chlorine
[108]

Dichloroacetic acid

HANs
Chloroacetonitrile

Ferrate(VI) oxidizes organic matter in water to acids that are
highly resistant to chlorine, thereby reducing the amount of

DBPs produced by chlorine disinfection
[109]

Bromoacetonitrile

Ozone disinfection Bromate Sodium bromate Bromide (Br−)
Ferrate(VI) has no reaction properties against Br− under
medium-alkaline conditions, so controlling the pH of the

reaction is a crucial condition for ferrate(VI) control of bromate
[30]

Chloramine
disinfection

Iodine-substituted
DBPs

Dichloroiodomethane

Iodide (I−)
High doses of ferrate(VI) oxidize iodide directly to iodate,
which does not react with chlorine, thereby reducing the

amount of iodosterilization by-products
[110]Dibromoiodomethane

Iodoform
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5. Hyphenated Techniques of Ferrate(VI)

Although ferrate(VI) is an effective tool for removing refractory pollutants in water,
its application still has some challenges. Ferrate(VI) has strong selectivity for removal,
and different pollutants have different removal rates [111]. Ferrate(VI) reacts quickly with
organic pollutants containing an electron-rich organic fraction first, and reacts slowly
with other organic substances (e.g., ibuprofen and meprobamate) [112,113]. Ferrate(VI) is
added to help the solution decompose rapidly. Therefore, to overcome these problems,
the hyphenated technique of ferrate(VI) has been developed. Shao et al. [27] observed
that when compared to ferrate(VI) treatment alone, CaSO3 can promote the conversion of
ferrate(VI) to phases Fe(IV) and Fe(V) and increase the removal rate of organic pollutants
by 6.1 times. At present, the hyphenated techniques of ferrate(VI) include ferrate(VI) and
photocatalysis, which uses light energy to convert ferrate(VI) into Fe(IV) and Fe(V) with
a stronger oxidation capacity [114]. The removal rate of pollutants by the combination of
ferrate(VI) and peroxymonosulfate (PMS) is significantly higher than that of ferrate(VI) or
PMS alone. Ferrate(VI) is combined with PAA, and PAA will also promote the decomposi-
tion of ferrate(VI) into Fe(IV) and Fe(V) with strong oxidizing ability, thereby improving
the removal rate of organic pollutants. Table 5 summarizes the hyphenated techniques for
ferrate(VI).

5.1. Ferrate(VI)–Photocatalysis

To further overcome the selectivity of ferrate(VI) for the scavengers, the removal of
organics can be enhanced by ferrate(VI) activation or catalysis [115]. It was found that
ferrate(VI) can act as an electron acceptor in the UV/TiO2 system, and the decomposition of
ferrate(VI) to Fe(IV), Fe(V), and Fe(III), shown in Equations (11)–(13) [116]. In addition, the
researchers also found that under UV irradiation, it is accompanied by the production of
superoxide free radicals, as shown in Figure 5 [116]. The combined system can effectively
degrade organic matter in water, and photocatalysis uses sunlight as the light source, which
can reduce costs and will not produce secondary pollutants. The principle of ferrate(VI)
and photocatalysis is mainly based on the catalyst TiO2 under ultraviolet irradiation,
which causes electron transition on the valence band to form electron-hole pairs, while
electrons are negatively charged, have reduction, holes and undergo oxidation, ferrate(VI)
can be used as an electron trap, and can effectively prevent electrons and holes from
combining, while electron-hole pairs can reduce ferrate(VI) to Fe(IV) and Fe(V) with
stronger oxidation capacity. Tian et al. [114] also proved that Fe(IV) and Fe(V) are stronger
than ferrate(VI), about 1000 times more, so the degradation of the target pollutant by
ferrate(VI)–photocatalysis is more thorough.

HFeO−4 + e−cb → HFeO2−
4 (11)

HFeO2−
4 + e−cb → HFeO3−

4 (12)

HFeO3−
4 + 3H2O + e−cb → Fe(OH)3 + 4OH− (13)

For example, Wu et al. [116] found a method that can effectively degrade 2,4-DCP
in water; the activation of ferrate(VI) by ultraviolet light can significantly increase the
degradation rate of 2,4-DCP by ferrate(VI), which is 6.9 times and 9.2 times higher than
that of ultraviolet irradiation alone and ferrate(VI) oxidation alone, respectively. Simi-
larly, Yuan et al. [117] studied the degradation of dimethyl phthalate (DMP) by K2FeO4
and TiO2 photocatalysis, and found that the ferrate(VI)-TiO2-UV system had the best
degradation effect on DMP, which was significantly higher than the degradation rate un-
der potassium ferrate(VI) and UV irradiation alone. Similarly, Heng et al. [91] also used
ferrate(VI)/ultraviolet light to synergistically degrade p-nitrophenol in water, and the
removal rate of ferrate(VI)/ultraviolet light system was significantly higher than that of
ferrate(VI) alone, and the CODCr degradation rate of p-nitrophenol reached 85.71%. It
can be seen from the data that ferrate(VI) and photocatalytic technology can significantly
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improve the removal rate of organic pollutants. In addition, ferrate(VI)–photocatalytic
technology effectively removes algae and other substances in water. Xia et al. [118] used
ferrate(VI)–photocatalysis to remove algal toxins from water. When the dosage of fer-
rate(VI) was 10 mg/L, the removal rate of algal toxin by the combination of ferrate(VI) and
photocatalytic technology increased from 63% to 100%, which could quickly remove the
algal toxin. Combined with several studies, it can be seen that the effect of ferrate(VI) and
photocatalytic technology is significantly higher than that of ferrate(VI) alone, and has a
good application prospect.
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5.2. Ferrate(VI)–PAA

Peracetic acid (PAA CH3COOOH) is a volatile and easily decomposable chemical with
strong oxidation properties, and the decomposition products CH3COOH, CH3OH, and
O2 are harmless. In addition, PAA, like ferrate(VI), can be used as a disinfectant, and the
DBPs produced are less harmful than halogenated disinfection by-products [16,119]. It
is an effective method to activate ferrate(VI) by transferring single or double electrons to
reducing agents (SO3

2− and S2O3
2−) [120] and solid materials (carbonaceous materials

and silica gels) [121,122] to improve the removal rate of pollutants. PAA combined with
ferrate(VI) is a new area of research. Kim et al. [123] used Fe(II) to activate PAA, promoting
the transformation of ferrate(VI) into higher oxidizing capacity Fe(IV) and Fe(V) that can
effectively remove pollutants from water.

Wang et al. [124] found that when ferrate(VI) is combined with PAA, the removal effect
of ferrate(VI) on micropollutants is improved by promoting electron transfer efficiency.
At pH 7.3 and 8, the addition of PAA to the ferrate(VI) system has a better effect on the
removal of CBZ than ferrate(VI) alone. Similarly, Manoli et al. [125] found that when
ferrate(VI) (200 µM) and PAA (100 µM) combined at pH 9, they could remove 80–90% of
PPCPs in 1 min. PAA can enhance the removal rate of ferrate(VI) from organic matter by
decomposing into Fe(IV) and Fe(V) through electron transfer, which greatly improves the
oxidation performance of Fe(IV) and Fe(V) compared to ferrate(VI) [27], and at the same
time, PAA will also decompose to produce strong oxidizing organic radicals (CH3C(O)O),
making the degradation of organic matter more thorough and more rapid. Manoli [125] also
demonstrated that the main cause of the degradation of organic matter in the ferrate(VI)–
PAA system is Fe(V)/Fe(IV). When ferrate(VI) is used in combination with PAA, most
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of Fe(IV) and Fe(V) in the system are used for organic degradation, which is in contrast
to using ferrate(VI) alone, as shown in Figure 6. The ferrate(VI)–PAA oxidation system
has great potential for the degradation of pollutants in water, and also reduces the cost of
removing pollutants, making it a promising application.
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5.3. Ferrate(VI)–PMS

As ferrate(VI) is in an aqueous solution, it is extremely unstable and will decompose
rapidly under acidic and neutral conditions. Therefore, a solution is needed to increase
the oxidation time of ferrate(VI) in order to improve the efficiency of the reaction [126].
Shao [127] and Yang [128] et al. combined ferrate(VI) with various chemicals to improve the
removal of contaminants. For example, the application of ferrate(VI)/sulfite can degrade
enrofloxacin and phenol has a better degradation effect than ferrate(VI) alone. However,
Wu et al. [113,114] found that the ferrate(VI)/PMS process was more effective than that of
atrazine in the degradation of atrazine, and hydroxyl radicals and sulfate radicals were
detected in the process of ferrate(VI)/PMS for the degradation of atrazine. It has been
reported that ferrate(VI) can be used in combination with PMS, since PMS is also an oxidant,
which can act as an electron acceptor or donor to improve degradation efficiency against
contaminants [129]. The self-decomposition of ferrate(VI) produces Fe3+ and Fe2+, which
can activate PMS and form sulfate radicals (SO−4 ) [130].

However, ferrate(VI)/PMS systems are affected by various factors when degrading
contaminants. The pH of the initial solution has a certain effect on the degradation effect.
He [131] et al. found that the removal rates of the ferrate(VI)/PMS system at pH 4, 5,
6, 7, and 8 were 74.7%, 81.9%, 68.1%, 53.2%, and 44.8%, respectively. This is because,
between pH 4 and 7, the main type of ferrate(VI) is HFeO4

−, which is higher in activity
but easily decomposes [132]. When the pH is higher than 7, FeO4

2− becomes the main
species, although the stability is improved, the activity is reduced, the activation of PMS
is weakened, and the removal rate of diclofenac(DCF) is reduced. Excess H+ will form
hydrogen bonds with the main substance of PMS (HSO5

−) in an acidic environment,
inhibiting the synergistic effect of ferrate(VI) and PMS and reducing the removal rate of
DCF. In addition, the dose of ferrate(VI) and PMS also affects the removal rate. When
Feng [133] et al. used ferrate(VI) and PMS to degrade flumequine (FLU), the solubility of
ferrate(VI) remained unchanged, and the molar ratio of PMS:FLU was increased from 10 to
200, and the removal rate of FLU was also increased from 21% to 61%. Since both substances
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are oxidants, have an oxidizing effect, and have a synergistic effect, the removal rate will be
increased by increasing the dose. This is because reactive sulfur species (RSS) (e.g., SO−4 ) are
generated during the reaction. Reactive oxygen radicals (ROS) (OH·) and high-valent iron
(FeIV and FeV), iron oxide/iron hydroxide, a reduction product of ferrate(VI), also accelerate
the formation of SO−4 in PMS [134]. Núria et al. [135] activated PMS in sunlight to enhance
the disinfection and decontamination capacity of ferrate(VI) under neutral conditions.
When using ferrate(VI)/PMS/solar to degrade sulfamethoxazole (SMX), within one hour,
SMX degradation was nearly 80%, and the effect was much higher than the removal rate of
ferrate(VI) alone or ferrate(VI)/PMS. The combination of ferrate(VI) and suitable agents can
not only enhance the stability of ferrate(VI), but also improve the removal rate of ferrate(VI)
to target pollutants, which has broad research and development prospects.

Table 5. Removal of pollutants by ferrate(VI)-combined technology.

Combined
Technology pH Pollutants Removal Rate/% Active Species References

Ferrate(VI)–UV

6 2,4-DCP 75.8 Fe(IV), Fe(V) and·O2
−

[116]6 BPA 79.2 Fe(IV), Fe(V) and·O2
−

2 Formaldehyde 100 Fe(IV), Fe(V) and·O2
− [136]

9 DMP 40 Fe(IV), Fe(V) and·O2
− [117]

711 P-nitrophenol 62.6576.31 Fe(IV), Fe(V) and·O2
− [91]

Ferrate(VI)–PAA 8 CBZ 100 Fe(IV), Fe(V) and CH3C(O)O· [124]
6–9 CBZ 100 Fe(IV), Fe(V) and CH3C(O)O· [125]

Ferrate(VI)–
aluminum

salt

— CODMnUV254 4060 — [29]
— DOCUV254Protein 35.933.771.8 Fe(IV), Fe(V)

[137]
— Microcystic

aeruginosa 59.3 Fe(IV), Fe(V)

— Thallium 92 — [138]

Ferrate(VI)–PMS 6 Atrazine 100
Fe(IV), Fe(V),·OH and SO4

−· [113]
5 SMX 80 [139]

6. Conclusions

Ferrate(VI) is a highly efficient water treatment agent that combines the functions
of oxidation, disinfection, and adsorption flocculation. The application prospect of fer-
rate(VI) is also extensive. According to this paper, the following conclusions are drawn:
(1) Ferrate(VI) is very widely used in the field of water treatment. Due to its strong oxi-
dizing properties, it can remove most organic pollutants and algae from the water. As a
disinfectant, it can quickly inactivate bacteria and viruses, and has a control effect on the
disinfection by-products produced during chlorine disinfection, which is a non-toxic and
harmless disinfectant. As a coagulant, it can adsorb most of the particles in water and has a
certain adsorption effect on heavy metals, reducing water turbidity. (2) The disadvantage
of ferrate(VI) is that it is unstable, so how to obtain high-purity ferrate(VI) in the process
of preparation is one of the following research hotspots. Among the existing methods
for the preparation of ferrate(VI), electrolysis is the most promising green method; at the
same time, the influencing factors in the preparation process are solution temperature, pH,
current density, alkali concentration, etc. The influence of these factors on the results from
continuous experiments must be controlled. Ferrate(VI) is also very harsh on preservation
conditions, which is unfavorable for its storage and transportation. Developing the in
situ preparation process and improving its preservation requirements will, to some extent,
promote its application. (3) Ferrate(VI) has strong oxidizing properties and is effective
at pollutant removal. However, ferrate(VI) is highly selective of the removables and the
removal rate varies for different pollutants. Combining ferrate(VI) with other technologies
can improve the removal rate of target pollutants. The hyphenated techniques of ferrate(VI)
coupling mainly include ferrate(VI)–PMS, ferrate(VI)–PAA, ferrate(VI)–photocatalytic cou-
pling, etc. In recent years, ferrate(VI)-coupling technology has also been the hotspot and
application direction of research on ferrate(VI). Therefore, the combination of ferrate(VI)
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and other water treatment agents is a new research direction to promote the application of
ferrate(VI).
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