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Abstract: With the rapid development of IoT, big data and artificial intelligence, the research and
application of data-driven hydrological models are increasing. However, when conducting time series
analysis, many prediction models are often directly based on the following assumptions: hydrologic
time series are normal, homogeneous, smooth and non-trending, which are not always all true. To
address the related issues, a solution for short-term hydrological forecasting is proposed. Firstly, a
feature test is conducted to verify whether the hydrological time series are normal, homogeneous,
smooth and non-trending; secondly, a sequence-to-sequence (seq2seq)-based short-term water level
prediction model (LSTM-seq2seq) is proposed to improve the accuracy of hydrological prediction.
The model uses a long short-term memory neural network (LSTM) as an encoding layer to encode
the historical flow sequence into a context vector, and another LSTM as a decoding layer to decode
the context vector in order to predict the target runoff, by superimposing on the attention mechanism,
aiming at improving the prediction accuracy. Using the experimental data regarding the water level of
the Chu River, the model is compared to other models based on the analysis of normality, smoothness,
homogeneity and trending of different water level data. The results show that the prediction accuracy
of the proposed model is greater than that of the data set without these characteristics for the data set
with normality, smoothness, homogeneity and trend. Flow data at Runcheng, Wuzhi, Baima Temple,
Longmen Town, Dongwan, Lu’s and Tongguan are used as input data sets to train and evaluate the
model. Metrics RMSE and NSE are used to evaluate the prediction accuracy and convergence speed
of the model. The results show that the prediction accuracy of LSTM-seq2seq and LSTM-BP models
is higher than other models. Furthermore, the convergence process of the LSTM-seq2seq model is the
fastest among the compared models.

Keywords: seq2seq model; attention mechanism; LSTM model; hydrological prediction; feature analysis

1. Introduction

The principles of runoff formation and evolutionary patterns are changing under
the influence of climate change and human activities. These alterations challenge the
applicability of existing prediction models and methods. At the same time, the continuous
evolution of hydrological processes in the basin increases the difficulty of future runoff
prediction. Therefore, runoff prediction has become an urgent problem to be solved nowadays.

Runoff prediction models can be divided into two categories: process-driven models
and data-driven models [1]. Data-driven models focus on data mining and are able to
analyze a large amount of hydrological data from multiple perspectives without involving
complex physical processes [2]. Existing work mainly uses recurrent neural network for
flow prediction. However, there is still room for improvement in prediction accuracy
and speed. For this purpose, some research works perform statistical characterization of
hydrological sensor data before making predictions.

Water 2023, 15, 670. https://doi.org/10.3390/w15040670 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15040670
https://doi.org/10.3390/w15040670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1656-6397
https://doi.org/10.3390/w15040670
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15040670?type=check_update&version=2


Water 2023, 15, 670 2 of 15

In this paper, a solution is proposed for short-term hydrological forecasting. First, a
feature test is carried out on the hydrological time series to verify whether it has the char-
acteristics of normality, homogeneity, smoothness and non-trendiness. Then, a sequence-
to-sequence (seq2seq)-based short-term water level prediction model (LSTM-seq2seq) is
proposed and implemented to improve the accuracy of hydrological prediction. The
model uses a long short-term memory neural network (LSTM) to encode the historical
flow sequence into a context vector, and another LSTM to decode the context vector, thus
predicting the target runoff, by superimposing on the attention mechanism to improve the
prediction accuracy. The main innovations of the article are as follows:

1. The model uses an LSTM as an encoding layer to encode the historical water flow
sequence into a context vector, and another LSTM as a decoding layer to decode the
context vector to predict the target runoff.

2. The model explores the usage of an attention mechanism to improve the prediction
accuracy.

3. Based on the analysis of normality, smoothness, homogeneity and trend of different
runoff data, we demonstrate the positive prediction effect of the model on runoff data
with different characteristic properties.

This paper is organized as follows: Section 2 reviews the related current research
and contrasts it with the main contributions of this work. Section 3 describes the main
structure of the model proposed in this paper. Specifically, it describes the model principle
and parameter setting, as well as introduces the model training method and evaluation
metrics. Section 4 applies the proposed model to a real case study. Mainly it introduces the
experimental environment, used data set and achieved results. Furthermore, it compares
the model with three machine learning models and four deep learning models. Section 5
presents the conclusions of this work and points out some directions for future work.

2. Related Works

In the field of hydrology, time series analysis is the main tool used by scholars to
study hydrological sensor data [3]. Due to the neglect of statistical analysis, many scholars
often carry out time series analysis based on the following assumptions: hydrological time
series have characteristics such as normality, homogeneity, smoothness and non-trendiness,
expecting that the deviation of these assumptions in real scenarios will not affect the
analysis results. In short, existing works ignore the fact about whether the time series have
these characteristics. The time aforementioned properties of the time series data are not
verified nor calculated. In most cases, the hydrological time series data obtained based on
sensors can hardly fully satisfy the above characteristics due to the influence of changes in
natural elements, such as climate, land cover and disturbances from human activities. It is
clear that time series analysis based on incorrect assumptions will lead to unreliable and
incorrect analytical conclusions [4].

Normality, smoothness, trendiness and homogeneity [5] are the key characteristics of
hydrological time series. The analysis of these characteristics is mainly achieved by feature
testing algorithms. For each feature of hydrological time series, there are different testing
algorithms, which are widely used in statistical analysis of static data sets. Many scholars
have been currently focusing on two aspects of hydrological feature testing algorithms.

First, there is a comparison of different testing algorithms for a particular characteristic.
In the normality test, Bin Yang [6] used random simulation to compare the advantages and
disadvantages of five algorithms: the Anderson–Darling test (AD test), Pearson chi-square
test (Pearson test), Kolmogorov–Smirnov test (KS test), Shapiro–Francia test (SF test) and
Cramer-von Mises test (CVM test); the experiments proved that the AD test, CVM test and
KS test outperformed the remaining two algorithms regardless of the size of the sample. Li
Yizhen et al. [7] used the Pettitt mutation test combined with Mann–Kendall trend test, turn
test, inverse ordinal number test and unit root test to analyze the stability of the annual
runoff polar series at Bajiadu hydrological station for the past 60 years, and concluded that
the turn test and inverse ordinal number test are applicable to the stability of the runoff polar
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series, while the unit root test is prone to misclassification. Regarding time series trendiness,
Jiang Yao et al. [8] comprehensively compared and analyzed the accuracy and reliability of
five commonly used trend detection algorithms for hydrological analysis, including the
cumulative distance level method, linear regression method, Mann–Kendall rank order test
method, discrete wavelet transform method and empirical modal decomposition method,
evaluated their performance on hydrological time series trend detection using real-world
data and finally provided the application scenarios for each algorithm. Liu Jia et al. [9]
selected more than one hundred stations with continuous observation records in Sichuan
province for the last 50 years of temperature data, and integrated six homogeneity testing
algorithms, such as the SNHT (standard normal homogeneity test) and von Neumann ratio
method to test the homogeneity of the annual average temperature of the province, so as
to evaluate the applicability and performance of the six algorithms in this scenario. The
results of the above-mentioned literature show that different algorithms have their own
advantages and disadvantages in different scenarios and on different data volumes when
testing for normality, smoothness, trend, or homogeneity.

Recurrent neural networks (RNNs) are gradually being applied to runoff forecasting
research because their structure is particularly suitable for relational simulation of time
series data [10]. However, a simple RNN suffers from the gradient disappearance problem
when learning longer time series [11], which makes it difficult to transmit information that
is far apart. For this reason, different researchers have proposed improved RNN models,
such as LSTM [12] and gated recurrent unit (GRU) neural network [13]. Kratzert et al. [14]
applied LSTM to 241 watersheds affected by snowmelt and experimentally verified that
it could obtain better model performance for rainfall runoff forecasting at the daily scale;
Zhaokai Yin et al. [15] established a watershed rainfall runoff model based on LSTM for
different forecasting periods to explore the application of LSTM in hydrological forecasting.
The results show that the accuracy of LSTM forecasting is high when the forecasting period
is about 0–2 days and poor when the forecasting period is 3 days. Zuo et al. [16] propose
a medium and long-term runoff forecasting model based on LSTM together with the
corresponding discussion and analysis. The results show that SF-VMD-LSTM is robust and
efficient in predicting highly non-smooth and non-linear streamflow. LSTM models are
able to solve the time series and long-term dependence issues, and are widely used [17,18].
Hu et al. [19] explored LSTM models to forecast Fen River basin runoff; Feng Jun et al. [20]
present an LSTM-BP, which is a multi-model combination based on LSTM and BP neural
network for hydrological forecasting; Fang et al. [21] applied an LSTM model to soil water
content; Zhang et al. [22] discuss the importance of LSTM model in urban flood control
and overflow control.

Although the LSTM model solves the problem of long-term dependency, the traditional
LSTM model is not well suited for many problems with unequal length sequences, thus
giving rise to the seq2seq model. Yuan Meixue et al. [23] propose a two-layer bidirectional
seq2seq hybrid model based on wavelet decomposition denoising and LSTM to predict
water quality changes; Sun Yingjun et al. [24] constructed a hybrid deep learning interval
prediction model based on one-dimensional convolution and long-short-term memory
network convolutional-sequence-to-sequence network (CNN-seq2seq) to predict river
water level intervals; Liu Xulin et al. [25] propose a deep learning forecasting model based
on convolutional neural network and sequence-to-sequence to improve the accuracy of
PM2.5 future one-hour concentration prediction; Zheng Zongsheng et al. [26] present a
new typhoon rank prediction model using time-series typhoon satellite cloud images by
introducing the attention mechanism and sequence-to-sequence into the model to predict
future typhoon images, and then using a convolutional neural network to predict the
behavior of the predicted typhoon; Liu Yan et al. [27] propose a short-term water level
prediction model based on sequence-to-sequence (seq2seq) by using the Liu Xi River data
to build water level prediction models for different predictions. A performance comparison
of the obtained model with LSTM models and artificial neural network (ANN) models
show that seq2seq models have higher prediction accuracy.
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Most researchers focus on the model prediction accuracy, but there is no statistical
analysis of the data prior to prediction. For this reason, the prediction accuracy of the
model always differs from that obtained using sensor data with different characteristic
properties. Based on this observation, a short-term water level prediction model based
on sequence-to-sequence (seq2seq) is proposed in this work, in an attempt to improve the
quality of the predictions, thus improving its applicability in saving lives and resources.

3. Model Construction

This section deals with three issues: the proposed model structure in Section 3.1; data
preprocessing and feature analysis in Section 3.2; parameter setting and evaluation metrics
in Section 3.3.

3.1. Model Structure

The proposed seq2seq-based short-term water level prediction model uses a LSTM
as an encoding layer to encode the historical flow sequence into a context vector, and
another LSTM as a decoding layer to decode the context vector to predict the target
runoff. Furthermore, the model includes an additional attention mechanism to improve the
prediction accuracy. The model prediction process is shown in Figure 1.
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Seq2seq is an encoder–decoder network whose input and output are sequences. An
encoder converts a variable length signal sequence into a fixed length vector, while a
decoder converts the fixed length vector into a variable length target signal sequence.

In this paper, encoder and decoder are completed with the help of special LSTM-like
neural networks. The cyclic neural network accepts input at each location (time point), and
at the same time processes information fusion, and may also perform output operation at
some location.

The encoder processes each element in the input sequence, compiling the captured
information into a vector. After processing the entire input sequence, the encoder sends the
context to the decoder, in which, item by item, begins producing the output sequence. Each
element in the input data is usually encoded into a dense vector that passes through the
LSTM with the hidden output of the last layer as the context vector.

The LSTM model is a special type of RNN. It has been widely used to solve all kinds
of problems achieving good results. Specifically, LSTM is designed to avoid the problem
of long-term dependency. Its essence is to retain information over a long period of time.
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All RNN structures are copied from modules of the exact same structure. In an RNN, this
module structure is very simple, such as a single tanh layer.

Compared with the common RNN cyclic neural network, LSTM has three more
threshold controllers, input gate, forget gate and output gate [12], as depicted in Figure 2.
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The input gate determines, based on the current input xt, the information to be stored
in the unit state Ct−1, which is composed of three parts. The first part is a tanh layer and is
used to create new information vector of the current node C̃t. The second part is a sigmoid
layer it equivalent to produce a sieve, used for screening and the current node information
C̃t, which should join state Ct−1. The third part adds the information of the current node
filtered by the output gate to the state Ct−1 to generate a new state Ct.

it = σ
(

w .
i
[ht−1, χt] + bi

)
(1)

C̃t = tanh(wc · [ht−1, xt] + bc) (2)

Ct = ft × Ct−1 + it × C̃t (3)

The oblivion gate determines the information to forget from Ct. The gate reads ht−1
and xt, outputs a vector ft of the same length as Ct−1, with values between 0 and 1, and
multiplicates ft with Ct−1 point by point. In this way, we can see that the 1 in ft means
“keep” the corresponding element in Ct−1, and the 0 means “discard” the corresponding
element in Ct−1. This is equivalent to generating a sieve ft of the same size as the state Ct−1
to filter the information in Ct−1.

ft = σ
(

w f · [ht−1, xt] + b f

)
(4)

The output gate is used to produce the output of the current node. It consists of
two parts: first, the total output of Ct of the new state is generated by Ct of the new state
through a tanh layer; then, the information in the overall output to produce the output of the
current node.

Ot = σ(w0[ht−1, xt] + b0) (5)

ht = Ot × tanh(Ct) (6)

The proposed LSTM-seq2seq model incorporates an attention mechanism. Each time
the decoder updates a state, it will look at all the states of the encoder again and informs the
encoder which part to focus on more. The main idea of the attention mechanism handles
the input as a key–value pair. The information to be output is Query, as shown in Figure 3.

When the attention value is calculated, the similarity between Query and each key is
calculated to obtain the associated weights. Then, a SoftMax function is used to normalize
these weights. Finally, the weight and the corresponding key–value are weighted and summed
to get the final attention value. Figure 4 illustrates the aforementioned process to compute the
attention value. In Figure 4, the * represents the process of weighted summation.
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3.2. Data Preprocessing and Feature Analysis

In the sequel, we first give, in Section 3.2.1, details about the applied data preprocess-
ing, then we explain the feature analysis process.

3.2.1. Data Preprocessing

In the field of hydrology, sensors are used to observe various hydrological indicators
instead of carrying out this observation manually. The monitored data are saved and sent
to a background process for further processing. Different from industrial sensors placed
in confined spaces, hydrology sensors are usually placed in the water environment with
high humidity and frequent weather changes. Direct contact with fresh water or seawater
accelerates the corrosion and aging of the sensors, which shortens the working cycle of
the sensors and makes it difficult to maintain in a stable working state for a long time.
Therefore, in the field of hydrology, the data quality read from a sensor needs to be handled
with care. Thus, the preprocessing of hydrological sensor data has become very important.

Traditional data preprocessing is carried out after all the data arrives, so it is not
suitable for unbounded sensor data. In view of this, this paper implements the data
preprocessing method based on time window, which uses the rolling time window to deal
with redundancy, missing data, duplication and outliers that usually hinder the quality of
raw sensor data. Figure 5 describes the overall preprocessing process of hydrologic sensor
data, as used in this paper.
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In this paper, the rolling window mechanism is adopted to establish a preprocessing
window for Li, in which the preprocessing of the hydrological time series is completed.
The main steps of this process are as follows:

Step 1: Set the window Size according to the sampling frequency of the sensor.
Step 2: Open the preprocessing window and determine the start time Tstart and end

time Tend of the preprocessing window according to the time stamp t of the first arriving
data in the stream data.

Tstart = t − (t + Size)%Size (7)

Step 3: If the time stamp of the subsequent data arrives at t ≥ Tend, the rolling window
with the time range of [Tstart + Size, Tend + Size) is opened synchronously. In this case, all
the data of the previous window are considered to be completed.

Step 4: In the previous window, handle data redundancy, duplication, exceptions, and
missing, output the processed data, and close the window.

Step 5: Repeat steps 2 to 4 as long as data continues to arrive.

3.2.2. Analysis of Features

In hydrology-related studies, the analysis of time series is mostly based on a set of basic
assumptions, declaring the hydrological time series as normal, uniform, stable, with no
trend or change, non-periodic and having no persistence [28]. In practice, most natural time
series, including hydrological, climatic and environmental ones, do not usually satisfy all
the characteristic aforementioned assumptions. Therefore, for all the hydrological research
involving the use of hydrological time series data, the feature testing algorithm must be
used in advance to conduct a preliminary analysis of each feature of the manipulated data.
Otherwise, incorrect and/or unreliable results may be obtained. This paper analyzes the
normality, uniformity, stationarity and tendency of hydrological sensor data, which allows
us to deal with reliable data to reach the accurate prediction of runoff data with different
characteristics. The feature testing algorithm adopted in this paper is shown in Table 1.

Table 1. Feature verification algorithm [5].

Stability
Students T test
Simple T test

Mann–Whitney test

Normality
Kolmogorov–Smirnov test

Jarque Bera test
Geary’s test

Tendency
Kendall’s Rank Correlation test

Mann–Kendall test
SROC test

Uniformity
Bayesian test
Dunnett test

Von Neumann test
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3.3. Model Setting and Evaluation Index

In the sequel, we present the model setting in Section 3.3.1 followed by Section 3.3.2,
where we describe the used evaluation metrics.

3.3.1. Model Setting

In this paper, two LSTM neural network structures are used as the encoder and
decoder as part of the seq2seq proposed model to predict runoff data. The encoder codifies
the length sequence data into an intermediate vector of fixed length, while the decoder
transforms the intermediate vector of fixed length as the predictive output, realizing the
purpose that the input sequence of any length to be mapped to the output sequence
of any length. The length of the historical time series data is denoted as a while the
length of the predictive output time series is denoted as b. The input vector is denoted as
x = (x1, x2, x3, . . . , xn) and the output vector is denoted as y = (y1, y2, y3, . . . , yn), where n
is the total number of samples. Note that x = (x1, x2, x3, . . . , xn) represents the historical
input runoff, y = (y1, y2, y3, . . . , yn) indicates the predicted runoff. The encoder consists
of LSTM that reads the input sequence in chronological order. The hidden layer state ht
at each moment is determined by the input data xt at the current moment combined with
the hidden layer state ht−1 and cell state Ct−1 at the previous moment. The encoder is
updated every n time steps, and through the attention mechanism used during the training
process, the input sequence is encoded as the hidden state hn of the final time step. Since
the recurrent neural network operates as a long-term memory, and given the attention
mechanism, the output sequence can be updated more accurately each time. Thus, hn
contains the complete information of the input sequence.

The decoder also consists of an LSTM and accepts the final state of the encoder hn as
its initial input value. The hidden layer state ht of the decoder at every moment is updated
using the hidden layer state ht−1 and cell state Ct−1 of the previous moment through the
input hn of the current moment. The decoder-specific operation used to update ht−1 is the
same as that of the encoder when updating ht. After decoding step by step, the final output
sequence is obtained.

In this paper, the input length of the model is set as 24 h, and the samples in the
historical data set are used to train the model. The mean square difference is used as the
loss function during the training process, which is implemented by the optimized ADAM
algorithm with a give a citation for ADAM algorithm learning rate of 0.001. The maximum
number of training epochs is set to 100.

3.3.2. Model Evaluation Metrics

The mean square deviation (MSE) [29], root mean square error (RMSE) [30] and Nash
efficiency coefficient (NSE) [31] are selected as the evaluation metrics of the model training
and prediction accuracy.

MSE =
1
N

ΣN
t=1(yt − yt)

2 (8)

RMSE =

√
1
N

ΣN
t=1(yt − yt)

2 (9)

NSE = 1 − ∑N
t=1
(
Qt

0 − Qt
m
)2

ΣN
t=1
(
Qt

0 − Q0
)2 (10)

among them, N represents the data length, yt the actual data, yt the forecast data. Variable
Qt

0 represents the time t observations while Qt
m represents the value of Q0, which is the

overall average of the observations.
It is worth noting that NSE varies from −∞ to 1. The closer it is to 1, the more perfect

the fitting and the higher the model credibility. Metrics MSE and RMSE are used to measure
the deviation between simulated and measured values. Their value may vary from 0 to
+∞. The closer they are to 0, the better the overall simulation effect of the mode.



Water 2023, 15, 670 9 of 15

4. Experiment and Result Analysis

In this section, we analyze the performance of the proposed model. For this, first, in
Section 4.1, we give define the computational system setting used during the evaluation
as well as the data set used. Then, in Section 4.2, we contrast experiment of different
characteristics and properties. After that, in Sections 4.3 and 4.4, we compare the prediction
accuracy and the convergence rate of the proposed model to that obtained when using
existing different models. Subsequently, in Section 4.5, we evaluate the robustness of the
proposed model.

4.1. Experimental Environment and Data Set

The experimental environment of this paper is shown in Table 2.

Table 2. Experimental environment.

Processor 11th Gen Intel(R) Core(TM) i5-1155G7 @ 2.50GHz 2.50 GHz
Operating system Windows10

Deep learning Framework Pytorch
Integrated development environment Pycharm2021

Programming language Python3.6

The data set utilized for model training is the Tongguan water flow data registered
during the period of time between 9 August 2001 and 31 March 2021, with a total of
6719 records. As shown in Figure 6, although the flow at Tongguan is random, it is still
periodic to a certain extent. We used the data from 9 August 2001 to 9 July 2016 as the
training set, and the data from 10 July 2016 to 31 March 2021 as the test set. The flow data
from the main hydrological observatories in the Qinhe River Basin, including Runcheng
and Wuzhi, and in the Yiluo River basin, including Baima Si, Longmen Town, Dongwan
and Lu Shi, are also used.
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Here, we use the Chuhe River water level data from 2015 to 2017 as the data set to
predict the effect of LSTM-seq2seq model on the water level data with different charac-
teristics. This data set contains more than 18 million data records read from 69 different
sensors. Note that each sensor is numbered in the form of 8-digit, such as “12,910,280”. The
sampling time interval of this data set is 5 min, and its format is shown in Table 3. Table 4
presents the data sets used in the experiment and the purpose of each data set.
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Table 3. Data format of Chuhe water level sensor.

Time Stamp Sensor Number Water Level Value/m

1 January 2015 00:00:00 12,911,060 60.510
11 March 2015 13:00:00 12,910,420 55.576
22 April 2015 12:55:00 62,916,750 5.580
26 June 2015 14:45:00 60,403,200 7.210

Table 4. Experimental data sets and uses.

Data Set Purpose of Experiment

Chuhe River water level data The impact of the statistical analysis on the prediction effect of
the model on hydrological data with different characteristics.

Runcheng, Wuzhi, White Horse Temple, Longmen town, East
Bay and Lu’s water flow data

The prediction accuracy of LSTM-seq2seq model comparison to
3 machine learning models and 4 deep learning models.

Water flow data at Tongguan The algorithm robustness and convergence speed comparison.

4.2. Impact of Statistical Characteristics

In this comparison, the models LSTM-seq2seq, LSTM-BP [20], LSTM and BP are
trained using data sets with different characteristics, and NSE is used to evaluate the
performance of these models. Table 5 shows the four models’ NSE values with respect to
the data provided by the four sensors of Table 3. Note that we use the data read from a
given sensor to analyze only one of the statistical properties, as shown in Table 5. The NSE
values of the four sensors regarding stationarity are all greater than 0.65, indicating that the
model has a good prediction effect. The NSE values of the LSTM-BP and the LSTM-seq2seq
models are much larger than those of the LSTM and the BP models. Moreover, the NSE
value of the LSTM-seq2seq model is 0.02 larger than that of the LSTM-BP model. This
indicates that the prediction effect of LSTM-seq2seq and LSTM-BP models is much greater
than that of the LSTM and BP models. Moreover, the prediction effect of the LSTM-seq2seq
model is better than that of LSTM-BP model. The data sets with normality of site 12,910,420
are all greater than 0.75, indicating that the four models have good prediction effect on the
data set with trend.

Table 5. NSE values of different models in different feature properties.

Model

NSE

12,911,060 12,910,420 60,403,200 62,916,750

Stationarity Normality Tendency Uniformity

LSTM-BP 0.81 0.79 0.75 0.78
LSTM-seq2seq 0.83 0.81 0.79 0.79

LSTM 0.71 0.77 0.69 0.76
BP 0.69 0.76 0.68 0.74

In the trend data set of site 60,403,200, the prediction effect of the LSTM-seq2seq model
and LSTM-BP model is better than that of LSTM model and BP model, and the NSE value
of LSTM-seq2seq model is 0.04 larger than that of LSTM-BP model, indicating that the
prediction effect of the LSTM-seq2seq model is better than that of the LSTM-BP model.

The NSE values are all greater than 0.7 in the data set of site 62,916,750. These results
show that the four models have good prediction effect on the homogeneous data set, and
the difference is not significant.

The NSE values of the LSTM-seq2seq and the LSTM-BP models are larger than those
of the LSTM and BP models regarding stationarity and tendency. This indicates that LSTM-
seq2seq and LSTM-BP models have a better prediction effect than LSTM and BP models on
the data set with stationarity and trend. With respect to normality and uniformity, the NSE
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values of the LSTM-seq2seq and the LSTM-BP models are slightly larger than those of the
LSTM and the BP models, indicating that the prediction effects of the four models have
little difference in the data sets with normality and uniformity.

Overall, the NSE value of the LSTM-seq2seq model is slightly higher than that of the
LSTM-BP model, indicating that the prediction effect of the LSTM-seq2seq model is slightly
better than that of the LSTM-BP model and significantly better than the LSTM and the BP
models on the data sets with different characteristics.

4.3. Prediction Accuracy Comparison

In order to evaluate the prediction accuracy of the proposed LSTM-seq2seq model
compared with existing ones, three machine learning models and four deep learning
models are selected. (1) Linear regression (LR) [32], which is a traditional data analysis
method that uses mathematical knowledge to analyze data, finds out correlated problem
variables and determines the correlation between these variables. This model is selected by
many scholars in their study of similar problems. By determining the relationship between
multiple variables, linear regression establishes a correlation equation and loss function,
and attempts to find the relevant parameters of the equation when the loss function reaches
the optimal value. (2) Autoregressive integrated moving average (ARIMA) [33] is also a
traditional statistical analysis method. Compared with LR, ARIMA has a better processing
capability for time series. The ARIMA model requires three parameters, which are the
number of autoregressive terms, the sliding mean terms and the difference order. Moreover,
ARIMA can transform non-stationary series into stationary ones. (3) Random forest [34]
(RF) is a machine learning algorithm with stronger ability to process time series. It can
be used to deal with two common problems, classification and regression. RF explores
multiple decision trees, which make prediction results independently. All prediction results
are counted, and the average value is considered the final prediction result obtained by RF
through regression calculation. (4) DeepAR [35] is based on an RNN structure, which can
effectively perform probability prediction. It is one of the more widely used deep learning
prediction models. (5) BP neural networks [36] consist of supervised learning and are a
kind of multiple feedforward neural network.

RMSE and NSE are used to evaluate and analyze the compared models regarding
the accuracy of water flow prediction for Tongguan River. Figure 7 shows the NSE values
of models on different data sets. As the trend change of runoff is not a simple linear
relationship, the overall performance of LR is relatively poor. As can be seen in Figure 7,
the deep learning model is generally superior to machine learning model when processing
time series data. The NSE values of the LSTM-seq2seq model are all greater than 0.72,
indicating that its overall prediction accuracy is relatively high and the prediction reliability
is also high.
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Figure 8 shows the RMSE values for the compared models on different data sets. The
highest value achieved by the LSTM-seq2seq model is 0.98, indicating that the overall
simulation effect of the model is good. Considering the metric values of Table 5 and the
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comparison in Figure 7, it is possible to conclude that for the data sets with normality,
uniformity, stationarity and trendiness, the prediction accuracy of the proposed model is
greater than that of the data sets that do not show these statistical characteristics. This
indicates that it is very important to analyze the characteristics of the data sets before
performing the prediction on hydrological data.
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Figure 9 shows the comparison between the predicted values, as obtained by the
proposed LSTM-seq2seq model, and those effectively observed at Tongguan River. The
“real” data shown in Figure 9 are the test data set. It is easy to note that LSTM-seq2seq
model has a good fitting effect on the overall prediction.
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4.4. Convergence Comparison

Figure 10 allows us to compare the convergence rate of LSTM-seq2seq, LSTM-BP,
LSTM and BP models when using the data set obtained at the Tongguan River. It is clear
that the LSTM-seq2seq model achieves a faster convergence than the other three models.
The RMSE value of LSTM-seq2seq model is smaller than that of the other three models. So,
it is safe to conclude that the proposed model has high credibility.

4.5. Algorithm Robustness

The robustness test of an algorithm consists of verifying the returned results when
adding partial noise to the data and/or introducing partial outliers. Generally speaking,
the algorithm with good robustness can still maintain an acceptable prediction accuracy
even when the input data are noisy and can also ensure normal operation when there are
partial outliers. The robustness test of a proposed algorithm is crucial to deciding whether
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the algorithm can be applied in a real-world application. This section designs a robustness
test scheme for the algorithm, which mainly adds noise to the input data and evaluates its
performance in this situation.
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Figure 11 shows the NSE values of different models with no noise, 5% and 10%
Gaussian noise. It can be seen that the LSTM-seq2seq model is more stable than other models,
and the prediction accuracy of the algorithm is still guaranteed when noise is added.
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5. Conclusions

This work proposes an LSTM-seq2seq model for water flow prediction, which uses
two LSTM to process the input and output sequences of data, augmented with an attention
mechanism to improve the prediction accuracy. The prediction impact of the proposed
model on different water level data sets that present statistical features, such as normality,
stationarity, uniformity and tendency is analyzed. We show that the proposed model
performs better than the compared models in all cases.

Flow data at Runcheng, Wuzhi, Baima Temple, Longmen Town, Dongwan, Lu’s and
Tongguan are used as input data sets to train and evaluate the model. The proposed
LSTM-seq2seq model is compared with three machine learning models and four deep
learning models. Metrics RMSE and NSE are used to evaluate the prediction accuracy and
convergence speed of the model. The results show that the prediction accuracy of LSTM-
seq2seq and LSTM-BP models is higher than other models. Furthermore, the convergence
process of the LSTM-seq2seq model is the fastest among the compared models. Chuhe River
water level data are used to train and evaluate in order to compare the prediction accuracy
achieved by the proposed models to that of existing models. Models LSTM-seq2seq,
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LSTM-BP, LSTM and BP are compared regarding the correctness of their prediction on
the data sets with different characteristics. The results show that the predictions provided
by LSTM-seq2seq and LSTM-BP models are greater than those provided by LSTM and
BP models on the data set with stationarity and trend. The prediction results of the four
models are similar for the data sets with normality and uniformity. Nonetheless, for the
data sets with normality, uniformity, stationarity and trend, the prediction accuracy of
the proposed model is greater than that obtained when the data set shows none of these
statistical characteristics. In terms of algorithm robustness, the LSTM-seq2seq model is
more stable than the compared models with noisy input data.

The LSTM-seq2seq model proposed in this work provides a reference for hydrological
prediction. Especially, it offers an effective prediction scheme for the data collected by
sensors thanks to consideration of the possible influence of specific statistical features
inherent to hydrological data.

In future work, more attention will be given to the influence of hydrological character-
istics on hydrological prediction, so as to provide more prediction schemes for complex
hydrological data.
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