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Abstract: The reservoir flood control operation problem has the characteristics of multiconstraint,
high-dimension, nonlinearity, and being difficult to solve. In order to better solve this problem, this
paper proposes an improved bald eagle search algorithm (CABES) coupled with ε-constraint method
(ε-CABES). In order to test the performance of the CABES algorithm, a typical test function is used
to simulate and verify CABES. The results are compared with the bald eagle algorithm and particle
swarm optimization algorithm to verify its superiority. In order to further test the rationality and
effectiveness of the CABES method, two single reservoirs and a multi-reservoir system are selected
for flood control operation, and the ε constraint method and the penalty function method (CF-CABES)
are compared, respectively. Results show that peak clipping rates of ε-CABES and CF-CABES are
both 60.28% for Shafan Reservoir and 52.03% for Dahuofang Reservoir, respectively. When solving
the multi-reservoir joint flood control operation system, only ε-CABES flood control operation is
successful, and the peak clipping rate is 51.76%. Therefore, in the single-reservoir flood control
operation, the penalty function method and the ε constraint method have similar effects. However,
in multi-reservoir operation, the ε constraint method is better than the penalty function method. In
summary, the ε-CABES algorithm is more reliable and effective, which provides a new method for
solving the joint flood control scheduling problem of large reservoirs.

Keywords: flood control operation; bald eagle search algorithm; multi-reservoir; ε constraint method;
penalty function method

1. Introduction

According to the global climate risk index 2021, approximately 11,000 extreme me-
teorological disasters have occurred in the past 20 years, resulting in approximately
475,000 deaths and economic losses of nearly USD 2.56 trillion. Global warming caused by
greenhouse gas emissions has significantly affected the regional hydroatmospheric cycle
process, resulting in frequent occurrence of disaster problems such as extreme drought,
rainstorm, flood, high temperatures, and heat waves, which have seriously restricted the
balanced development of regional economy, society, and ecological environment [1–4].
Floods are the most common and harmful among all kinds of natural disasters. They have
a high frequency of occurrence, a wide range of coverage, and a strong ability to damage
the environment, causing heavy losses to countries and citizens [5].

Reservoirs are the most common water conservancy projects used for runoff regulation
and flood control, so they are an important research object for flood control. Reservoir
operation refers to the operation of upstream water according to different inflow conditions,
using reservoir storage function, combined with the existing storage capacity, which is an
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important nonengineering measure. In reservoir operation, different constraints are set
up to optimize the problem, such as water balance, discharge constraints, water level con-
straints, etc. This is a high-dimensional, nonlinear, multistage, multiconstraint process [6,7].
Therefore, determining how to use modern methods to realize flood control of a reservoir
is an important and practical problem.

At present, mathematical programming methods and emerging intelligent heuristic op-
timization algorithms are most often used to solve the reservoir (group) optimal operation
problem. The advantages of mathematical programming, dynamic programming [8], linear
programming [9], nonlinear programming [10], and other methods are well established;
however, they also have some problems. During reservoir operation, due to the diversity
of research contents and complex data, it is difficult to give consideration to efficiency
and accuracy, and it is easy to produce the “dimensionality problem” [11–13]. In order
to better solve this problem, researchers continue to explore optimization algorithms and
make great breakthroughs. The emergence of modern intelligent heuristic optimization
algorithms is the result of continuous exploration, such as particle swarm optimization
(PSO) [14], genetic algorithm (GA) [15], water cycle algorithm (GCA) [16], and improved
firefly algorithm (YYFA) [17]. These modern heuristic algorithms have strong robustness,
and overcome the shortcomings of low efficiency of traditional algorithms to a certain
extent. However, due to the diversity and complexity of reservoir flood control operation
by itself, as well as the actual flood control operation process, there will be a variety of
uncertainties. In the process of solving the optimal solution, a simple optimization algo-
rithm has difficulty meeting various constraints at the same time, so it also needs to adopt
relevant constraint processing techniques.

In recent years, due to the simple and efficient execution process of the penalty
function, researchers have widely used constrained evolutionary algorithms to solve the
reservoir constraint problem [18–23]. However, due to the difficulty in selecting the penalty
factor, the performance of the algorithm strongly depends on the selection of the parameter,
which makes it difficult to obtain high-quality solutions. The processing technique based
on ε constraint was proposed by Takahama and Sakai [24]. The core idea is that individuals
whose degree of default is less than ε are regarded as feasible solutions through the setting
value of ε, and it makes full use of the information of the infeasible solution with better
objective function value in the infeasible region. Compared with the penalty function
method, it has better convergence [17,25–27].

The bald eagle search algorithm (BES) is a new swarm intelligence algorithm pro-
posed in recent years [28]. The algorithm has simple initial conditions and strong global
search ability, and can effectively solve various complex numerical optimization prob-
lems. In the past, this algorithm has been applied to a variety of practical problems for
optimization [29–33]. Nevertheless, BES may fall into local optimal solution and fail in
the computation of reservoir flood control operation. Therefore, this paper proposes an
improved bald eagle search algorithm (CABES) to solve the reservoir flood control opera-
tion problem. By introducing Cauchy mutation, integrating adaptive weight factor and
Levy flight strategy, the optimal solution position is perturbed and mutated to improve
the anti-local extreme value ability, improve the search accuracy of the algorithm, mine the
global optimal solution, and combine the constraint processing technology to obtain the
optimal flood control operation scheme.

The rest of this paper is as follows: Section 2 introduces the CABES algorithm and
constraint processing technology. Section 3 presents the flood control operation model. The
specific reservoir information and operation scheme analysis are discussed in Section 4.
Section 5 provides the final conclusion.

2. CABES Algorithm and Constraint Processing Technology
2.1. BES Algorithm

Alsattar, Zaidan and Zaidan [28] first proposed the BES algorithm, which is a new
global search optimization technology. The algorithm simulates the behavior of eagles in
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the process of hunting to prove that the cooperative sequence of each stage of hunting is
reasonable. Accordingly, the algorithm can be divided into three parts, namely, selection
stage, search stage, and swoop stage.

(1) Selection stage

During the selection stage, eagles determine the search space based on the number of
prey in the area to prepare for the next search and predation. The new position of the bald
eagle is set as Li,new, and its position update equation is as follows:

Li,new = Lbest + p ∗ q(Lmean − Li) (1)

where p is a parameter that controls the position change, and is a random number within
(1.5, 2); q is a random number between 0 and 1; Lbest is the best position selected from the
current population position; Lmean is the position of the average distribution of vultures
computed according to the distribution of all eagles after the search; and Li is the current
position of the ith vulture.

(2) Search stage

In the selected search space, the bald eagle moves in different directions in a spiral
space to pursue the prey, quickly search for the best position to capture the prey, and
prepare for the next dive. The location is updated as follows:

θ(i) = a ∗ pi ∗ q (2)

d(i) = θ(i) + R ∗ q (3)

dx(i) = d(i) ∗ sin(θ(i)), dy(i) = d(i) ∗ cos(θ(i)) (4)

x(i) = dx(i)/max(
∣∣dx
∣∣), y(i) = dy(i)/max(

∣∣dy
∣∣) (5)

Li,new = Li + x(i) ∗ (Li − Lmean) + y(i) ∗ (Li − Li+1) (6)

where a and R are random numbers that control the spiral trajectory, with value ranges
of [5, 10] and [0.5, 2], respectively; pi is 3.14; and x(i), y(i) represent the position of the eagle
in coordinates. For other parameters, please refer to the selection stage.

(3) Swoop stage

At this stage, the eagle flies from the best position in the search space to the target
prey, and all points move towards the best position. The position update equation at this
stage is as follows:

θ(i) = a ∗ pi ∗ q, d(i) = θ(i) (7)

dx(i) = d(i) ∗ sinh(θ(i)), dy(i) = d(i) ∗ cosh(θ(i)) (8)

x1(i) = dx(i)/max(
∣∣dx
∣∣), y1(i) = dy(i)/max(

∣∣dy
∣∣) (9)

Li,new = q ∗ Lbest + x1(i) ∗ (Li − c1 ∗ Lmean) + y1(i) ∗ (Li − c2 ∗ Lbest) (10)

where c1 and c2 are two random numbers with value ranges of [1, 2], which increase the
movement intensity of the bald eagle to the best and center points.

2.2. CABES Algorithm

Although the initial conditions of the BES algorithm are simple, the convergence
speed is fast. However, the search step size of the algorithm in the selection stage is a
fixed value, and it is easy to fall into a local optimum and difficult to jump out during the
optimization process of complex functions. In addition, the search stage only updates the
location information of the current population, ignoring the location information generated
by other iterations of the algorithm, so that the algorithm lacks information in the process
of searching and updating the location, resulting in inaccurate location updates. Therefore,
the following two strategies are proposed to improve these two aspects. On the basis
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of the BES algorithm, Cauchy mutation strategy and hybrid dynamic selection strategy
combining adaptive weight and Levy flight are added to improve the CABES algorithm.

2.2.1. Cauchy Mutation Strategy

In recent years, the Cauchy mutation strategy has been applied to improve the perfor-
mance of optimization algorithms due to its excellent perturbation ability. Wang et al. [34]
used Cauchy mutation to strengthen the performance of the firefly algorithm (FA).
Zhao et al. [35] introduced Cauchy mutation to the grasshopper algorithm to enhance
the global search ability of the algorithm. The adaptive Cauchy mutation symbiotic search
algorithm was proposed by Miao et al. [36] to improve the optimization performance of
the original algorithm. Zhao et al. [37] used Cauchy mutation to improve the exploration
ability of the moth–flame optimization algorithm, which is conducive to jumping out of
the local optimum. Therefore, this paper introduces the Cauchy mutation strategy in the
algorithm selection stage, and uses its good perturbation ability to facilitate the mutated
individuals to jump out of the local extreme value.

The standard one-dimensional Cauchy distribution density function is as follows [38]:

f (x) =
1
π

1
x2 + 1

, −∞< x <∞ (11)

The improved Equation (1) is as follows:

L′i,new = Lbest + C(λ) ∗ (Lmean − Li) (12)

where is the Cauchy factor, which obeys the density function distribution.

2.2.2. Fusion of Adaptive Weights and Levy Flight Strategy

The adaptive weight factor is a very important parameter. When the weight factor is
large, the algorithm uses relatively more time for global search. When the weight factor
is small, the algorithm uses relatively more time for local search and can finely find the
best solution. Therefore, many scholars used adaptive weight factors to improve the
optimization effect of the algorithm [14,39–41].

The adaptive weight factor is as follows:

ω = sin
(

π ∗ t
2Maxt

+ π

)
+ 1 (13)

where t is the current iteration number and Maxt is the maximum iteration number.
After introducing the weight factor into the search phase, the position update Equation (6)

is changed to the following form:

L′i,new = ω ∗ Li,new (14)

Levy flight strategy can enhance the global search ability of the algorithm, which is
characterized by random flight with alternate search range. In recent years, researchers
have used Levy flight to solve search and optimization problems, proving that it can
effectively improve the search ability and solution accuracy of optimization algorithms in
the solution space [42–45]. Levy flight is a non-Gaussian random process, and its step size
follows Levy distribution.

levy(s) ∼
∣∣∣s∣∣∣−1−β, 0 < β ≤ 2 (15)

where s is the step size, which can be obtained from the following equation:

s =
µ

|v|
1
β

, µ and v ∼ N(0, σ2) (16)
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After introducing the Levy flight factor into the search phase, the position update
Equation (6) is changed into the following form:

L′i,new = levy ∗ Li,new (17)

In order to further improve the optimization performance of the algorithm, a dynamic
selection strategy is adopted to update the target position. The adaptive weight strategy
and Levy flight strategy are alternately executed under a certain probability to dynamically
update the target position. The adaptive weight strategy is used to expand the search field
of the algorithm. In Levy flight strategy, Levy flight is used to perturb and mutate at the
optimal solution position to obtain a new solution, which improves the defect that the
algorithm falls into local area. As for which strategy to adopt to update the target location,
it is determined by the selection probability P [46], and its calculation formula is as follows:

P = − exp (1− t
Maxt

)
20
+ Ω (18)

where Ω is the adjustment parameter, and the value is 0.05. The specific selection method
is as follows:

If rand < P, select adaptive weight strategy to update the position, otherwise select
Levy flight strategy to update the target position.

Figure 1 shows the flowchart of the CABES algorithm. In Figure 1, N is the population
number, Maxt is the maximum number of iterations, t is the current number of iterations,
rand is a randomly generated number, and P is the selection probability of Equation (18).

2.3. Experiment Design and Test Function

In order to comprehensively test the optimization ability of the improved algorithm
CABES, six complex test functions were selected for function extremum optimization
testing to verify the optimization performance and convergence ability of the algorithm.
Functions are derived from CEC2017 benchmark test function set, including multimodal
functions (F3, F6, F8) and composition (F21, F23, F24) type functions [47]. Please refer to
Table 1 for details. The multimodal function is used to test the exploration ability and the
ability to jump out of the local optimum of the algorithm, and the composite function is
used to test the comprehensive ability of the algorithm. The simulation test compares the
CABES algorithm with BES and PSO.

2.3.1. Algorithm Performance Analysis

In order to ensure the fairness and objectivity of the experiment, the benchmarking
algorithms use the same software and hardware platform to run independently for 30 times
under the same conditions. The optimal value, average value, and standard deviation are
recorded, and the results are shown in Table 2. The running environment is Windows 10
and the programming language is MATLAB R2018a. The population size is N = 50, the
dimension is 50, and the maximum evolution algebra is Maxt = 1000. In terms of algorithm
parameter settings, the parameters of BES and CABES algorithm are both a = 10, R = 1.5.
In PSO algorithm, the learning factors c1 and c2 are both 0.5, and w = 0.8. The values of
these parameters are the same as those of the original literature and source code of the
respective algorithms.
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Table 1. CEC2017 test functions.

Function Type Optimal Value

F3
Multimodal
Functions

300
F6 600
F8 800

F21
Composition

Functions

2100
F23 2300
F24 2400

Table 2. Optimization results of CEC2017 test functions.

Function Algorithm Best Mean Standard
Deviation

F3
BES 1923.52 8122.14 4478.09

CABES 300.97 407.68 114.32
PSO 107,727.00 208,286.00 50,031.60

F6
BES 633.39 645.92 8.27

CABES 600.00 600.26 0.49
PSO 641.00 656.00 9.30

F8
BES 995.01 1078.79 45.07

CABES 937.30 1021.51 53.32
PSO 1011.17 1151.26 51.50

F21
BES 2451.43 2520.37 35.48

CABES 2402.34 2465.49 31.28
PSO 2556.89 2675.77 54.98

F23
BES 2926.15 3041.84 68.74

CABES 2844.83 2913.47 37.91
PSO 3087.86 3297.07 116.25

F24
BES 3101.64 3235.85 100.43

CABES 3011.04 3085.16 45.82
PSO 3293.15 3478.19 124.40

The mean value shows that the algorithm has better average performance of single
precision in repeated experiments. The standard deviation value verifies the good algorithm
robustness of the algorithm. The best value indicates that the improved algorithm can fully
explore and exploit the solution space of the problem and find the global optimal solution
with high accuracy. It can be seen from Table 2 that for functions F3, F6, F21, F23, and F24,
the best values, mean values, and variances on these five functions achieved the best results
under the condition of 50 dimensions.

The above solution results and analysis show that, compared with BES and PSO, the
CABES algorithm has better overall solution performance. The problems that the BES
algorithm often encounters, namely, easily falling into local extremum and experiencing
unstable optimization performance when solving global optimization of complex functions,
are well solved by the CABES algorithm, with stronger stability and robustness.

2.3.2. Wilcoxon Sign Rank Sum Test

In order to verify the significant difference between the improved CABES algorithm
and other benchmarking algorithms in the experimental results, and further evaluate
the optimization performance of the algorithm, a nonparametric statistical test method,
namely, Wilcoxon rank sum test, is used for statistical analysis. Table 3 shows the statistical
test results of CABES and other benchmarking algorithms for solving six representative
functions at D = 50 for the CEC2017 test function set suite. Among them, symbols ‘+’, ‘−’,
and ‘=’ are used to indicate that the optimization results of CABES are superior, inferior,
and equivalent to other comparison algorithms, respectively. Results with p < 0.05 can be
considered a strong test of the significance of rejecting the null hypothesis.
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Table 3. p-value for Wilcoxon’s rank-sum test on each algorithm.

Algorithm CABES vs. BES CABES vs. PSO

Function p-value win p-value win
F3 0.00 (+) 0.00 (+)
F6 0.00 (+) 0.00 (+)
F8 0.00 (+) 0.00 (+)

F21 0.00 (+) 0.00 (+)
F23 0.00 (+) 0.00 (+)
F24 0.00 (+) 0.00 (+)

(+/−/=) 6/0/0 6/0/0

From the statistical test results of Table 3, which shows the improved CABES algorithm
compared with BES and PSO algorithms, the test p-values on all six functions are less
than 0.05 and the symbol is ‘+’, rejecting the null hypothesis. It can be seen that there
are significant differences between the computation results of CABES and the other five
benchmarking algorithms, and CABES is significantly better.

2.4. Constraint Processing Technology

It is unsustainable to rely solely on evolutionary algorithms to solve complex con-
strained optimization problems. In the optimization process, the essence of evolutionary
algorithms is to generate offspring, and the essence of constraint processing technology is
to select high-quality individuals from candidate individuals to enter the next generation,
and then make the population converge to the optimal solution. The core of the constrained
optimization evolutionary algorithm is determining how to effectively balance the objective
function of the population and the degree of constraint violation. In order to achieve this
goal, this paper couples the CABES algorithm with two constraint processing techniques,
the ε constraint method and penalty function method, to improve the ε-CABES algorithm
and CF-CABES algorithm, respectively.

2.4.1. ε. Constraint Method

The essence of the constraint handling method is to replace the ordinary comparison
method with the level comparison method to evaluate the advantages and disadvantages
of individuals, and convert an algorithm conventionally used to solve unconstrained opti-
mization problems into an algorithm for solving constrained optimization problems [24].
Therefore, the performance of such algorithms is mainly determined by the performance of
evolutionary algorithms. In general, a constrained optimization problem of minimizing a
target value in the D-dimensional space can be described as follows:

minimize z(x), x = (x1, x2, . . . , xD)

subject to
gi(x) ≤ 0, i = 1, . . . , m

lbk ≤ xk ≤ ubk, k = 1, . . . , D
(19)

where z(x) is the objective function; x is the decision vector; g(x) is the inequality constraint;
lbk and ubk are the upper and lower limits of the i-th decision component, respectively.
Therefore, a solution that meets all constraints is a feasible solution, and a solution that
does not meet any constraint is an infeasible solution. The constraint violation G of the
infeasible solution can be defined as

G(X) =
m

∑
i=1

max{0, gi(x)} (20)
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The advantages and disadvantages of two solutions X1, X2 are compared by
Equation (21).

(X2, F2, G2)is better than(X1, F1, G1)⇔


F2 < F1, i f G1 = 0∩ G2 = 0;

F2 < F1, i f G2 = 0∩ ε(i) ≥ G1 > 0;
F2 < F1, i f G1 = 0∩ ε(i) ≥ G2 > 0;

G2 < G1, i f G1 > 0∩ G2 > 0;
G2 = 0∩ G1 > ε(i).

(21)

where ε(i) is obtained from Equation (22).

ε(i) =
{

ε(i− 1)/1.035, ε > 10−6

0, ε ≤ 10−6

}
(22)

2.4.2. Penalty Function Method

The main idea of the penalty function method is to construct penalty terms based on
the degree of violation of individual constraints. By adding penalty terms to the objective
function, the penalty fitness function is constructed, and the constrained optimization
problem is transformed into an unconstrained optimization problem [48,49]. The general
penalty fitness function can be defined as follows:

Fl = fl + c
R

∑
k=1

rkGk (23)

where Fl and fl are the transformed objective function and original objective function of the
l-th individual, respectively; R is the number of constraints; c is the penalty factor; and rk is
the number of constraint violation levels set for each constraint.

3. Flood Control Operation Model
3.1. Objective Function

The objectives of reservoir flood control optimal operation are to ensure the safety
of the reservoir itself, meet the requirements of reservoir flood control optimization, and
protect the safety of downstream flood control objects. The first two flood control objectives
require that the upstream water level of the reservoir should not be too high, so as to
achieve the safety of the reservoir and reduce the upstream inundation loss. Ensuring
the safety of downstream flood control objects requires that the discharge of the reservoir
should not be too large, and the flood should be blocked with more storage. The objects of
upstream and downstream flood control have a certain conflict. This paper aims to reduce
the peak discharge on the basis of giving full play to the regulation and storage capacity of
the reservoir, so as to ensure the safety of downstream protection objects.

In this paper, the maximum peak clipping criterion is taken as the objective to solve
the dispatching problem. The maximum peak clipping is the minimum sum of squares of
the reservoir discharge process, so the objective function constructed here is as follows [50]:

f (q) = min
T

∑
t=1

[qit + Ri+1(t)]
2 (24)

where qi(t) is the reservoir discharge at time t; Ri+1(t) is the inflow between the reservoir
and the downstream protection zone at time t. If there is no interval water, it is 0.

3.2. Constraint Conditions

(1) Constraint equation of reservoir water balance:

Vt+1 −Vt = (It − qt)4 t (25)
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(2) Upper and lower limits of water level constraints:

Hmin ≤ Ht ≤ Hmax (26)

(3) Discharge capacity constraints:

qt ≤ q(Zt) (27)

(4) Restriction of water level at the end of the period:

Ht = Hend (28)

(5) Non-negative constraint: all the above variables are non-negative values.

Vt and Vt+1 are the reservoir capacity at t and t + 1, respectively, and the unit is m3; It
is the inflow of the reservoir at time t; qt is the average discharge of the reservoir during
t period, which is m3/s; Ht is the corresponding water level at time t; Hmin and Hmax are
the lower and upper limits of water level at time t, expressed in m; q(Zt) is the discharge
capacity corresponding to the corresponding water level at time t; Hend corresponds to the
water level at the end of the whole dispatching period, and the corresponding unit is m.

4. Case Studies

In order to verify the rationality and superiority of the CABES algorithm, as well as
the difference between the two constraint processing technologies, this paper selects two
single reservoirs and a multi-reservoir system for flood control operation. Among them,
Shafan Reservoir and Dahuofang Reservoir in China are selected for the single reservoirs,
and three reservoirs in the Luan River Basin are selected for the multi-reservoir system.

In the process of flood control and dispatch, the flood process of Shafan Reservoir
has the characteristics of relatively few flood sequences and short duration. However,
the flood process of Dahuofang Reservoir has many sequences and a long period of time.
Therefore, in theory, a flood control operation model with a stronger performance and
higher computing power is required to complete the operation. Compared with the
single-reservoir operation, the multi-reservoir system has different regulation performance,
different hydrological characteristics, and different profit goals. It is not only possible but
also necessary to carry out the joint dispatch of the multi-reservoir system. By implementing
the joint dispatch of the multi-reservoir system, the advantages of each reservoir project
will be better exhibited, and the goals of flood control and profit will be achieved.

In order to enhance the depth of the analysis of the results, this section also uses the
original BES algorithm and the classic PSO algorithm to perform flood control operation
for the abovementioned reservoirs (groups) by combining two constraint processing tech-
niques, and compares the results with those of the ε-CABES algorithm. Parameters of
each algorithm are selected from those of the optimal solution obtained in each original
document [17,50,51].

Because the Shafan Reservoir, Dahuofang Reservoir, and Luanhe Reservoir group have
different constraints and difficulties in solving, in order to ensure that the operation scheme
meets the constraints and reaches the optimal solution, some parameters are different
according to different reservoir characteristics. The parameter settings are shown in Table 4.
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Table 4. Parameter settings of different algorithms.

Algorithm ε-CABES ε-BES ε-PSO CF-CABES CF-BES CF-PSO

Parameters

ε 10,000 10,000 10,000
c (penalty factor) 106 106 106

N (Shafan) 50 50 50 50 50 50
Maxt (Shafan) 500 500 500 500 500 500

N (Dahuofang) 150 150 150 150 150 150
Maxt (Dahuofang) 1000 1000 1000 1000 1000 1000

N (Luan River) 200 200 200 200 200 200
Maxt (Luan River) 100,000 100,000 100,000 100,000 100,000 100,000

w 0.8 0.8
c1 0.5 0.5
c2 0.5 0.5

4.1. Basic Information of Reservoirs

Shafan Reservoir is located in Jinhua City, Zhejiang Province. The reservoir controls a
watershed area of 131 km2. The design flood control standard is once in 50 years, and the
check flood standard is once in 1000 years. The basin map of Shafan Reservoir is shown in
Figure 2a. When the starting water level is the normal storage level of 270 m, the maximum
allowable water level for flood control is the design flood level of 272.91 m, and the safe
discharge of the downstream channel of the reservoir is 400 m3/s. There are only five
time periods, and the flood control dispatch work is carried out based on the criterion of
maximum peak shaving.

Another reservoir is Dahuofang Reservoir, located in Liaoning Province, which is
a comprehensive water conservancy project in the Hun River Basin [52]. The reservoir
controls a drainage area of 5437 km2, and its main function is flood control and urban
water supply. Figure 2b shows the reservoir basin map. The design flood standard of the
reservoir is once in a thousand years, and the design check flood standard is once in a
thousand years. According to the latest approved flood control standard of Dahuofang
Reservoir, the design flood level of the reservoir is 136.63 m, and the check flood level
is 139.32 m. The normal high-water level and flood-limit water level of the reservoir are
131.5 m and 126.4–127.8 m, respectively. Taking the flood of Dahuofang Reservoir on 28
July 1991 as an example, there are 46 flood periods. The reservoir operation is based on the
principle of maximum peak shaving. In the computation, it is necessary to ensure the safe
operation demand of the reservoir, reduce the discharge volume as much as possible, and
homogenize the flood discharge process of the reservoir.

The multi-reservoir system is located in the Luan River Diversion Project located in
Qianxi County, Hebei Province, China. It is mainly composed of Panjiakou Reservoir,
Daheiting Reservoir, and Taolinkou Reservoir. The Panjiakou Reservoir is located in the
middle reaches of the Luan River, the Daheiting Reservoir is located on the main stream of
the Luan River 30 km downstream of the main dam of the Panjiakou Water Control Project,
and the Taolinkou Reservoir is located on the Qinglong River, a tributary of the Luan River.
The map of the Luanhe River Basin is shown in Figure 2c. The three reservoirs form a
mixed-type multi-reservoir system, and the basic characteristics of each reservoir are shown
in Table 5. During the flood control of the multi-reservoir system, there is a flood process
between the three reservoirs and the control point in Luan County, and it is necessary to
carry out flood computation to obtain the outflow process of the total watershed. The
locations between different reservoirs and flood control points are shown in Figure 2d. The
specific flood evolution steps and relevant information of the watershed can be found in
Chen et al. (2021).
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Table 5. Basic characteristics of reservoirs in Luanhe River.

Characteristic Parameters Panjiakou Daheiting Taolinkou

Checking flood level (m) 227.00 133.70 144.32
Design flood level (m) 224.50 133.00 143.40

Total storage capacity (108 m3) 29.30 4.73 8.59
Benefit storage capacity (108 m3) 19.50 2.07 7.09

Dead water level (m) 180.00 122.00 104.00
Normal water level (m) 222.00 133.00 143.00

Flood limit water level (m) 216.00 133.00 143.00
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4.2. Flood Control Operation Process Based on CABES Algorithm

The steps of using the ε-CABES algorithm to solve reservoir flood control operation
are summarized as follows:

Step 1. (Initializatidn): Population size N, total iterations Maxt, constraint violation ε, or
penalty factor c are determined. According to the water level at the end of different
periods of the reservoir, the number of N groups of particles at the end of the period
is randomly generated as the initial population of each generation. According to the
constraint conditions, the corresponding fitness value is computed.

Step 2. (Selection stage): The selection operation is performed according to Equation (12).
Through the new position solution generated by the Cauchy mutation, the relevant
constraints are used to solve the objective function value, and then combined with
Equation (17) to select the pros and cons of the solution.

Step 3. (Search stage): A new position solution is generated according to Equation (14)
or Equation (17). The objective function value is also computed according to the
constraints, and the optimal solution is selected in combination with Equation (21).

Step 4. (Swoop stage): The position solution generated by Equation (10) is compared with
the previous solution through the search and selection stages by Equation (21).

Step 5. If the current number of iterations reaches the maximum number of iterations, the
iteration ends and the optimal result is obtained. Otherwise, continue to Steps 2–4
and continue to iterate.

Similarly, the steps of CABES flood control operation using penalty function method
are roughly the same as those of ε-CABES flood control operation. The difference is
that Equation (23) is used when using constraints to solve the objective function value.
Moreover, in the three stages of steps 2–4, the comparison of Equation (21) is no longer
used; instead, the comparison of the size of the fitness value is simply used to evaluate the
pros and cons of the solution.

4.3. Results and Discussion

In this section, the flood control operation of two single reservoirs and a three-reservoir
mixed multi-reservoir system is computed. CABES, BES, and PSO are used, and two
constraint processing techniques are combined. In order to avoid random differences, the
three algorithms run independently 10 times. The parameters used in the algorithm are
shown in Table 4. The flood control operation results of each method, the objective function
values generated in the operation process, and the comparison of iteration duration are
recorded. In order to verify the stability of the algorithm, five eigenvalues such as ‘minimum
value ‘and’ standard deviation’ are used for analysis. Tables 6–8 are the operation results
of the Shafan Reservoir, Dahuofang Reservoir, and Luanhe multi-reservoir system. Only
the data of successful dispatching are recorded in each table. Figures 3 and 4, respectively,
show the operation process and convergence curve of Shafan Reservoir and Dahuofang
Reservoir. The left side is the operation process, and the right side shows the convergence
curve of each algorithm in the iteration process. Figure 5 shows the operation process and
convergence curve of ε-CABES in the Luanhe multi-reservoir system. Figures 6–10 show
the flow charts of CF-CABES, ε-BES, CF-BES, ε-PSO, and CF-PSO operation failures. Here,
the Panjiakou Reservoir is used as an example that does not meet the constraints.
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Table 6. Comparison of operation results of different algorithms for Shafan Reservoir.

Algorithm ε-CABES ε-BES ε-PSO CF-CABES CF-BES CF-PSO

784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00

Minimum 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
Mean 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00

Median 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00
Maximum 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00 784,080.00

Standard deviation 0.00 0.00 0.00 0.00 0.00 0.00
Iteration duration (s) 3.74 2.99 1.49 2.96 2.25 1.29

Peak clipping rate (%) 60.28 60.28 60.28 60.28 60.28 60.28

Table 7. Comparison of operation results of different algorithms for Dahuofang Reservoir.

Algorithm ε-CABES ε-BES CF-CABES CF-BES

30,737,530.83 30,737,888.76 30,737,530.88 30,737,817.37
30,737,532.02 30,737,871.90 30,737,532.03 30,737,731.38
30,737,531.31 30,737,852.62 30,737,530.82 30,737,731.27
30,737,532.18 30,737,577.04 30,737,530.95 30,737,782.44
30,737,531.09 30,738,027.34 30,737,537.61 30,774,732.07
30,737,530.96 30,737,649.03 30,737,530.90 30,737,576.15
30,737,530.85 30,738,846.39 30,737,531.89 30,737,736.26
30,737,533.62 30,738,133.48 30,737,531.25 30,737,633.93
30,737,530.95 30,737,944.77 30,737,530.82 30,737,844.28
30,737,531.10 30,737,641.22 30,737,531.16 30,737,681.17

Minimum 30,737,530.83 30,737,577.04 30,737,530.82 30,737,576.15
Mean 30,737,531.49 30,737,943.25 30,737,531.83 30,741,426.63

Median 30,737,531.09 30,737,880.33 30,737,531.06 30,737,733.82
Maximum 30,737,533.62 30,738,846.39 30,737,537.61 30,774,732.07

Standard deviation 0.89 363.18 2.08 11,702.62
Iteration duration (s) 34.18 26.51 31.43 20.44

Peak clipping rate (%) 52.03 51.91 52.03 51.91

Table 8. Operation results of reservoirs in Luanhe River Basin using different methods.

Algorithm ε-CABES

1,176,703,090.13
1,177,927,824.01
1,176,640,533.05
1,175,832,077.13
1,177,365,505.25
1,177,167,086.15
1,177,890,549.69
1,176,890,264.34
1,177,026,241.21
1,182,787,126.17

Minimum 1,175,832,077.13
Mean 1,177,623,029.71

Median 1,177,096,663.68
Maximum 1,182,787,126.17

Standard deviation 1,175,832,077.13
Iteration duration (s) 4849.48

Peak clipping rate (%) 51.76
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Figure 10. Operation process of Panjiakou Reservoir using CF-PSO.

It can be seen from Table 6 that the final peak shaving rate obtained by using the six
methods of ε-CABES, ε-BES, ε-PSO, CF-CABES, CF-BES, and CF-PSO to solve the flood
control operation strategy in Shafan Reservoir is the same. Stable results can be obtained
for each computation. In Figure 3, the operation results of the three algorithms are the
same. This is because Shafan Reservoir has fewer variables and simple constraints, and the
flood period is short, which belongs to a relatively simple reservoir scheduling problem.
Therefore, the requirement for the solution level of the algorithm is not high. It can be seen
from Figure 3 that even if different constraint processing techniques are combined, the
convergence process curves of each algorithm are very close, and the later stage reaches the
same level of stability and obtains the same optimal solution.

It can be seen from Table 7 that under the same constraint processing technology,
when solving the flood control scheme of Dahuofang Reservoir, the peak clipping rate
of CABES is 0.23% higher than that of BES. As shown in Figure 4, for CABES, BES, and
PSO combined with different constraint processing techniques, the final results are not the
same. CABES and BES find a suitable scheduling scheme, while PSO does not meet the
constraints, so it does not schedule successfully. This is because, compared with Shafan
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Reservoir, Dahuofang Reservoir has more complex variables and constraints, and higher
requirements for the algorithm. Moreover, the standard deviation of the CABES algorithm
is far less than that of the BES algorithm when it is used to find a dispatching scheme for
many times, which shows that the CABES algorithm has a better stability when it is used
to solve slightly complex reservoirs. In the case of the same algorithm, the ε constraint
processing method and penalty function method have the same effect. Similarly, in terms
of standard deviation, the reservoir operation scheme obtained by using the ε constraint
processing method is more stable than the penalty function method. However, neither
ε-PSO nor CF-PSO found a suitable operation scheme.

From Table 8, it can be found that only the ε-CABES method finds a suitable operation
scheme when solving the flood control operation scheme for the mixed multi-reservoir
system. Figure 5 shows the flood control operation process of the three reservoirs and the
flood routing process of the Luanxian control point. The Luanxian control point includes
the confluence process after the optimal joint operation, the original confluence process,
the flood regulation flow of each reservoir, and the water from the two subareas of the
Luanxian control point. The bottom of the figure records the iterative process curve of
the algorithm. The curve of the algorithm is stable in the later operation, indicating that
the result is stable and convergent, and it is considered that the optimal value is reached.
Therefore, ε-CABES achieves the goal of joint flood control operation.

From Figures 6–10, it can be found that the flood level does not return to the initial
level at the last moment of operation, when CF-CABES solves Panjiakou Reservoir under
the same optimization algorithm, and there is a danger for the next flood control. Under
the same constrained processing technique, when ε-BES is compared to ε-CABES, the
discharge flow exceeds the lower discharge flow constraint and therefore does not meet the
constraint. CF-BES, CF-PSO, and ε-PSO do not find a suitable operation solution because
they all exceed the lower discharge flow constraint.

This shows that for the reservoir operation problem with few constraints and simple
variables (Shafan Reservoir), the traditional optimization algorithms such as PSO and BES
can be solved perfectly. However, when facing the Dahuofang Reservoir with increasing
constraints and more complex dimensions, the PSO algorithm has difficulty in finding a
suitable operation solution, and the BES algorithm is quite effective. Yet, when facing the
Luanhe multi-reservoir system with multiple reservoirs, only ε-CABES finds a suitable
operation solution.

4.4. Conclusions of the Case Study Results

Through the three examples of two single reservoirs and a reservoir cluster of three
reservoirs, the following findings are made.

(1) The length of flood period of a reservoir (group) has different requirements for the
performance of algorithm and constraint processing technology. For reservoirs with
few time periods, this is a simple operation problem, which requires low computa-
tional power of algorithms. Therefore, different algorithms combined with different
constraint processing techniques can achieve appropriate flood control operation ef-
fects. With the increase of the number of time periods, better algorithms are needed to
find the optimal strategy. The combination of conventional algorithms and constraint
processing technology is difficult to sustain.

(2) Through the flood control operation results of the Dahuofang Reservoir and Luan
River Basin multi-reservoir system with more time periods, it can be observed that,
under the same constraint processing technology, the CABES optimization algorithm
proposed in this paper can achieve better results than those of the BES optimization
algorithm before improvement, while the classical PSO algorithm does not find a
suitable operation scheme in both instances. This demonstrates that as the complexity
of the solution problem increases, the CABES algorithm obtained by improving the
Cauchy mutation strategy and fusing the adaptive weighting factor with the Levy
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flight strategy is somewhat advanced and practical, improving the ability of the
original algorithm to solve complex problems.

(3) When the same algorithm uses two constraint processing techniques, the results of the
operation scheme obtained by the two constraint processing methods are consistent
when solving the operation scheme of Shafan Reservoir and Dahuofang Reservoir.
However, in the dispatching of a mixed multi-reservoir system, the dispatching results
are quite different. Therefore, it can be considered that the ε constraint treatment
technology and the penalty function method have the same effect on the optimiza-
tion treatment technology of a single reservoir, but the optimization effect of the ε

constraint treatment technology is better than that of the penalty function method on
more complex constraint problems.

5. Conclusions

Reservoir (group) flood control operation is a complex high-dimensional problem
with many constraints. To solve this problem, this paper proposes a new constrained opti-
mization algorithm, namely, ε-CABES algorithm. The algorithm combines the advantages
of the BES algorithm and the ε constraint processing technology. In order to verify the
rationality and effectiveness of the method, an example computation is carried out through
the flood control operation of two single reservoirs and the joint flood control operation of
a multi-reservoir system, and another processing technology is used. The penalty function
method and the optimization algorithms BES and PSO are compared and analyzed. The
main conclusions are as follows:

(1) The CABES algorithm is used to solve the three instances, and the comparative
analysis with the operation results of the BES and PSO algorithms shows that the
CABES algorithm has better global search ability and better solution accuracy. Cauchy
mutation and fusion of adaptive weight factor and Levy flight strategy can improve
the performance of the algorithm in solving reservoir optimal operation.

(2) The effect of the ε constraint processing technique is equivalent to that of the penalty
function method in the relatively simple single-reservoir operation problem, and in
the more complex multi-reservoir operation problem, the solution effect is ahead of
the penalty function method. In general, the ε constraint processing technology has
better convergence and achieves better optimization results.

(3) For the dispatching problem of Shafan Reservoir with short time period, the dispatch-
ing schemes required by different algorithms are basically the same; for Dahuofang
Reservoir with long time period, the dispatching schemes of each algorithm are differ-
ent. It shows that the length of the number of periods in the reservoir operation will
affect the stability and difference of the operation results of each algorithm.

(4) The ε-CABES algorithm can better solve the strong constraints, multistage, and non-
linear combination problems in the optimal operation of reservoir flood control, and
provides an effective method for the optimal operation of reservoir flood control.

To sum up, this paper discusses the proposed algorithm and constraint processing
technology by taking reservoir (group) flood control operation as an example. In solving the
reservoir problem with short flood period and simple process, the coupling of conventional
classical algorithms PSO, BES, and penalty function method can be solved. However,
as the scale of the reservoir increases and the time period becomes longer, it becomes a
more complex constraint problem. The methods mentioned above are not enough to find
a suitable flood control operation strategy, and algorithms and constraints with better
performance and higher solution accuracy are required, that is, the ε-CABES method
proposed in this paper. However, it should be noted that as the complexity of the problem
increases, the time consumed by the ε-CABES method is more than that of the penalty
function constrained evolution method. Therefore, the next stage of work is to find more
suitable optimization algorithms and processing technologies, and improve the complexity
of the model as much as possible while improving the model’s optimization capabilities.
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