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Abstract: Based on the joint scheduling model of cascade reservoirs and a dynamic programming
(DP) algorithm, this paper studies the optimal control of the yearly drawdown level of an overyear
regulation reservoir considering the influence of inflow uncertainty. An innovative dynamic control
method has been put forward, and the corresponding technical route is provided. In case study, the
seven reservoirs of the Yalong River are used as the research object, the proposed dynamic control
method is verified by a detailed case study, and yearly drawdown level dynamic control bounds
of the Lianghekou reservoir under two inflow series are constructed. Based on a long series of
historical inflows, the simulation calculation and detailed comparative analysis are carried out. It
is found that the dynamic control bound constructed by the selected inflow series has little impact
on the fluctuation of scheduling results and can well cope with the impact of inflow uncertainty
on the scheduling results. In addition, compared with the traditional fixed-yearly-drawdown-level
control mode, the proposed dynamic control method can consider the interannual difference of
inflow, which can increase the total power generation of the cascade system by more than 94 billion
kWh at maximum and realize 63.4%~76.3% of the benefits of the lifting space of yearly drawdown
level optimization.

Keywords: overyear regulation reservoir; yearly drawdown level; frequency; dynamic control bound;
Yalong River

1. Introduction

We all know that hydropower energy is a very good green energy source; it can be ob-
tained through the construction of reservoir–hydropower station systems [1–3]. According
to the storage capacity, reservoirs can be divided into daily regulation reservoirs, seasonal
regulation reservoirs, yearly regulation reservoirs, overyear regulation reservoirs, etc. [4].

With the rapid recent development of river basin and engineering technology [5],
the cascade reservoir system has been gradually formed, and more and more overyear
regulation reservoirs have appeared [6]. Due to the large storage capacity and greater
energy storage of the overyear regulation reservoir, its scheduling mode will not only affect
the interannual water distribution in the basin, but also directly affect the power generation
efficiency of the entire cascade system. Therefore, for an overyear regulation reservoir in a
cascade reservoir system, how to determine the best scheduling mode for many years has a
great impact on the overyear regulation reservoir itself and the overall power generation of
the cascade system.

To date, the research on the scheduling mode of overyear regulation reservoirs has
mainly focused on the determination of an optimal yearly drawdown level [7]. For example,
Yuan and Wang established an optimal model to simulate the year-end water level of a multi-
year regulating reservoir based on a co-evolution differential evolution algorithm, and the
model was validated using the case of the Wujiang cascade reservoirs [8]. Zhang et al. used
a data-mining technique to identify the operational rules of the year-end level for a cascade
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reservoir system and presented an operational model of a decision tree based on the iterative
dichotomizer 3 algorithm [9]. Wang et al. developed an operational model to calculate the
optimal year-end water level of the Longyangxia reservoir and analyzed the impacts of
the runoff and year-start water level on the year-end water level [10]. Liu et al. studied
the year-end water level problem by using two prediction methods, which were a multi-
objective decision model and a statistical regression predictive function, and compared
their advantages and application conditions [11].

However, existing research has mostly focused on the scheduling of a single overyear
regulation reservoir, in which the connection between the upstream and downstream water
quantity and head is not considered [12–14]. The average annual inflow volume variations
have an important influence on the long-term operation of the cascade system, and the
change of the operational rules of the year-end level will have an important influence on
the average annual hydropower yield [15]. Therefore, it is necessary to study the optimal
scheduling mode of an overyear regulation reservoir in a cascade reservoir system. Here,
the most important thing is to obtain the optimal dynamic yearly drawdown level rather
than a fixed value which does not take into account the frequency difference in the inflow
between years [16]. In fact, the inflow uncertainty will make the optimal yearly drawdown
level a controlled range rather than a single value.

In view of this, this paper takes the overyear regulation reservoir in a cascade system as
the research target and studies the construction and optimization problem of the dynamic
control bound of the yearly drawdown level. To consider the influence of interannual
differences in the inflow on the yearly drawdown level, the optimal dynamic control
method of the yearly drawdown level of the Lianghekou reservoir under different inflow
frequency series is designed based on the optimal scheduling results of multidimensional
dynamic programming (DP). On this basis, the differences and characteristics of different
yearly drawdown level control methods are discussed. The results show that compared
with the original fixed yearly drawdown level, this method can improve the space of yearly
drawdown level optimization and increase the total power generation of a cascade system.
This method is of great significance in the actual scheduling of this cascade reservoir system
and can be extended to overyear regulation reservoirs in other river basins in the future.

2. Methodology
2.1. Joint Optimal Scheduling Model

In the joint optimal scheduling of cascade reservoirs, the goal is usually to maximize
the power generation under all kinds of constraints. Thus, the objective function can be
shown as the following Equation (1):

E = max
n

∑
i=1

T

∑
t=1

Ni
t ·∆t = max

n

∑
i=1

T

∑
t=1

Ki·qi
t·Hi

t·∆t (1)

The constraints of the above model mainly include the following, as shown in
Formulas (2)–(6):

(1) Water balance constraint

qi
t =

(
Vi

t−1 − Vi
t

)
/3600∆t+Ii

t + Qi−1
t − Wi

t − Epi
t (2)

(2) Storage capacity constraint

Vi
t,min ≤ Vi

t ≤ Vi
t,max (3)

(3) Discharge flow constraint

Qi
t,min ≤ Qi

t ≤ Qi
t,max (4)
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(4) Power generation constraint

Ni
t,min ≤ Ni

t ≤ Ni
t,max (5)

(5) Storage capacity boundary conditions constraint

Vi
0 = Vi

b
Vi

T = Vi
e

(6)

2.2. Multidimensional DP for Solving the Model

DP is a classical mathematical optimization method which has the advantage of global
convergence [17]. The nature of the DP method converts the problem into several one-stage
variable problems [18]. Because the DP method does not require an initial solution and is
good at solving multi-stage, nonlinear problems, it is often used to solve the optimal model
of reservoir scheduling [19].

The optimal scheduling problem of the reservoir can be solved by the DP method.
In the application of DP to solve the single-reservoir optimal scheduling problem, the
recursive equation can be expressed as the following Equation (7):

f ∗t
(
Vt−1

)
= max

Dt

{
Nt
(
Vt−1, Qt

)
+ f ∗t+1(Vt)

}
f ∗T+1(VT) = 0

}
(7)

For the joint optimal scheduling of two or more reservoirs in a cascade system, more
variables and constraints will be considered. Suppose that there are n reservoirs which are
a hydropower system; the recursive equation of multidimensional DP can be expressed as
the following Equation (8):

F∗
t (Vt−1) = max

Dt

{
Nt(Vt−1, Qi) + F∗

t+1(Vt)
}

F∗
T+1(VT) = 0

}
(8)

Taking the cascade system of two reservoirs as an example, the whole flowchart of
multidimensional DP in solving the joint optimal scheduling model is shown in Figure 1,
and its reverse recursive calculation procedure is shown in Figure 2.

2.3. Dynamic Control Bound Construction of Yearly Drawdown Level

The purpose of the yearly drawdown level optimization of the overyear regulation
reservoir is to find the best water level at the end of the dry season and make rational use
of the overyear regulating volume of the reservoir to balance out the interannual difference
of inflow, so that we realize the best regulation of inflow between years and obtain the
maximum annual power generation of the system. According to the above-mentioned joint
optimal scheduling model of a cascade reservoir system in Section 2.1, we only need to set
the water level constraint in this scheduling model to realize yearly drawdown level control.
However, different setting methods and different solution modes of multidimensional DP
will have different results and effects; this needs to be discussed and analyzed first.

Based on the above-mentioned joint optimal scheduling model and multidimensional
DP algorithm, two technical routes can be used to obtain the optimal yearly drawdown level
of an overyear regulation reservoir considering the inflow uncertainty. One is to establish
the functional relationship between the inflow frequency and the optimal yearly drawdown
level. In this method, by taking one year as the scheduling period, each hydrological
year is calculated separately, which can effectively avoid the curse of dimensionality
of multidimensional DP [20], and the calculation time is short. However, although the
coordination between the upstream and downstream cascade reservoirs is considered in
the model calculation (i.e., the spatial optimization is considered), there is no consideration
between different years. Thus, it is impossible to balance interannual water differences. In
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addition, the yearly drawdown level control rules extracted in this method are generally
expressed in the form of functional relationships, in which the input and output have a
one-to-one correspondence; this is relatively solid. Thus, it is not good to consider the
inflow difference and volatility, and the results conflict with the characteristics of great
uncertainty of the inflow water.
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The other technical route is to construct the dynamic control bound of the yearly
drawdown level corresponding to different inflow frequencies. In order to make the rules
extracted from the optimization results more practical, the optimization results of the model
should have good global optimality. For the joint optimization model in this paper, the
global optimality is reflected in two aspects, i.e., time and space. The global optimality in
time can be reflected in the continuous simulation calculation of many years to consider
the inflow differences between years in the multidimensional DP method. The global
optimality in space can be reflected in the unified upstream and downstream solution
when solving the joint scheduling model, so as to consider the energy storage difference
of different water volume–head combinations of upstream and downstream reservoirs.
In view of this, the second optimal control method of the yearly drawdown level can be
described as follows.
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Figure 2. Reverse recursion procedure of multidimensional DP for joint optimal scheduling of
cascade reservoirs.

The steps of this method include:
Step 1: Set the upper and lower limits of the feasible range of the yearly drawdown

level and take them as the water level constraint. Here, only one range is given, not some
discrete values of the yearly drawdown level.

Step 2: Use the multidimensional DP algorithm to solve the cascade joint optimal
scheduling model with years of continuous water as input and obtain the optimal water
level scheduling process (continuous, head–tail connected) through the optimal calculation.

Step 3: Obtain the annual optimal yearly drawdown level from the long series of
optimization results and draw a scatter chart of the inflow frequency and the optimal
yearly drawdown level. Analyze the correlation between them, determine the control
boundary based on linear regression, and extract the dynamic control bound of the yearly
drawdown level.

Step 4: Take the continuous historical inflows of many years as the input, simulate the
dynamic control bound of the yearly drawdown level under different inflow frequencies,
and analyze its rationality.

The overall flowchart of this method is shown in Figure 3.
In this method, the long series of inflows is used as the input, and the multidimensional

DP algorithm is used for the continuous calculation, which can well consider the interannual
inflow differences. However, inevitably, the calculation time is long. By this method, the
dynamic control bound of the yearly drawdown level can be extracted according to the
optimization results, that is, the control rule of the yearly drawdown level is expressed in
the form of a dynamic control bound rather than a fixed value or function relation, which
can well consider the inflow uncertainty. In addition, although it takes a long time to
obtain the dynamic control bound by this method, considering that only the corresponding
control rule (dynamic control bound) needs to be formulated here, rather than the real-time
calculation, this method is used to study the optimal control of the yearly drawdown level
in the case study of this paper.
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3. Case Study
3.1. Study Area

The Yalong River is the largest tributary of the Jinsha River in China, and its middle
and lower reaches are currently the key river reaches for hydropower development in
the mainstream of the river basin. There are seven hydropower stations: Lianghekou,
Yangfanggou, Jinxi, Jindong, Guandi, Ertan and Tongzilin. Among them, the Lianghekou,
Jinxi and Ertan reservoirs have regulation performances. Among them, the Lianghekou
reservoir has an overyear regulation performance and is a control project for the middle
and lower cascade hydropower stations, which has a great impact on the development of
the cascade power stations in the entire basin [21].

After implementing scheduling, the cascade reservoirs in the middle and lower reaches
can realize overyear regulation. The geographical location of the seven-reservoir cascade
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system in the Yalong River basin is shown in Figure 4, and the key parameters of each
reservoir are shown in Table 1.
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Table 1. The key parameters of the seven reservoirs.

Item Unit Lianghekou Yangfanggou Jinxi Jindong Guandi Ertan Tongzilin

Normal level m 2865 2088 1880 1646 1330 1200 1015

Dead level m 2785 2094 1800 1640 1321 1155 1010

Annual average runoff m3/s 664 896 1200 1220 1430 1670 1928

Mean annual
precipitation mm 897 None None 932 1077 1038 1040

Temperature ◦C 10.9 13.7 13.7 13.7 18.6 19.8 19.7

Flood control level m 2845.9 None 1859 None None 1190 None

Regulation
performance — Overyear Daily Yearly Daily Daily Seasonal Daily

Range of operating
water level in dry

season
m [2845.9,

2865] 2092 [1859,
1880] 1644 1328 [1190,

1200] 1013.5

Range of operating
water level in flood

season
m [2785, 2865] 2092 [1800,

1880] 1644 1328 [1155,
1200] 1013.5

The data used in this study are 10-day inflow data from November 1957 to October
2018, a total of 61 years. In the calculation of the joint optimal scheduling model, the initial
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and final water levels of each reservoir with regulation performance are set as the normal
water level, and the other reservoirs calculate and operate according to the water levels
shown in Table 1.

3.2. Results and Analysis

Through the proposed model and the relevant actual data in Section 3.1, the joint
optimal scheduling model of this cascade system comprising seven reservoirs in the Yalong
River basin can be established. Through the multidimensional DP method established in
Section 2.2, the overyear optimal water level process of the Lianghekou reservoir can be ob-
tained by taking 61 years of historical 10-day inflow data as the input, as shown in Figure 5.
In the process of solving this model, 61 hydrological years are calculated continuously; that
is to say, the spatial and interannual differences in the inflow are considered as a whole, so
the spatial and temporal optimization are realized at the same time.
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Figure 5. Overyear optimal water level process of Lianghekou reservoir based on multidimen-
sional DP.

As shown in Figure 6, the operating water level of the Lianghekou reservoir fluctuates
back and forth between the normal water level and dead water level, which is basically
consistent with the periodicity of the inflow in a hydrological year. In addition, for most
cases, the lowest water level is the dead water level of 2785 m; that is to say, in the long
series simulation situation, the yearly drawdown level of this reservoir is mostly the dead
water level, and a few cases are above the dead water level.
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Figure 6. Variation of the optimal yearly drawdown level of the Lianghekou reservoir in each year.

In order to further study the correlation between the inflow and the yearly drawdown
level of each year, and to obtain a reasonable yearly drawdown level control rule, we
extracted the optimal yearly drawdown level of the Lianghekou reservoir for each year, as
shown in Figure 6.
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As shown in Figure 6, the yearly drawdown level of the Lianghekou reservoir is
2875 m in most years, and the correlation between the yearly drawdown level and the year
number is very weak; there are basically no rules to be found.

In view of the fact that the yearly drawdown level of an overyear regulation reservoir
is strongly related to the amount of inflow water of current year, a correlation model
between the yearly drawdown level of the Lianghekou reservoir and the inflow frequency
can be established based on the optimization results, so as to judge the optimal yearly
drawdown level according to the inflow frequency and realize dynamic control of the
yearly drawdown level.

Here, only the hydrological station has the measured inflow data for the actual basin,
and there is no actual inflow data that can represent the whole basin; for example, there are
only the actual inflow data from the Lianghekou reservoir station, Jinxi reservoir station
and Ertan reservoir station in this basin, and because of the large basin area, the inflow
frequency of upstream and downstream stations must be different. Therefore, the selection
of inflow series that is used to represent the inflow frequency of the whole basin has a
great impact on the final results. In this paper, the inflow frequency representing the whole
basin is calculated based on the least square principle and the inflow data of these three
actual stations. Specifically, we set i as the index number of hydropower station and y as
the index number of the hydrological year. The actual inflow frequency of each station
in the yth year is Pi

y, which is obtained by its own frequency arrangement. If we want
to obtain the optimal inflow process of the whole basin under a certain frequency Ps, it
is equivalent to calculate the y corresponding to the smallest ey, which is shown in the
following Formula (9):

es
y =

n

∑
i=1

(ps − py
i )

2
, y = 1, 2, . . . , Y (9)

The above method is used to deduce the best inflow process of the whole basin
corresponding to the specific frequency Ps (a year). Conversely, a similar method can be
used to derive the overall inflow frequency of each year for the river basin, such as the
actual inflow frequency of the whole river basin in the year y.

Taking the inflow frequencies of the Lianghekou reservoir station, Jinxi reservoir
station and Ertan reservoir station as well as the overall inflow frequency of the whole basin
as abscissa, and the optimal yearly drawdown level as an ordinate, the scatter relationships
of the inflow frequency and the optimal yearly drawdown level are drawn, as shown
in Figure 7.

It can be seen that in the above four cases, the scatters in cases (2) and (4) are relatively
concentrated, and their correlation is good. The reason is that, in the second case, the Jinxi
station is in the middle of the whole basin, and its inflow frequency can well represent the
overall inflow of the river basin to a certain extent. In the fourth case, the overall inflow
frequency is calculated by the least square principle based on the three actual stations, and
it can also well represent the whole river basin. For cases (1) and (3), the station is upstream
of the basin in case (1), and the station is located downstream of the basin in case (3), which
both cannot represent the whole basin well. Therefore, we will take cases (2) and (4) as
examples to calculate the dynamic control bound of the yearly drawdown level.

When the dynamic control bound is calculated based on the inflow data of the Jinxi
station, as shown in the second case of Figure 8, the turning point of the scatter chart is
56.5%. The water level is the fixed value of 2785 m before this point, and it is a range after
this point, which is the control bound we need to calculate. In order to obtain this range,
based on the several most marginal points at the upper and lower boundaries of this range,
the linear function relations are established respectively, and the dynamic control bound
can be obtained by these two lines to form the upper and lower boundaries, as shown
in Figure 8.
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Figure 7. Scatter charts of inflow frequency and yearly drawdown level of Lianghekou reservoir with
different incoming flow frequencies as references.
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Figure 8. Dynamic control bound of yearly drawdown level constructed by inflow series of Jinxi
station.
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From Figure 9, it can be seen that the turning points of the upper boundary and the
lower boundary are 56.5% and 77.4%, respectively. Therefore, the upper boundary of this
dynamic control bound can be expressed as the following Formula (10):

Y =

{
97.1I + 2749.9 if I > 56.5%

2785 if I ≤ 56.5%
(10)
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Figure 9. Dynamic control bound of yearly drawdown level constructed by the overall inflow series
of the whole basin.

Correspondingly, the lower boundary of this dynamic control bound can be expressed
as the following Formula (11):

Y =

{
143.8I + 2676.4 if I > 77.4%

2785 if I ≤ 77.4%
(11)

where Y represents the yearly drawdown level and I is the inflow frequency.
When the dynamic control bound is calculated based on the overall inflow frequency

of the whole river basin, as shown in the fourth case of Figure 8, the turning point of the
scatter chart is 57.5%. The water level is the fixed value of 2785 m before this point, and
it is a range after this point, which is the control bound we need to calculate. Similarly,
in order to obtain this range, based on the several most marginal points at the upper and
lower boundaries of this range, the linear function relations are established respectively,
and the dynamic control bound can be obtained by these two lines to form the upper and
lower boundaries, as shown in Figure 9.

From Figure 10, it can be seen that the turning points of the upper boundary and the
lower boundary are 57.5% and 73.1%, respectively. Therefore, the upper boundary of this
dynamic control bound can be expressed as the following Formula (12):

Y =

{
76.22I + 2762.6 if I > 57.5%

2785 if I ≤ 57.5%
(12)
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Figure 10. Overyear average water level processes of Lianghekou reservoir under different con-
trol rules.

Correspondingly, the lower boundary of this dynamic control bound can be expressed
as the following Formula (13):

Y =

{
159.3I + 2666.3 if I > 73.1%

2785 if I ≤ 73.1%
(13)

After obtaining the above dynamic control bounds of the yearly drawdown level
expressed by subsection functions, in order to analyze and compare them rationally, it is
necessary to simulate and calculate the total power generation of the cascade system in the
following cases: the upper boundary of the dynamic control bound, the lower boundary of
the dynamic control bound, the mean value of the dynamic control bound and the original
fixed yearly drawdown level. In the simulation calculation of the first three cases, in order
to ensure the water balance between years, overyear continuous calculation is required, and
the yearly drawdown level value of each year is controlled by the established control rules.

First of all, the optimal results under the fixed water level are provided, as shown in
Table 2. Within the feasible range, a series of discrete water levels is obtained by discretizing,
and a long series of historical inflow data is taken as the input of the model. The simulation
results are as follows.

As shown in Table 2, the maximum power generation of the cascade system is
100.580 billion kWh under the fixed water level mode, and the corresponding optimal
yearly drawdown level is 2785 m, which is the dead water level of this reservoir. From this
point of view, if the fixed water level mode is to be used for the actual scheduling, the dead
water level is the best yearly drawdown level for this overyear regulation reservoir. That is,
the reservoir only has annual regulation performance at this time.

Secondly, the calculation results of the dynamic control bound of the yearly drawdown
level under three different control modes are provided, as shown in Table 3. These three
control modes are as follows: (1) the upper boundary of the control bound is used as
the control rule in the calculation; (2) the lower boundary of the control bound is used
as the control rule in the calculation; and (3) the mean value of the control bound is
used as the control rule in the calculation. For convenience of comparison, this table also
provides the optimal calculation results based on the fixed-yearly-drawdown-level mode
and multidimensional DP. It can be seen from Table 2 that the annual total power generation
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of the fixed water level mode is 100.58 billion kWh, and the percentage in Table 3 is the
increase in the total annual power generation under different scheduling rules compared to
the fixed water level mode.

Table 2. Annual power generation of cascade system under different yearly drawdown levels of
Lianghekou reservoir.

Yearly Drawdown Level/m Total Power Generation/Billion kWh

2785 100.58
2790 100.55
2795 100.49
2800 100.43
2805 100.30
2810 100.16
2815 99.95
2820 99.72
2825 99.43
2830 99.08
2835 98.64
2840 98.10
2845 97.37

Table 3. Power generation results under the three control modes based on the obtained dynamic
control bound.

Computation Method Total Power
Generation/Billion kWh

Increment Compared to Fixed
Water Level Mode

Upper boundary of the dynamic control bound constructed
based on Jinxi inflow series 101.255 0.67%

Lower boundary of the dynamic control bound constructed
based on Jinxi inflow series 101.173 0.59%

Mean value of the dynamic control bound constructed
based on Jinxi inflow series 101.283 0.70%

Upper boundary of the dynamic control bound constructed
based on the overall inflow series 101.267 0.68%

Lower boundary of the dynamic control bound constructed
based on the overall inflow series 101.183 0.60%

Mean value of the dynamic control bound constructed
based on the overall inflow series 101.290 0.71%

Fixed yearly drawdown level (determined by discretized
water levels) 100.580 0.00%

Optimal calculation results based on multidimensional DP 101.520 0.93%

As shown in Table 3, for the power generation results of the dynamic control bound
constructed based on the inflow series of the Jinxi station, the differences among the upper
boundary, lower boundary and mean value are not significant, and the maximum difference
is only 0.110 billion kWh. Similarly, for the power generation results of the dynamic control
bound constructed based on the overall inflow series of the river basin, the differences
among the upper boundary, lower boundary and mean value are not significant either, and
the maximum difference is only 0.107 billion kWh. This shows that the control result of
the yearly drawdown level is less fluctuant according to the constructed dynamic control
bound, which can well deal with the impact of inflow uncertainty on the scheduling results.
Thus, the rationality of the constructed dynamic control bound of yearly drawdown level
is well verified.
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Relatively speaking, from the results of power generation, the dynamic control bound
constructed based on the overall inflow of the river basin is slightly better than that based
on the inflow of the Jinxi station. In all the three cases where the upper boundary, lower
boundary and mean value are used as the control rules, the power generation of the former
is 0.01% higher than that of the latter.

In addition, from the comparison between the results of the fixed-yearly-drawdown-
level control mode and the results of the optimal calculation by multidimensional DP, the
maximum lifting space of control optimization of the yearly drawdown level is about
0.93%. In this paper, by building a dynamic control mode for the yearly drawdown level,
0.59~0.71% of 0.93% can be realized; that is to say, 63.4~76.3% of the benefits of the lifting
space of yearly drawdown level optimization can be realized by the dynamic control bound,
which has a very remarkable effect.

Under different control rules, the overyear average water level processes of the
Lianghekou reservoir are shown in Figure 10.

It can be seen that under different calculation methods or control modes, the overyear
average water level processes of the Lianghekou reservoir show strong regularity, especially
for the water level at the end of the dry season (end of the hydrological year). The law is
that the water level calculated by the multidimensional DP method is in the middle, the
water level calculated by the upper and lower boundaries of the dynamic control bounds
obtained through the inflow of the Jinxi station and the whole basin are located on the
two sides of the optimal value of multidimensional DP, and the water level calculated by
the upper and lower boundaries of the dynamic control bound obtained by the inflow
of the whole basin is closer to the optimal value. This law is consistent with the power
generation results in Table 3.

In addition, the water levels calculated from the mean value of the Jinxi station
and the whole-basin dynamic control bounds are not significantly different from the
results of multidimensional DP optimization, and the difference in power generation is
only 0.007 billion kWh (101.290–101.283). In the low-water-level period, the water-level
processes of these two control rules basically coincide. In the high-water-level period, the
water-level results are basically the same too, but they are all below the optimal water level
obtained by the multidimensional DP method, so the total power generation is lower than
the optimal value of multidimensional DP (101.290 < 101.520, 101.283 < 101.520).

4. Conclusions

In order to balance the spatial and interannual distribution differences of the inflow
of a river basin reasonably and improve the total power generation of a cascade reservoir
system, based on the joint scheduling model of cascade reservoirs and a multidimensional
DP algorithm, this paper studies the yearly drawdown level optimization problem of an
overyear regulation reservoir considering the influence of inflow uncertainty. A feasible
technical route for this problem is proposed, and the advantages and disadvantages of the
this technical routes are analyzed. Taking the cascade system that contains seven reservoirs
in the Yalong River basin as an example, this technical route is tested and verified. The
dynamic control bounds of the yearly drawdown level of the Lianghekou reservoir under
two selected inflow series are constructed, the simulation calculations and a detailed
comparative analysis are carried out, and the following conclusions are obtained:

(1) The inflow series of the station in the middle of the basin and the calculated overall
inflow series can both well represent the inflow situation of the whole basin. In these
two cases, the relationship between the inflow frequency and the scatter points of
the yearly drawdown level is relatively centralized and stable. The results of the
inflow series of stations that are located in the upper and lower parts of the basin are
relatively poor.

(2) Under the control mode of the fixed yearly drawdown level, the maximum annual
average power generation of the cascade system is 100.580 billion kWh, and the
corresponding optimal yearly drawdown level is 2785 m, which is the dead water
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level. That is to say, if the yearly drawdown level is to be fixed, the dead water level
is the best for the Lianghekou reservoir.

(3) For the dynamic control bounds constructed by the two selected inflow series, the
results calculated from their upper boundaries, lower boundaries and mean val-
ues are not significant, and their maximum differences are 0.110 billion kWh and
0.107 billion kWh, respectively. This shows that the results of the dynamic control
bounds constructed by the two selected inflow series both have little fluctuation,
which can well cope with the impact of inflow uncertainty on scheduling results.

(4) The dynamic control bound constructed based on the overall inflow of the river basin
is slightly better than that based on the inflow of the Jinxi station. In all the three cases
where the upper boundary, lower boundary and mean value are used as the control
rules, the power generation of the former is 0.01% higher than that of the latter.

(5) By constructing a dynamic control mode of the yearly drawdown level, 63.4%~76.3%
of the benefits of the lifting space of yearly drawdown level optimization can be
realized by the dynamic control bound proposed in this paper, which has a very
remarkable effect.
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Nomenclature

We define following parameters, variables and indices.

Db: the index of beginning-state variables of downstream
reservoirs.

De: the index of end-state variables of downstream
reservoirs.

E: power generation over the whole scheduling period
(kWh).

Ept
i: the evaporation capacity of the ith reservoir in the tth

stage (m3/s).
f t

*(V): the sum of optimal outputs from the present stage t
to the last stage T.

Ht
i: the average water head of the ith hydropower station

in the tth stage (m).
It

i: the average interval inflow of the ith reservoir in the
tth stage (m3/s).

Ki: the output coefficient of the ith hydropower station.
Nt

i: the output of the ith hydropower station in the tth
stage (kW).

Ni
t,min: the lower limit of Ni

t.
Ni

t,max: the upper limit of Ni
t.

Nt(Vt−1, Qt): the total output of the tth stage.
qt

i: the outflow through the turbines of the ith reservoir
in the tth stage (m3/s).
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Qi
t: the average discharge of the ith reservoir in the tth

stage (m3/s).
Qt: the discharge flow determined by Vt−1 and Vt.
Qt = (Qt

1, Qt
2, . . . , Qt

n)’: the decision variable vector.
Qi

t,min: the lower limit of Qi
t.

Qi
t,max: the upper limit of Qi

t.
T: the total number of stages over the whole scheduling

period.
Dt: a set of feasible decisions that satisfy the constraints

of the reservoir.
∆t: the duration of a stage (h).
Ub: the index of beginning-state variables of upstream

reservoirs.
Ue: the index of end-state variables of upstream reservoirs.
Vi

t: the storage volume of the ith reservoir in the tth
stage (m3).

Vt: the storage state at the beginning of the stage t.
Vi

t,min: the lower limit of Vi
t.

Vi
t,max: the upper limit of Vi

t.
V0

i: the storage volume of the ith reservoir at the
beginning of the first stage.

Vb
i: the storage volume of the ith reservoir at the

beginning of the whole scheduling period.
VT

i: the storage volume of the ith reservoir at the end of
the Tth stage.

Ve
i: the storage volume of the ith reservoir at the end of

the whole scheduling period.
Vt−1 = (Vt−1

1, Vt−1
2, . . . , Vt−1

n)’: the state variable vector. Vt
1, Vt

2, and Vt
3 are

discretized, i.e., (Vt
1,1, Vt

1,2, . . . , Vt
1,M),

(Vt
2,1, Vt

2,2, . . . , Vt
2,M) and (Vt

3,1, Vt
3,2, . . . , Vt

3,M).
F∗

t (Vt−1):
FT+1

∗(VT): the optimal cumulative output of a storage volume
combination VT at the end of the Tth stage (kW).

Wt
i: the average discharge of abandoned water of the ith

reservoir in the tth stage (m3/s).
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