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Abstract: Water pollution caused by heavy metal ions has attracted worldwide attention. In this
work, gold tailings were used as raw materials and the sol–gel method combined with the atmo-
spheric pressure drying method were used to achieve the low-cost preparation of a silica aerogel.
(3-Aminopropyl) triethoxysilane (APTES), ethylenediaminetetraacetic acid disodium salt (EDTA-
2Na), and chitosan were used to modify the silica aerogel, which was then used as an adsorbent
for the adsorption of copper ions in wastewater. The adsorbent type, adsorption time, copper ion
concentration, and pH value were investigated as variables to explore the best adsorption conditions.
The adsorption mechanism was also elaborated on. The crystal structure, surface morphology, surface
functional groups, chemical composition, and specific surface area of the aerogels and the modified
aerogels were characterized by various physiochemical characterizations such as XRD, SEM, FT-IR,
XRF, and BET. The results showed that the prepared silica aerogel contained 91.1% SiO2, mainly
amorphous SiO2, and amino and carboxyl groups. Other functional groups were successfully grafted
onto the silica aerogels. The original silica aerogels and modified silica aerogels had a large specific
surface area, total pore volume, and pore diameter. When copper ions were adsorbed by the chitosan-
modified silica aerogels, the adsorption capacity of the copper ions was the highest (33.51 mg/g)
under the conditions of a copper ion concentration of 100 mg/L, a pH value of 7, and an adsorption
time of 2 h. The adsorption of Cu2+ was mainly due to the ion exchange and electrostatic gravity.

Keywords: gold tailings; silica aerogel; copper ions; adsorption; wastewater

1. Introduction

Seriously increasing the water pollution of the world has brought enormous harm to
human beings and has become one of the most urgent problems in the world [1]. With
the rapid development of industrialization, a large number of heavy metal ions have been
discharged into the water without treatment, which has aggravated the problem of water
pollution. Heavy metal ions such as copper ions have been used in the metallurgical and
electronics industries and have played an important role, mainly in printed circuit board
etching, electroplating, and other processes. In addition to the important function in modern
industry, excessive concentrations of heavy metal ions are toxic and bioaccumulated. If
the copper ions in the human body exceed the normal range, copper poisoning will occur,
causing jaundice, liver necrosis, gastric ulcers, etc.; this has aroused great social concern [2].
Therefore, removing excess copper ions in wastewater has become an urgent task.

At present, the methods of treating copper ions in common wastewater mainly include
the chemical precipitation method [3], ion exchange method [4], membrane separation
method [5], ferrite method [6], and adsorption method [7,8]. Among these technologies
for the removal of copper ions, adsorption can be regarded as a very promising approach
for wastewater purification due to its cost-effectiveness and ease of implementation [9].
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The removal of copper ions in water by specific adsorbents, whether from a scientific
or practical application point of view, is of great significance to invest in the design and
synthesis of cost-effective, stable, and efficient materials to remove copper ions [10].

Nanosilica [11,12], activated carbon [13], aerogels [14], and nano-oxides [15] are often
used as adsorbents. Silica aerogel (SA) is a new sponge-like, extremely light solid with
an open-cell structure that has attracted great interest among scientists and engineers [16].
Due to their high specific surface area, large average pore size, slow heat transfer, and
sparse structure, aerogels, as one of the lightest thermal insulation materials, play a key role
in various fields [17]. Under the condition of keeping the three-dimensional skeleton of the
colloidal gel unchanged, silica gel was synthesized by replacing the water in the pores of
the colloidal gel with air [18]. The structure was relatively sparse, the specific surface area
was satisfactory, and the thermal energy barrier effect was good; it has been widely used in
heat preservation, sound insulation, catalysis, insulators, etc. [18,19]. As a porous material,
its large pores (5–30 nm) make the internal surface of the material more accessible to the
target species, leading to rapid chemical or physical kinetic processes. In addition, its thick
pore walls provide a strong mechanical stability, which provides a good structure as an
adsorbent. SAs have also been widely reported as adsorbents for separating different types
of contaminants. For example, the separation effect of silica gel on dyes such as methylene
blue and Congo red [20,21] and the separation effect of polluted oil and multichain alcohols
in water [22,23] showed considerable adsorption performances [23–25]. Modified aerogels
have also shown a good adsorption performance against heavy metal ions such as Cu2+,
Pb2+, and Ni2+ [26,27]. Pure silicon sources such as sodium silicate and ethyl orthosilicate
have been directly used as silica aerogels with a high cost, limiting their application in life.
Therefore, finding a low-cost silicon source as a raw material to reduce production costs
has become an important task at present.

Gold tailings are a solid by-product of the beneficiation process; China produces
billions of tons of gold tailings every year [28]. The storage of gold tailings occupies a
lot of land resources and has a great impact on the surrounding environment [29]. The
harmful substances in gold tailings can cause serious harm to the natural environment
and pose a threat to various aspects such as the social economy and human health. When
a large amount of gold tailings is stored in the open air, collapse accidents often occur
due to external environmental factors, which have huge safety hazards due to the large
accumulation volume and instability. In addition, the exposure of gold tailings to the air
produces a large amount of dust, causing acid mine wastewater to pollute the soil and
water, resulting in environmental pollution and posing certain hazards to human health.
As gold tailings contain relatively rich Si, Al, and Ca oxides, it has a high competitiveness
in the manufacture of building materials such as concrete and slurry as well as industrial
materials such as glass and ceramics. Due to the high silica content in gold tailings and
easy reaction with alkali, gold tailings are a promising silica aerogel raw material [30].

In this work, SA was prepared by the atmospheric pressure drying method com-
bined with a sol–gel method using gold tailings as the raw material, which realized the
low-cost preparation of a silica aerogel. APTES, EDTA-2Na, and chitosan were used to
modify the silica aerogel. The samples were characterized and analyzed, and the optimal
adsorption conditions for copper ions were explored. The adsorption mechanism was
also elaborated on, which we believe has an important value in scientific research and
environmental protection.

2. Experimental Section
2.1. Materials

(3-Aminopropyl) triethoxysilane (APTES, 99%), EDTA disodium salt solution (EDTA-
2Na, 0.2 M), chitosan (deacetylation > 95%, viscosity 100–200 mPa.s), NH3-NH4Cl buffer
solution (pH 8–10), and sodium diethyldithiocarbamate (DDTC, 98%) were purchased from
the Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Propanol, glacial acetic
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acid (AR), absolute ethanol (AR), hydrochloric acid, and sodium hydroxide (NaOH, AR)
were provided by the Tianjin Damao Chemical Reagent Group Co., Ltd. (Tianjin, China).

2.2. Experiment
2.2.1. Synthesis of the Silica Aerogel

First, 10 g of gold tailings were thoroughly mixed with 7.7 g of sodium hydroxide
after being screened using a sieve of 0.075 mm and the mixture was calcined at 550 ◦C for
3 h. After the calcined product was naturally cooled to room temperature, it was added to
deionized water and stirred for 2 h and centrifuged; the supernatant was retained. The pH
of the supernatant was adjusted to 10 by dilute hydrochloric acid, then the gel reaction was
carried out. After the gel was aged for 12 h, it was added to absolute ethanol to further age
for 48 h to achieve the solvent replacement. The displacement suspension was filtered and
dried at 80 ◦C for 12 h to obtain the SA.

2.2.2. Synthesis of Amino-Modified SA

After 0.7 g of the SA sample was dispersed in 190 mL of propanol and heated to
80 ◦C and stirred homogeneously, 1.25 mL of APTES was added dropwise and the mixture
was refluxed and stirred at 80 ◦C for 4 h. Finally, the samples were centrifuged and
washed three times with ethanol and dried overnight at 60 ◦C to obtain the amino-modified
aerogels (SA-NH2).

2.2.3. Synthesis of Carboxyl-Modified SA

The work of grafting the carboxyl was implemented according to previous research [31],
and the reaction principle is shown in Figure 1. First, 0.5 g of amino-modified SA was
dispersed in 80 mL of EDTA-2Na in water (0.1 M) and stirred for 24 h at room temperature.
The samples were then centrifuged, rinsed with distilled water, and dried overnight at
60 ◦C to obtain the EDTA-2Na-modified SA (SA-COOH).
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Figure 1. Schematic reaction of SA-NH2 with EDTA-2Na.

2.2.4. Synthesis of Chitosan-Modified SA

First, 0.3 g of chitosan was dispersed in 40 mL of (2%) acetic acid. After a uniform
dispersion, 1 g of SA was added to the above solution and stirred for 1 h. The pH of
the above suspension was then adjusted to 6–7 with 0.2 M NaOH. The sample was then
centrifuged and washed to neutral with deionized water and ethanol. Finally, it was dried
overnight at 60 ◦C to obtain the chitosan-modified SA (SA-Ch).

2.3. Heavy Metal Adsorption Experiments

In order to test the adsorption capacity of the prepared modified SAs on copper ions
at 25 ◦C, 0.05 g of the different types of modified SAs was added to 50 mL of the copper
ion solutions with different concentrations and different pH values; these were stirred for
different lengths of time. The frequency of the stirring was 200 r/min. The pH value of the
copper ion solution was adjusted with 0.2 M hydrochloric acid or 0.2 M sodium hydroxide
and then measured with precision pH test strips. After the adsorption was completed,
5 mL of the supernatant was taken and centrifuged. The equilibrium concentration of the
copper ions was determined by the DDTC-Na method [32]; the specific operation was as
follows. First, 5 mL of the centrifuged supernatant was added to a cuvette tube, then 10 mL
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of the DDTC solution and 10 mL of the NH3-NH4Cl buffer were sequentially added to the
tube. After mixing evenly, the absorbance was measured at the wavelength of 452 nm with
a UV-visible spectrophotometer. The remaining Cu2+ concentration in the solution was
obtained according to the measured absorbance. Each group of trials was performed five
times and the average concentration was calculated. The equilibrium adsorption capacity
of the copper ions was calculated according to the following formula:

Qe =
(C0 − Ce)V

W
(1)

where Qe (mg/g) was the equilibrium adsorption concentration of the copper ions, C0 (mg/L)
was the initial concentration of the copper ions, Ce (mg/L) was the equilibrium concentra-
tion of the copper ions, V (mL) was the volume of the copper ion solution, and W (g) was
the mass of the modified SA.

2.4. Characterizations

The crystal structure of the samples was examined by X-ray diffraction (XRD) (Smart-
Lab, Tokyo, Japan) using Cu Kα radiation (λ = 0.1541 nm) at 40 kV and 40 mA. The
microscopic morphology of the samples was observed by scanning electron microscopy
(SEM) (Nano SEM450, FEI Co., Ltd, Hillsboro, OR, USA) after spraying the gold. The
functional groups of the samples were characterized using a Fourier-transform infrared
(FT-IR) spectrophotometer (Bruker-TENSOR II) (Bruker Co., Ltd, Billerica, MA, USA) at a
scanning range between 4000 and 400 cm−1. The adsorption–desorption isotherm and spe-
cific surface area of the samples were measured by a Quantachrome autosorb-iQ2 analyzer
(autosorb IQ2, Quantachrome, Boynton Beach, FL, USA). The microchemical composition
and content of the samples were examined by X-ray fluorescence (XRF) (Rigaku, ZSX
Primus II, Osaka, Japan). The particle size distribution was measured by a laser particle
size meter (SURPASS3, Anton Paar GmbH, Graz, Austria).

3. Results and Discussion
3.1. Physiochemical Characterizations

Figure 2 shows the XRD patterns of the original SAs and modified SAs. It could be
seen that there was no sharp diffraction peak observed for all SA samples, only a wide peak
between 20–30◦, which is a typical characteristic peak of amorphous silica, proving the
amorphous structure of the SAs [33–35]. It was found that the intensity of the diffraction
peak of the modified SAs decreased to a certain extent, which was probably caused by the
coating of the modifiers on their surface.
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Figure 3 shows the FT-IR patterns of the original SA, EDTA-2Na aerogel (SA-COOH),
APTES aerogel (SA-NH2), and chitosan aerogel (SA-Ch). It could be seen that the band
around 3440 cm−1 formed characteristic peaks, which were attributed to the telescopic
vibration of -OH. The peaks around 1083 cm−1, 795 cm−1, and 472 cm−1 were the asymmet-
ric telescopic, symmetrical, and bending vibrations of the Si-O-Si bonds, respectively [36],
typical peaks of SAs [35,37,38]. In the atlas of the modified SAs, it could be seen that the
peaks around 2955 cm−1 and 2925 cm−1 were attributed to the symmetrical and asym-
metric telescopic vibrations of the -CH3 bonds and -CH2- bonds, respectively [39]. The
characteristic peaks around 1560 cm−1 were attributed to the bending vibrations of the
N-H bonds, indicating that the amino group was successfully grafted onto the surface of
the SAs. The strong peak around 1730 cm−1 could be attributed to the contraction vibration
of the C=O bonds [40]. The characteristic peak around 1660 cm−1 could be attributed to the
contraction vibration of the C=O bonds of the amide group, which is the main band of the
amide ligand, indicating that the carboxyl group was successfully grafted onto the surface
of the SA [41]. The characteristic peaks around 1328 cm−1 and 3430 cm−1 were attributed
to the bending vibration and telescopic vibration of the N-H bonds in chitosan, respectively,
indicating that chitosan was successfully grafted onto the surface of the SA.
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Figure 3. FT−IR patterns of the original and modified SAs.

Figure 4 displays the SEM images of the original SA and the SAs modified by EDTA-
2Na, APTES, and chitosan. Figure 5 shows the particle diameter distribution of the original
SA and the SAs modified by EDTA-2Na, APTES, and chitosan. It could be seen that the
original SA was irregularly spherical and had a relatively good dispersion [42,43] whereas
the amino-modified SA had a large area of aggregation. This may have been due to the
formation of a new silica propylamine part on the surface of the SA, leading to a decrease
in the dispersion and, in turn, the emergence of aggregation. The primary amine produced
by the grafted amino group is conducive to the grafting of macromolecular chain groups
such as EDTA anhydride on silica [44]; thus, the agglomeration phenomenon after the
EDTA-2Na modification was more obvious, indicating that it adhered to the surface of the
aerogels. The SAs modified by chitosan also showed aggregation, which was attributed to
the coating adhesion of the chitosan macromolecules to the SAs. From Figure 5 and Table 1,
it could be seen that the particle size of the original aerogel was smaller than that of the
modified aerogel, which may have been caused by particle agglomeration and functional
cluster grafting on the SA surface.
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Table 1. Average particle diameter of SA, SA-NH2, SA-COOH, and SA-Ch.

Sample SA SA-NH2 SA-COOH SA-Ch

Average particle diameter (nm) 576 667 918 1195

Figure 6 shows the adsorption–desorption isotherm and pore-size distribution of
the SA samples. According to the classification of IUPAC, the samples revealed an IV
adsorption isotherm; this increases sharply at larger levels of P/P0 and the formation
of hysteresis loops can also be observed [43,45,46]. These isotherms resemble H2-type
hysteresis loops, which are characteristic of complex networks of major mesopores that
may have bottleneck-type pores. Table 2 shows the textural parameters such as the specific
surface area, average pore diameter, and total pore volume for the different SA samples. It
could be seen that all samples had a large specific surface area and an average pore diameter
and total pore volume, indicating that they had a good adsorbent structure. The modified
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SAs had a lower specific surface area than the original SA, which may have been caused
by a large number of functional groups grafted onto the SA. The average pore diameter
and total pore volume of the modified SAs were also smaller than those of the original SA,
which confirmed that the functional groups such as amino groups and carboxyl groups
were also grafted onto the internal pores of the SAs.
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Table 2. Textural parameter summary of SA, SA-NH2, SA-COOH, and SA-Ch.

Sample Specific Surface
Area (m2/g)

Average Pore
Diameter (nm)

Total Pore Volume
(cc/g)

SA 526.245 16.245 1.514
SA-NH2 431.256 9.822 1.403

SA-COOH 400.421 9.523 1.366
SA-Ch 154.662 3.563 1.064

Table 3 summarizes the XRF analysis results of the tailings, alkali melt filter residue,
and SA. The data showed that the mass fraction of silica in the prepared SA sample was
91.1%, which was consistent with the results of XRD, indicating that the main component
of the SA was silica. The mass fraction of SiO2 in the tailings was 57.7% before the alkali
melting and 41.5% in the remaining filter residue after the alkali melting extraction; thus,
the utilization rate of the silicon element was ca. 28%.

Table 3. Main components of the gold tailings, alkali slag, and SA (wt.%).

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 P2O5 SO3

Gold tailings 57.7 17.2 6.33 5.97 3.77 3.74 3.02 0.627 0.317 0.683
Alkali slag 41.5 15.0 6.63 5.73 2.54 2.03 25.1 0.605 0.128 0.206

SA 91.1 3.13 0.505 0.291 0.148 0.223 3.25 0.188 0.448 0.226

3.2. Adsorption Analysis

As DDTC and Cu2+ undergo a color reaction in an alkaline environment [32], the
principle of a color reaction between DDTC and Cu2+ is shown in Figure 7. It could be
seen that the molar ratio of Cu2+ to DDTC in the chromogenic reaction was 1:2, so an
excess DDTC solution was generally used to measure the remaining Cu2+ concentration.
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The NH3-NH4Cl buffer solution was used to ensure the stability of the reaction system
at a pH of 8~10. The formation of yellow stable substances and the uniform and stable
presence in the reaction system could be directly detected by spectrophotometry at the
wavelength of λ = 452 nm. The effective detection range was 0.011~0.071 mmol L−1, which
was in accordance with the Lambert–Beer law. Figure 8 shows the absorbance standard
fitting curve measured by 0–0.6 mmol/L copper ions under monochromatic illumination at
the wavelength of λ = 452 nm. The relationship between the absorbance (y) and copper
ion concentration (x) in this range was calculated by curve fitting as y = 11.11x + 0.0018
(R2 = 0.9993), so that the copper ion content in water could be calculated according to the
measured absorbance.
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Figure 8. Absorbance standard fitting curve for Cu2+.

To clarify the behavior of the copper ions in the solution and to facilitate the subsequent
experimental design, the MEDUSA program was used to determine the presence of copper
ions at the tested pH range. Figure 9 shows the presence of copper ions at a concentration
of 4 mM (approximately 250 mg/L) at different pH values. It could be clearly seen that
when the pH value was smaller than 5.7, the existence form of the copper ions was mainly
Cu2+ and there was a small amount of CuOH–; the content of CuOH– gradually increased
as the pH value increased. When the pH value was greater than 5.7, the content of Cu2+

and CuOH– in the solution began to decrease and Cu(OH)2 precipitation occurred. When
the pH value reached 6, the amount of precipitation reached the maximum. When the pH
value reached 8.8, Cu2+ could not exist in the solution and was basically converted into
a Cu(OH)2 precipitate. This showed that the copper ions mainly existed in the form of
Cu2+ in the acidic environments (Equation (2)) and Cu(OH)2 in the alkaline environments
(Equation (3)), which could be expressed as:

Cu2+ H+

⇐ CuOH− H+

⇐ Cu(OH)2 (2)

Cu2+ OH−⇒ CuOH− OH−⇒ Cu(OH)2 (3)
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Figure 9. Morphological curve of 4 mM copper ions at different pH values.

In order to study the adsorption capacity of different types of adsorbents, gold tailings,
SA, SA-NH2, SA-COOH, and SA-Ch were added to the solution with a copper ion concen-
tration of 100 mg/L. The pH of the solution was adjusted to 7 and the adsorption was 2 h at
room temperature. It is evident from Figure 10 that SA-Ch had the best adsorption perfor-
mance; its maximum adsorption capacity for Cu2+ was 33.51 mg/g. The good adsorption
performance of SA-Ch was mainly attributed to the grafting of a large amount of chitosan
onto its surface, which was related to the rich hydroxyl groups and amino groups on the
surface of chitosan [26], providing abundant attachment sites for the adsorption of Cu2+.
As SA-Ch revealed the best adsorption performance, the follow-up studies were carried
out on it [47].
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Figure 10. Adsorption capacity of Cu2+ by the tailings, SA, SA-NH2, SA-COOH, and SA-Ch.

Figure 11 shows the adsorption capacity of SA-Ch at different contact times. It could
be seen that within 0–2 h, the adsorption capacity increased with the extension of the
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contact time. When the contact time exceeded 2 h, the adsorption process reached an
equilibrium and the adsorption capacity no longer changed with the time. In the early stage
of adsorption, the adsorption process mainly occurred on the surface of SA-Ch and the
adsorption speed was faster because the surface was rich in hydroxyl and amino groups.
With an increase in the contact time, the adsorption sites on the surface were gradually
occupied by Cu2+ to reach saturation, the adsorption capacity almost did not grow, and the
adsorption process reached an equilibrium. Thus, a contact time of 2 h was selected as the
optimal contact time.
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Figure 11. Effects of contact time on the adsorption of Cu2+ onto SA-Ch.

Figure 12 shows the adsorption capacity of SA-Ch in the solutions with different
copper ion concentrations. It could be seen that when SA-Ch was in a solution with a lower
copper ion concentration, the adsorption capacity of SA-Ch to the copper ions was relatively
low. When the copper ion concentration increased to 100 mg/L, the adsorption capacity of
SA-Ch to the copper ions reached a maximum of 33.51 mg/g. When the concentration of
copper ions continued to increase, the adsorption capacity of SA-Ch stopped increasing,
indicating that SA-Ch had reached an adsorption equilibrium. As a result, the optimal
initial concentration was 100 mg/L.
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Figure 13 shows the adsorption capacity of SA-Ch in the copper ion solutions with
different pH values. It could be seen that the adsorption capacity of SA-Ch to Cu2+ increased
with an increase in pH. The low adsorption capacity of SA-Ch to Cu2+ under lower pH
conditions was attributed to saturated H+ and Cu2+ competing for the adsorption sites,
resulting in a decreased number of adsorption centers of Cu2+. In addition, the functional
groups such as amino groups and hydroxyl groups showed protonation and electrostatic
repulsion on Cu2+ also further reduced the adsorption capacity of SA-Ch on Cu2+. With an
increase in the pH of the solution, the competition between Cu2+ and H+ was weakened
due to the decrease in the H+ concentration, resulting in more Cu2+ being fixed on SA-Ch.
In addition, under higher pH conditions, the bound H+ ions were gradually dissociated
from the hydroxyl groups and carboxyl groups [48], which enhanced their interaction with
Cu2+ and further increased the adsorption capacity of SA-Ch to Cu2+. This showed that the
adsorption of Cu2+ by SA-Ch was mainly due to the ion exchange and electrostatic gravity.

Water 2023, 15, x FOR PEER REVIEW 12 of 15 
 

 

Figure 13 shows the adsorption capacity of SA-Ch in the copper ion solutions with 

different pH values. It could be seen that the adsorption capacity of SA-Ch to Cu2+ in-

creased with an increase in pH. The low adsorption capacity of SA-Ch to Cu2+ under 

lower pH conditions was attributed to saturated H+ and Cu2+ competing for the adsorp-

tion sites, resulting in a decreased number of adsorption centers of Cu2+. In addition, the 

functional groups such as amino groups and hydroxyl groups showed protonation and 

electrostatic repulsion on Cu2+ also further reduced the adsorption capacity of SA-Ch on 

Cu2+. With an increase in the pH of the solution, the competition between Cu2+ and H+ 

was weakened due to the decrease in the H+ concentration, resulting in more Cu2+ being 

fixed on SA-Ch. In addition, under higher pH conditions, the bound H+ ions were grad-

ually dissociated from the hydroxyl groups and carboxyl groups [48], which enhanced 

their interaction with Cu2+ and further increased the adsorption capacity of SA-Ch to 

Cu2+. This showed that the adsorption of Cu2+ by SA-Ch was mainly due to the ion ex-

change and electrostatic gravity. 

 

Figure 13. Effects of pH on the adsorption of Cu2+ onto SA-Ch. 

4. Conclusions 

In this work, gold tailings were used as the silicon source and a low-cost preparation 

of a silica aerogel was realized by combining alkali melting, the sol–gel method, and the 

atmospheric pressure drying method. The surface of the silica aerogel was grafted with 

(3-Aminopropyl) triethoxysilane (APTES), ethylenediaminetetraacetic acid disodium salt 

(EDTA-2Na), and chitosan to improve its adsorption performance. The results showed 

that the chemical composition of the prepared SA sample contained 91.1% silica and it 

was amorphous silica. Corresponding groups appeared on the surface of the grafted SA 

and the agglomeration phenomenon of the nanoparticles was obvious. The original SA 

and modified SAs had a large specific surface area, total pore volume, and pore diameter. 

The adsorption effect of the modified SAs on the copper ions was remarkable. The chi-

tosan-modified aerogels (SA-Ch) had a better adsorption performance when using them 

to adsorb copper ions. SA-Ch had the highest adsorption capacity of copper ions under 

the conditions of an initial concentration of 100 mg/L, a pH value of 7, and an adsorption 

time of 2 h, which was 33.51 mg/g. The adsorption of Cu2+ was mainly due to the ion 

exchange and electrostatic gravity. 

  

Figure 13. Effects of pH on the adsorption of Cu2+ onto SA-Ch.

4. Conclusions

In this work, gold tailings were used as the silicon source and a low-cost preparation
of a silica aerogel was realized by combining alkali melting, the sol–gel method, and the
atmospheric pressure drying method. The surface of the silica aerogel was grafted with
(3-Aminopropyl) triethoxysilane (APTES), ethylenediaminetetraacetic acid disodium salt
(EDTA-2Na), and chitosan to improve its adsorption performance. The results showed
that the chemical composition of the prepared SA sample contained 91.1% silica and it was
amorphous silica. Corresponding groups appeared on the surface of the grafted SA and
the agglomeration phenomenon of the nanoparticles was obvious. The original SA and
modified SAs had a large specific surface area, total pore volume, and pore diameter. The
adsorption effect of the modified SAs on the copper ions was remarkable. The chitosan-
modified aerogels (SA-Ch) had a better adsorption performance when using them to adsorb
copper ions. SA-Ch had the highest adsorption capacity of copper ions under the conditions
of an initial concentration of 100 mg/L, a pH value of 7, and an adsorption time of 2 h,
which was 33.51 mg/g. The adsorption of Cu2+ was mainly due to the ion exchange and
electrostatic gravity.
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