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Abstract: Deep saline aquifers have been used for waste-fluid disposal for decades and are the
proposed targets for large-scale CO2 storage to mitigate CO2 concentration in the atmosphere. Due to
relatively limited experience with CO2 injection in deep saline formations and given that the injection
targets for CO2 sometimes are the same as waste-fluid disposal formations, it could be beneficial to
model and compare both practices and learn from the waste-fluid disposal industry. In this paper, we
model CO2 injection in the Patterson Field, which has been proposed as a site for storage of 50 Mt of
industrial CO2 over 25 years. We propose general models that quickly screen the reservoir properties
and calculate pressure changes near and far from the injection wellbore, accounting for variable
reservoir properties. The reservoir properties we investigated were rock compressibility, injection
rate, vertical-to-horizontal permeability ratio, average reservoir permeability and porosity, reservoir
temperature and pressure, and the injectant total dissolved solids (TDS) in cases of waste-fluid
injection. We used experimental design to select and perform simulation runs, performed a sensitivity
analysis to identify the important variables on pressure build-up, and then fit a regression model to
the simulation runs to obtain simple proxy models for changes in average reservoir pressure and
bottomhole pressure. The CO2 injection created more pressure compared to saline waste-fluids,
when similar mass was injected. However, we found a more significant pressure buildup at the
caprock-reservoir interface and lower pressure buildup at the bottom of the reservoir when injecting
CO2 compared with waste-fluid injection.

Keywords: CO2 sequestration; waste-fluid injection design; carbon capture utilization and storage;
CCUS; US midcontinent; Kansas

1. Introduction

World energy needs are expected to accelerate carbon emissions and increase CO2
atmospheric concentrations over the next decades [1]. Carbon Capture, Utilization and
Storage (CCUS) is a basket of technologies that could help to mitigate global CO2 emissions
and induce economic development. For CCUS to contribute to reducing the accumulation
of CO2 in the atmosphere, it must operate at a large scale, one comparable to global oil
production [2,3]. In the USA, the recently expanded U.S.A. Internal Revenue Service Section
45Q tax credits (45Q) and multiple other initiatives have resulted in a renewed interest in
CCUS technology [4,5].

Deep saline aquifers (>800 m) are important candidates for CO2 disposal because they
are common and, if characterized properly, offer low risks associated with injection and
storage. One risk that can exist with this class of reservoirs is when they overlie crystalline
basement rocks that contain faults at critical equilibrium [6]. Seismicity can be induced if
waste fluids cause enough of a pressure change to upset these basement faults. This has
occurred in Texas [7], Oklahoma [8], and to a lesser extent in Kansas [9]. To address concerns
with waste-fluid injection, it is necessary to model the effect of reservoir pressure increase on
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CO2 movement into geological layers [1]. Pressure changes due to waste-fluid injection also
could limit storage capacity and injectivity by causing pressure interference and overlap
when multiple injection wells are operating in close proximity [10]. Three key reservoir
metrics for the success of a waste-fluid injection project are: (1) injection capacity for each
well (injectivity), (2) reservoir storage efficiency/capacity, and (3) long-term containment
(i.e., ensuring injected fluid stays within the storage formation). All of these properties
are influenced by pressure change in the reservoir [11–13]. Therefore, a comprehensive
understanding of pressure buildup in and propagation through the reservoir are keys to
the success of any waste-fluid injection project.

For this study, we used synthetic yet representative models for the Patterson Field,
which is the proposed target for injection and storage of 50 Mt of CO2 over 25 years. Patter-
son Field is located in western Kansas and consists of three saline formations, including
the Arbuckle Group aquifer, which is the target injection zone for the current study. The
Cambro-Ordovician Arbuckle aquifer is a giant heterogeneous and fractured dolomitic
aquifer spanning several states across the Southern USA Midcontinent region [14]. The
Arbuckle is the principal disposal zone in Kansas and has been used for waste-fluid dis-
posal for several decades. Currently, thousands of wells inject hundreds of millions of tons
of waste-fluid into this aquifer [9]. The aquifer is also favorably located between multiple
major sources of CO2 emissions, existing pipeline systems, and proposed pipeline infras-
tructures to the major storage and EOR sites [15]. A detailed study of 10 sites in Kansas
showed that these sites have the potential to store 780 million metric tons of supercritical
CO2 in the Arbuckle aquifer alone [16]. If the need for CO2 storage grows, interest in the
Arbuckle aquifer would likely expand beyond the 10 sites already identified. However,
detailed geological and numerical modeling of CO2 injection into each Arbuckle area is
time consuming and computationally expensive when applied on a case-by-case basis. In
addition, many reservoir parameters, such as porosity and permeability, have uncertainty
during simulation due to the geological heterogeneity of the Arbuckle. For these reasons,
researchers often favor analytical solutions to understand the generic underlying physics
of a system before proceeding to detailed case-by-case simulation [17,18]. The problem
with analytical solutions, however, is that the inherent assumptions made in simplifying
the system can also lead to debate as to their applicability [19]. An alternative approach is
to run numerical simulations and translate the results into generic “proxy models” (also
known as reduced-physics models or predictive models), which represent the original
simulation results. In this approach, a combination of numerical simulations and statistical
methods is used to develop models that can quickly screen and select appropriate sites for
CO2 injection [20].

Simplified-physics proxy modeling has been used previously in the context of CO2
injection into saline aquifers [21,22]. Anbar and Akin [22] used Latin-Hypercube sampling
and regression models to develop predictive models for quick estimation of CO2 storage
capacity in deep saline aquifers [22]. They observed that linear least-square models per-
formed better than their nonlinear counterpart. Schuetter et al. [21] compared different
types of proxy models, including polynomial regression, kriging, MARS (multivariate
adaptive regression spline), AVAS (additivity and variance stabilization), and TPS (thin
plate spline) [21]. They performed k-fold cross validation on the developed models and
concluded that for predicting cumulative volume of CO2 injected and maximum CO2
flux entering the caprock, the kriging formulation yielded the most favorable root mean
squared error (RMSE). Schuetter and Mishra [23] compared several sampling techniques
for modeling plume radius and total storage efficiency, including Box—Behnken and Latin-
Hypercube, and found that the Box—Behnken sampling method performed the best for
sampling the parameter space [23]. They also found that the kriging formulation provided
only marginal advantage over the quadratic regression formulation using LASSO (least
absolute shrinkage and selection operator) and recommended the latter methods because of
efficiency and simplicity. Ganesh and Mishra [24] developed simplified-physics proxy mod-
els for CO2 storage and plume extent as a function of reservoir and caprock properties [24].



Water 2023, 15, 648 3 of 17

They considered confined heterogeneous reservoirs for their modeling and assumed each
well ultimately established a closed drainage area. They conclude that their simplified
physics-based model can reasonably predict storage efficiency (Es) and could be used as an
alternative for rapid feasibility, system design and permitting CO2 sequestration sites.

The objective of this work is to develop and validate generic proxy models for calculat-
ing bottomhole and average reservoir pressure buildup for CO2 injection and low-salinity
water injection into deep saline aquifers. Because of limited experience with CO2 injec-
tion and similarities between CO2 injection and waste-fluid disposal practices, this work
compares these two injection practices. This paper proceeds as follows: First, we provide
background information about injection in Kansas. Data from the Patterson site, located
in western Kansas, are used to create numerical models with a range of uncertainty in the
model parameters. We run full-physics numerical simulation selected by an experimental
design scheme and perform a sensitivity analysis to identify important properties that
influence the response (i.e., pressure build-up). We then create proxy regression models
using the important features and use the models to perform a Monte Carlo uncertainty
analysis simulation. Our study showed that when injecting CO2, the pressure buildup
was higher at the top of the aquifer compared with the buildup associated with injecting a
similar mass of low-salinity water. The presented statistical models can be used as an early
screening tool to screen large databases of reservoirs to select the most attractive ones for
CO2 storage. These models are especially useful when geological data on the reservoir are
limited (e.g., deep saline aquifers across the US midcontinent).

2. Background
2.1. Injection in Kansas

The Environmental Protection Agency (EPA) regulates several classes of waste fluid
injection wells in the USA unless states have been granted primacy over some (or all) [25]
of these classes. Classes I, II, and VI wells are of relevance to this study. Class I wells inject
municipal or industrial waste fluids. Class II wells inject petroleum field waste fluids or
conduct enhanced oil recovery (EOR) operations. Class VI wells inject CO2 for deep saline
storage or EOR.

Every year, more than 2400 injection Class II and 49 Class I wells across Kansas
dispose of more waste-fluid into the Arbuckle formation alone (~120 Mt/year) than a
commercial mass of CO2 (~2 Mt/year) that may be injected into the Arbuckle, Viola, and
Osage Formations [9]. A commercial CO2 project requires injecting 50 Mt over 25 years (or
~2 Mt/year) into these formations to obtain reasonable injectivity and minimize the pressure
buildup around each injection well. Assuming the Arbuckle would accept 50% of the total
injection using six Class VI injection wells, the injected volume would be 0.17 Mt/year into
the Arbuckle in each well. In 2016, 135 injection wells (20 Class I wells and 114 Class II wells)
across Kansas exceeded this rate (Figure 1). The Arbuckle formation at the Patterson site
has a temperature of 50 ◦C and a pressure of 11.8 MPa, a condition in which CO2 density
is ≈500 kg/m3, half that of water (assuming water density of 1000 kg/m3). Pressure
change is a function of volume change and a volume-equivalent amount of water for the
0.17 Mt/year CO2 would be 0.34 Mt/year. Currently, 42 wells (16 Class I wells and 26 Class
II wells) across Kansas inject more than 0.34 Mt/year (Figure 2). Because the Arbuckle
aquifer is hydraulically connected to the critically stressed basement [8], one challenge
is to determine the rate at which CO2 could be injected without resulting in a pressure
buildup that could initiate seismicity on preexisting faults. Thus, developing statistical
proxy models to estimate pressure buildup in the well and the reservoir is essential.
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Figure 1. (a) Wells injecting more than 0.17 Mt/year of waste fluid into the Arbuckle aquifer across 
Kansas. The red triangles show Class I and the blue triangles show Class II injection wells. (b) His-
togram of injection rates for the wells injecting >0.17 Mt/years waste-fluid across Kansas (circles 
indicate outliers). 
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Kansas. The red triangles show Class I and the blue triangles show Class II injection wells. (b) His-
togram of injection rates for the wells injecting >0.34 Mt/years waste-fluid across Kansas (circles 
indicate outliers). 

2.2. Western Kansas 
Figure 3a shows the Patterson area (Kearny County, western Kansas) wells that inject 

into the Arbuckle aquifer and their injection volumes, including the City of Lakin well 
(KS-05-093-002) for which fall-off test measurements are available [26]. The right figures 
show the current injection volume in the Patterson area. Figure 3b shows the injection 
volumes into the Arbuckle aquifer around KS-05-093-002. The rate of injection within 25 
km of the well is less than 0.1 Mt/year (the CO2 project roughly requires 0.17 Mt/year per 
well into the Arbuckle and 1 Mt/year into all six wells, which are less than 25 km apart). 
The total injection into this aquifer from 2000 to 2017 (17 years) within 35 km of the well 
amounted to less than 4.5 Mt (a CO2 storage project would require ~17 Mt injection into 
the Arbuckle over 17 years). It is advantageous to inject CO2 in western Kansas, specifi-
cally at the Patterson site (Figure 3b), because it has low historical and currently active 
injection volumes. One uncertainty for the Patterson site, however, is how injecting 50 Mt 
of mass would affect the pressure of the Arbuckle aquifer, when it would represent an 
order of magnitude higher injection rate and cumulative injection than all previous injec-
tions. Reservoir simulation is required to address this uncertainty. In this study we use a 
statistical proxy model to predict the pressure increase at the injection well and through-
out the reservoir for low-certainty model parameters and under different injection scenar-
ios. 

Figure 1. (a) Wells injecting more than 0.17 Mt/year of waste fluid into the Arbuckle aquifer
across Kansas. The red triangles show Class I and the blue triangles show Class II injection wells.
(b) Histogram of injection rates for the wells injecting >0.17 Mt/years waste-fluid across Kansas
(circles indicate outliers).
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2.2. Western Kansas

Figure 3a shows the Patterson area (Kearny County, western Kansas) wells that inject
into the Arbuckle aquifer and their injection volumes, including the City of Lakin well
(KS-05-093-002) for which fall-off test measurements are available [26]. The right figures
show the current injection volume in the Patterson area. Figure 3b shows the injection
volumes into the Arbuckle aquifer around KS-05-093-002. The rate of injection within
25 km of the well is less than 0.1 Mt/year (the CO2 project roughly requires 0.17 Mt/year
per well into the Arbuckle and 1 Mt/year into all six wells, which are less than 25 km
apart). The total injection into this aquifer from 2000 to 2017 (17 years) within 35 km
of the well amounted to less than 4.5 Mt (a CO2 storage project would require ~17 Mt
injection into the Arbuckle over 17 years). It is advantageous to inject CO2 in western
Kansas, specifically at the Patterson site (Figure 3b), because it has low historical and
currently active injection volumes. One uncertainty for the Patterson site, however, is how
injecting 50 Mt of mass would affect the pressure of the Arbuckle aquifer, when it would
represent an order of magnitude higher injection rate and cumulative injection than all
previous injections. Reservoir simulation is required to address this uncertainty. In this
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study we use a statistical proxy model to predict the pressure increase at the injection
well and throughout the reservoir for low-certainty model parameters and under different
injection scenarios.
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Figure 3. Patterson area (a) wells that inject into the Arbuckle aquifer in western Kansas and their
injection volumes, including the City of Lakin well for which fall-off test measurements are available
(circles show 10 km increments). Red upward triangles represent Class I wells for which more data are
available, and downward triangles represent Class II injection wells. Injection rate (b) and cumulative
injection (c) volume in the Patterson area are also shown.

3. Methods

The strategy in this study was to use typical geological and reservoir properties data
for the Arbuckle aquifer in the Patterson area in western Kansas to create representative nu-
merical reservoir models for the area. A numerical compositional simulator package, GEM
(CMG Ltd., Canada, cmgl.ca/gem), was used for simulations. Different dynamic models
were built by sampling the parameter space. We considered two similar mass injection
scenarios: (1) CO2 injection and (2) low-salinity waste-fluid injection. Two responses are
investigated: (1) bottomhole pressure increase (∆p) in the well after 25 years of injection and
(2) average pressure increase in the reservoir (averaged over the entire reservoir volume)
after 25 years of injection. The reservoir is connected to an open analytical aquifer on each
side and to a low permeability/low porosity analytical aquifer at the bottom (representing
the Precambrian basement). The reservoir is sealed from top.

3.1. Workflow for Creating Models

The workflow for creating the models consisted of the following steps: (A) sample the
parameter space using experimental design, (B) run the full simulation using the sampled
parameter values, (C) perform the sensitivity analysis to distinguish important parameters,
(D) translate the simulations into proxy models using regression analysis, and (E) use the
proxy models instead of simulation to perform Monte Carlo simulation on the probability
distributions assigned to the parameters (all parameter distributions are assumed uniform).
A brief description of each step follows.

3.2. Base Reservoir Model

The average reservoir permeability is expected to be a known reservoir parameter
obtained from core measurements or well tests (DST or fall-off tests). For this study,
reservoir-scale permeability of the Arbuckle was estimated to be 500 mD based on fall-
off test results [26]. For creating generic statistical models, simple Cartesian grid blocks
(15 × 15 × 25) with incremental distances of 200 m × 200 m × 10 m were used for the
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base case. CO2 or low-salinity water was injected at a similar mass rate of 0.17 Mt/year
for 25 years, after which the well is shut in. Because experimental data on drainage and
imbibition processes were unavailable for the Patterson Field, relative permeability and
capillary pressure curves [27] (Figure 4) and reservoir properties (Table 1) obtained from
other field studies on the Arbuckle aquifer were used in the modeling. Salinity was used
only in the waste-fluid injection modeling. Rowe-Chau and Kestin correlations were used
to calculate water density and water viscosity from salinity values, respectively [28]. To
simplify results, this study did not consider temperature gradient as a parameter because
studies have shown that the cooling front extends only a few hundred of meters from the
injection well after decades of injection [29].
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Table 1. Properties used in the numerical simulation.

Parameter Minimum Base Case Maximum

Rock compressibility (1/kPa) 1 × 10−8 1 × 10−8 1 × 10−7

Injection rate (m3/day) 300 450 600

Kz/Kx 0.05 0.1 1

Permeability (mD) 200 500 700

Porosity 0.05 0.1 0.15

Temperature (◦C) 30 50 60

Pressure (kPa) 12,000 15,000 18,000

Salinity (mg/L) 1000 5000 30,000

Relative permeability and capillary pressure data were based on a field study of the
Arbuckle aquifer in the Wellington Field in south-central Kansas and the Cutter Field in
southwestern Kansas, for both of which KGS hosts continuous coring, modern wireline well
log data including nuclear magnetic resonance (NMR), and well test data [30]. Continuous
core data and NMR for Wellington-KGS-1-32 were used to derive generalized capillary
pressure curves and irreducible water saturations. Based on the estimated end points and
data from the Cutter-KGS-1 well, nine sets of relative permeability and capillary pressure
curves for both drainage and imbibition were generated for the Arbuckle reservoir using a
formula that correlates them to the end points and the reservoir quality index (RQI) [27].

3.3. Boundary Condition

We assumed open boundary conditions because the Arbuckle aquifer is a regional,
hydraulically connected carbonate aquifer, which can be assumed to be an infinite-acting
aquifer. The reservoir model is connected to an analytical Carter—Tracy aquifer in which
leakage is allowed [31]. The boundary aquifer has the same properties as the reservoir
model. The reservoir model is also connected to an analytical Carter—Tracy aquifer with
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low porosity (1%) and permeability (1 mD) at the bottom, which represents the Arbuckle
connection to the crystalline basement. The flow leaks from the Arbuckle into the analytical
aquifers when the pressure is high in the reservoir and due to the hydrostatic pressure
gradient between the reservoir and the basement rock, which is caused by fluid injection.

3.4. Initial Condition

The initial condition constitutes a pressure of 11.8 MPa at a depth of 1800 m and
isothermal condition with uniform temperature of 50 ◦C.

3.5. Defining the Response

The study defines response as the pressure buildup around the wellbore (i.e., ∆BHP)
and average pressure buildup in the reservoir (∆Pavg) at the end of the injection period
(25 years).

3.6. Box—Behnken Design

Two response surface methods are frequently used for developing second-degree
quadratic models: central composite design and Box—Behnken design (Figure 5) [32,33].
These methods differ in the sampled parameters for a three-dimensional parameter space, in
which the corners of the cubes show the maximum and minimum values for the parameters.
The central composite design selects the corners while the Box—Behnken design selects
parameter averages. We investigated seven factors (i.e., model parameters), listed in Table 1,
and used a central composite design because although the central composite design (CCD)
requires more runs, it is more accurate at the simulated points. The CCD experimental
design required 81 training and 4 testing runs (total of 85 runs) for these seven parameters
used. The sampled models were run in batches of 25 runs and each batch took ~8 min
to complete.

Water 2023, 15, x FOR PEER REVIEW 7 of 17 
 

 

analytical aquifers when the pressure is high in the reservoir and due to the hydrostatic 
pressure gradient between the reservoir and the basement rock, which is caused by fluid 
injection. 

3.4. Initial Condition 
The initial condition constitutes a pressure of 11.8 MPa at a depth of 1800 m and 

isothermal condition with uniform temperature of 50 °C. 

3.5. Defining the Response 
The study defines response as the pressure buildup around the wellbore (i.e., ∆BHP) 

and average pressure buildup in the reservoir (∆Pavg) at the end of the injection period (25 
years). 

3.6. Box—Behnken Design 
Two response surface methods are frequently used for developing second-degree 

quadratic models: central composite design and Box—Behnken design (Figure 5) [32,33]. 
These methods differ in the sampled parameters for a three-dimensional parameter space, 
in which the corners of the cubes show the maximum and minimum values for the pa-
rameters. The central composite design selects the corners while the Box—Behnken design 
selects parameter averages. We investigated seven factors (i.e., model parameters), listed 
in Table 1, and used a central composite design because although the central composite 
design (CCD) requires more runs, it is more accurate at the simulated points. The CCD 
experimental design required 81 training and 4 testing runs (total of 85 runs) for these 
seven parameters used. The sampled models were run in batches of 25 runs and each 
batch took ~8 min to complete. 

 
Figure 5. Two types of experimental designs. 

3.7. Sensitivity Analysis 
This study employed two methods to determine which input parameters have the 

greatest effect on reservoir response and to discern important factors: (1) Sobol analysis 
[34] and (2) Tornado charts. 

3.8. Regression Model 
A simple quadratic regression equation was fitted (Equation (1)) for proxy modeling 

the simulation results: 

𝑦𝑦 = 𝑎𝑎0 + �𝑎𝑎𝑗𝑗𝑥𝑥𝑗𝑗

𝑘𝑘

𝑗𝑗=1

+ �𝑎𝑎𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗2
𝑘𝑘

𝑗𝑗=1

          (1) 

Figure 5. Two types of experimental designs.

3.7. Sensitivity Analysis

This study employed two methods to determine which input parameters have the
greatest effect on reservoir response and to discern important factors: (1) Sobol analysis [34]
and (2) Tornado charts.

3.8. Regression Model

A simple quadratic regression equation was fitted (Equation (1)) for proxy modeling
the simulation results:

y = a0 +
k

∑
j=1

ajxj +
k

∑
j=1

ajjx2
j (1)
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3.9. Model Reduction and Testing

After the regression models were created, the study used a model-reducing algorithm
(Best Subset Selection [35]) to determine the best reduced model. A reduced model has a
minimum number of terms. Final models were evaluated using testing runs.

3.10. Uncertainty Quantification

Each parameter was assigned a uniform distribution in the range of its minimum and
maximum values. Then, a Monte Carlo approach was used to sample the parameter space.
The sampled parameters were used in the reduced proxy model to calculate uncertainty in
the response.

4. Results
4.1. Base Case and Response

The pressure increase was simulated around the wellbore and in the reservoir for
the base CO2 injection and low-salinity water injection cases under equivalent mass rate
(≈1.7 Mt/year as is planned for the Patterson site) after 5, 15, and 25 years of injection
(Figure 6). Unlike low-salinity water, in which the pressure increases bottom-up, when
injecting CO2 the pressure increased top-down (Figure 6). There are three reasons for
this phenomenon. First, hydrostatic pressure is lower at the top of the reservoir and CO2
encounters less resistance to flowing into the reservoir, and second, CO2 has lower density
at lower pressures which exist at the top of the reservoir, and third, buoyancy forces keep
CO2 flowing at the top of the reservoir. In contrast, low-salinity water has higher density
than both reservoir fluids and CO2 so it flowed downward as soon as it was injected
into the formation. The maximum pressure buildup for CO2 injection was at the topmost
layer, while the maximum pressure buildup for low-salinity water injection occurred at the
bottommost layer, where the reservoir is connected to the analytical aquifer at the bottom.
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Figure 6. Base case simulations showing the pressure plume evolution around the wellbore and
in the reservoir after 5, 15, and 25 years for equivalent mass injection of (a–c) CO2 and (d–f) low-
salinity water.

Figure 7 shows the defined response (pressure buildup in the wellbore and the
reservoir) for the base case for supercritical CO2 injection (Figure 7a) and water injec-
tion (Figure 7b). For the base case, the maximum pressure buildup in the reservoir when
injecting CO2 was ≈120 kPa, while the maximum pressure buildup when injecting low-
salinity water was ≈35 kPa. For both cases, the pressure showed a quick initial increase
followed by a subsequent decrease in pressure rate (gradient in time). Because CO2 has
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lower density, its corresponding wellbore pressure buildup was higher. The pressure in
both wellbore and reservoir for the CO2 injection case quickly declined in injection well
pressure. During water injection, the injection well pressure increased monotonically com-
pared with the CO2 injection because of small difference between viscosities, densities, and
compressibility of resident brine and injected water.

Water 2023, 15, x FOR PEER REVIEW 9 of 17 
 

 

and reservoir for the CO2 injection case quickly declined in injection well pressure. During 
water injection, the injection well pressure increased monotonically compared with the 
CO2 injection because of small difference between viscosities, densities, and compressibil-
ity of resident brine and injected water. 

 
Figure 7. Base case simulation showing the pressure buildup in the bottomhole and the reservoir 
for (a) CO2 injection and (b) low-salinity water injection. 

4.2. Sensitivity Analysis 
The Sobol sensitivity analysis (Figure 8) was used to estimate the contribution of each 

factor in predicting the pressure buildup at bottomhole (a) and average reservoir-wide (b) 
for CO2 injection and similarly for water injection (c,d). Permeability has the highest con-
trol on the pressure buildup for both fluid types. When injecting CO2, porosity is the most 
influential property on reservoir pressure buildup and the second-most influential factor 
on pressure buildup near the wellbore, but appears to be less influential when injecting 
water. The effects of reservoir pressure and permeability ratio on CO2 injection are small 
but they cannot be ignored for modeling because they constitute more than 1% contribu-
tion using the Sobol analysis. The effect of rock compressibility in both cases is insignifi-
cant. Reservoir temperature affects bottom hole pressure increase when injecting water, 
but not CO2 (Figure 8b,d). However, the overall reservoir pressure increase after 25 years 
of CO2 injection mostly depends on initial reservoir pressure (Figure 8b). As expected, the 
injection rate is important for measuring pressure buildup in all cases.  

Tornado sensitivity charts (Figure 9) can be used to detail the effect of important pa-
rameters (chosen using the Sobol method, Figure 8) on pressure buildup. For the CO2 in-
jection case (Figure 9a–b), the increase in permeability and porosity decreases BHP and 
average reservoir pressure, respectively. An increase in temperature decreases BHP be-
cause it reduces CO2 viscosity. In addition, an increase in pressure decreases pressure 
buildup in the reservoir because CO2 has higher density at higher pressures, requiring less 
storage volume. Although many factors are involved in CO2 storage, ultimately only these 
important factors are required for proxy modeling. Similarly, for the low-salinity water 
injection case (Figure 9c–d), an increase in permeability and temperature decreases the 
pressure buildup in the bottomhole and the reservoir. 
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(a) CO2 injection and (b) low-salinity water injection.

4.2. Sensitivity Analysis

The Sobol sensitivity analysis (Figure 8) was used to estimate the contribution of each
factor in predicting the pressure buildup at bottomhole (a) and average reservoir-wide
(b) for CO2 injection and similarly for water injection (c,d). Permeability has the highest
control on the pressure buildup for both fluid types. When injecting CO2, porosity is the
most influential property on reservoir pressure buildup and the second-most influential
factor on pressure buildup near the wellbore, but appears to be less influential when
injecting water. The effects of reservoir pressure and permeability ratio on CO2 injection
are small but they cannot be ignored for modeling because they constitute more than 1%
contribution using the Sobol analysis. The effect of rock compressibility in both cases is
insignificant. Reservoir temperature affects bottom hole pressure increase when injecting
water, but not CO2 (Figure 8b,d). However, the overall reservoir pressure increase after
25 years of CO2 injection mostly depends on initial reservoir pressure (Figure 8b). As
expected, the injection rate is important for measuring pressure buildup in all cases.

Tornado sensitivity charts (Figure 9) can be used to detail the effect of important
parameters (chosen using the Sobol method, Figure 8) on pressure buildup. For the
CO2 injection case (Figure 9a,b), the increase in permeability and porosity decreases BHP
and average reservoir pressure, respectively. An increase in temperature decreases BHP
because it reduces CO2 viscosity. In addition, an increase in pressure decreases pressure
buildup in the reservoir because CO2 has higher density at higher pressures, requiring
less storage volume. Although many factors are involved in CO2 storage, ultimately only
these important factors are required for proxy modeling. Similarly, for the low-salinity
water injection case (Figure 9c,d), an increase in permeability and temperature decreases
the pressure buildup in the bottomhole and the reservoir.
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Figure 9. Tornado sensitivity charts for the effect of important parameters on pressure buildup:
(a) bottomhole pressure buildup for supercritical CO2 injection, (b) average reservoir pressure buildup
for supercritical CO2 injection, (c) bottomhole pressure buildup for low-salinity water injection, and
(d) average reservoir pressure buildup for low-salinity water injection (see Table 1 for the ranges).
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4.3. Proxy Models

Simulated wellbore pressure buildup can be compared to pressure buildup predicted
by the proxy model (Figure 10). Training runs (blue dots in Figure 10) fall almost on the
unity line, indicating the model is adequate for reproducing the simulation runs. The four
testing runs (green dots in Figure 10) for the models also fall largely within the 95% confi-
dence interval, indicating that the developed models are adequate for predicting simulation
runs. In addition, these models for predicting bottomhole pressure buildup perform better
than the models developed for predicting average reservoir pressure buildup.

Water 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

4.3. Proxy Models 
Simulated wellbore pressure buildup can be compared to pressure buildup predicted 

by the proxy model (Figure 10). Training runs (blue dots in Figure 10) fall almost on the 
unity line, indicating the model is adequate for reproducing the simulation runs. The four 
testing runs (green dots in Figure 10) for the models also fall largely within the 95% con-
fidence interval, indicating that the developed models are adequate for predicting simu-
lation runs. In addition, these models for predicting bottomhole pressure buildup perform 
better than the models developed for predicting average reservoir pressure buildup. 

 
Figure 10. Simulated values versus the values predicted by the proxy model. Blue and green dots 
indicate training and verification runs, respectively, and dotted lines represent the 95% confidence 
interval around the regression model for (a) bottomhole pressure buildup for supercritical CO2 in-
jection, (b) average reservoir pressure buildup for supercritical CO2 injection, (c) bottomhole pres-
sure buildup for low-salinity water injection, and (d) average reservoir pressure buildup for low-
salinity water injection. Factors identified as important were used to create the proxy statistical 
model. A simple quadratic regression was used to connect these parameters to the response. 

Equations (2) and (3) are the proxy equations for pressure buildup in the wellbore 
and reservoir, respectively, due to CO2 injection (units are as indicated in Table 1 and 
abbreviations are indicated in abbreviation). 

Δ𝐵𝐵𝐵𝐵𝐵𝐵 =  (−9.6 × 101) + (5.9 × 10−2𝑅𝑅𝑖𝑖) + (−8 × 101𝐾𝐾𝑉𝑉𝑉𝑉) + (−7.7 × 10−1𝐾𝐾) + (1.2 × 103𝜙𝜙) + (1.3 × 101𝑇𝑇)

+ (3.1 × 10−3𝑃𝑃) + (6.8 × 101𝐾𝐾𝑉𝑉𝑉𝑉2 ) + (5.5 × 101𝐾𝐾2) + (4.4 × 103𝜙𝜙2) + (−1.4 × 101𝑇𝑇2) 
(2) 

where Ri = injection rate (m3/day), KVH = permeability ratio (unitless), K = permeability 
(millidarcies), F = porosity (fraction), T = temperature (°C), and P = pressure (kPa) 

𝛥𝛥𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = (1.3 × 101) + (6.8 × 10−3 𝑅𝑅𝑖𝑖) + (−2.1 × 102 𝜙𝜙) + (−3.1 × 10−4𝑃𝑃) + (8.1 × 102 𝜙𝜙2) (3) 

in which the permeability is in mD, injection rate is in m3/day, temperature is in °C, and 
pressure is in kPa. Equations (4) and (5) are the proxy equations for pressure buildup in 
the wellbore and reservoir, respectively, due to low-salinity water injection. 

Δ𝐵𝐵𝐵𝐵𝐵𝐵 = (1.6 × 102) + (1 × 10−1𝑅𝑅𝑖𝑖) + (−4.3 𝐾𝐾) + (−9.3 × 10−1𝑇𝑇) + (3.6 × 10−4𝐾𝐾2) (4) 
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interval around the regression model for (a) bottomhole pressure buildup for supercritical CO2

injection, (b) average reservoir pressure buildup for supercritical CO2 injection, (c) bottomhole
pressure buildup for low-salinity water injection, and (d) average reservoir pressure buildup for
low-salinity water injection. Factors identified as important were used to create the proxy statistical
model. A simple quadratic regression was used to connect these parameters to the response.

Equations (2) and (3) are the proxy equations for pressure buildup in the wellbore
and reservoir, respectively, due to CO2 injection (units are as indicated in Table 1 and
abbreviations are indicated in abbreviation).

∆BHP =
(
−9.6 × 101)+ (

5.9 × 10−2Ri
)
+

(
−8 × 101KVH

)
+

(
−7.7 × 10−1K

)
+

(
1.2 × 103φ

)
+

(
1.3 × 101T

)
+
(
3.1 × 10−3P

)
+

(
6.8 × 101K2

VH
)
+

(
5.5 × 101K2)+ (

4.4 × 103φ2)+ (
−1.4 × 101T2) (2)

where Ri = injection rate (m3/day), KVH = permeability ratio (unitless), K = permeability
(millidarcies), F = porosity (fraction), T = temperature (◦C), and P = pressure (kPa)

∆Pavg =
(

1.3 × 101
)
+

(
6.8 × 10−3 Ri

)
+

(
−2.1 × 102 φ

)
+

(
−3.1 × 10−4P

)
+

(
8.1 × 102 φ2

)
(3)

in which the permeability is in mD, injection rate is in m3/day, temperature is in ◦C, and
pressure is in kPa. Equations (4) and (5) are the proxy equations for pressure buildup in the
wellbore and reservoir, respectively, due to low-salinity water injection.
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∆BHP =
(

1.6 × 102
)
+

(
1 × 10−1Ri

)
+ (−4.3 K) +

(
−9.3 × 10−1T

)
+

(
3.6 × 10−4K2

)
(4)

∆Pavg = (1.1) +
(

6.5 × 10−4Ri

)
−

(
3.0 × 10−3K

)
+

(
−6.4 × 10−3T

)
+

(
2.5 × 10−6K2

)
(5)

4.4. Uncertainty Analysis

Because of a lack of a priori knowledge for the distribution of the unknown parameters,
we assigned a uniform distribution to all parameters. We used the developed model in
a Monte Carlo simulation approach to understand the uncertainty in BHP increase and
average reservoir pressure increase after 25 years (Figure 11).

Water 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

𝛥𝛥𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = (1.1) + (6.5 × 10−4𝑅𝑅𝑖𝑖) − (3.0 × 10−3𝐾𝐾) + (−6.4 × 10−3𝑇𝑇) + (2.5 × 10−6𝐾𝐾2). (5) 

4.4. Uncertainty Analysis 
Because of a lack of a priori knowledge for the distribution of the unknown parame-

ters, we assigned a uniform distribution to all parameters. We used the developed model 
in a Monte Carlo simulation approach to understand the uncertainty in BHP increase and 
average reservoir pressure increase after 25 years (Figure 11). 

 
Figure 11. Uncertainty in the pressure buildup using 65,000 Monte Carlo simulation runs: (a) bot-
tomhole pressure buildup for supercritical CO2 injection, (b) average reservoir pressure buildup for 
supercritical CO2 injection, (c) bottomhole pressure buildup for low-salinity water injection, and (d) 
average reservoir pressure buildup for low-salinity water injection. 

4.5. Comparison with Detailed Geological Modeling and Numerical Simulation Results 
Static geological reservoir models were constructed to simulate CO2 injection into 

each reservoir interval (Osage-Warsaw, Viola, Arbuckle) using numerical simulation. The 
structural framework was built by using elevation data for top and base of reservoir from 
20 wells. Porosity and permeability were modeled away from wellbore petrophysical logs 
and core analysis data using Kriging. The static geological modeling had an average per-
meability of ~15 mD obtained from well logs. The static models were then simulated nu-
merically and results show a pressure increase of 4 MPa (600 psi), which mostly occurs 
near wellbores (Figure 12). The proxy models developed for this study use a median per-
meability of 500 mD, obtained from fall-off well test measurements in the area, which is 
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Figure 11. Uncertainty in the pressure buildup using 65,000 Monte Carlo simulation runs: (a) bot-
tomhole pressure buildup for supercritical CO2 injection, (b) average reservoir pressure buildup for
supercritical CO2 injection, (c) bottomhole pressure buildup for low-salinity water injection, and (d)
average reservoir pressure buildup for low-salinity water injection.

4.5. Comparison with Detailed Geological Modeling and Numerical Simulation Results

Static geological reservoir models were constructed to simulate CO2 injection into
each reservoir interval (Osage-Warsaw, Viola, Arbuckle) using numerical simulation. The
structural framework was built by using elevation data for top and base of reservoir from
20 wells. Porosity and permeability were modeled away from wellbore petrophysical
logs and core analysis data using Kriging. The static geological modeling had an average
permeability of ~15 mD obtained from well logs. The static models were then simulated
numerically and results show a pressure increase of 4 MPa (600 psi), which mostly occurs
near wellbores (Figure 12). The proxy models developed for this study use a median
permeability of 500 mD, obtained from fall-off well test measurements in the area, which is
40 times more than the value suggested by well logs. As mentioned, permeability was the
most important factor controlling the pressure increase near the wellbore (Figure 8). The
proxy models suggest a pressure increase of 0.125 MPa for the Patterson area (Figure 11a),
roughly 1/40th of the pressure increase obtained from the static geological model. This
ratio corresponds to the permeability ratio of 1/40th, used in the static geological model
and indicates consistency between the two modeling approaches.
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5. Discussion

The overpressure in the wellbore and pressure plume in the reservoir are expected to
diffuse and disappear shortly after injection stops (Figure 7). The hydrological properties
of the disposal zones (i.e., porosity, permeability, and injection rate) control the pressure
increase and propagation in the subsurface, ultimately determining the long-term fate of
the CO2 and associated risks (Figure 8). Porosity and permeability, which are geological
factors, and to a lesser extent injection rate, which is an operational factor, are also the
factors with the greatest uncertainty in this (or any) project. As porosity or permeability
increase, the pressure buildup around the wellbore decreases because the injected fluid
can advect away from the wellbore more easily (Figure 9). Because the Arbuckle is a
fractured carbonate aquifer, there is a high uncertainty in the distribution of permeability
and porosity in the aquifer, especially for “extreme permeability” features like fractures.
Porosity, in particular, controls storage capacity and decreases with depth because of
compaction [36]. Another important factor modifying the absolute permeability values for
CO2 or waste fluid is the relative permeability corresponding to each injection scenario,
which was assumed to be fixed in this study (Figure 4). In general, relative permeability
curves are uncertain, have heterogeneity for carbonate reservoirs, and are difficult to obtain.
In all simulations run, the fluid was injected into the entire wellbore interval exposed to the
reservoir. However, because of lower hydrostatic pressure at the top of the aquifer, and
CO2’s lower compressibility and density, it flowed more easily into the top of the aquifer
until the pressure increase overcame the hydrostatic gradient (Figure 6). This follows reality,
where the injectant plume advances from top to bottom of a reservoir and not through the
entire injection interval of the wellbore [37].

Interplay between three forces governs CO2-brine flow dynamics: viscous, gravita-
tional, and capillary forces. The proxy models and equations describing the CO2 dynamics
near the wellbore (Figure 10a and Equation (1)) captured the viscous and gravitational
forces. Temporal variation in near-wellbore pressures depends strongly on the contrast
between injected fluid density and resident brine density. Viscous forces grow the CO2
(or water) plume cylindrically, gravitational forces spread it vertically toward the base of
the caprock, and capillary forces trap the CO2 in pores. In practice, however, the hetero-
geneity of both the rock’s permeability and capillarity hinder a purely cylindrical CO2
plume, extending the CO2 along higher permeability streaks, zones, or features. Because
low-salinity waste fluid is denser and more viscous than CO2, its injection is dominated
by viscous forces while the CO2 injection is dominated more by gravitational forces and
gravity override (Figure 6). The domination of viscous forces causes low-salinity waste
fluid to advance with a steeper front. If the CO2 and low-salinity water are injected at
surface temperature (~18 ◦C mean annual temperature for the Patterson area) instead of
subsurface (50 ◦C for the Arbuckle reservoir), a slower, cooler low-salinity waste fluid mov-
ing across the entire thickness of the aquifer equilibrates more quickly with the formation
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temperature than the cooler CO2 plume advancing near the caprock. Reduction in the
temperature of the caprock results in increase in effective normal stress due to thermal
contraction of the caprock and dampens overpressure. Overpressure at the caprock due to
injection can increase pore pressure and induce caprock fracturing. Fracturing occurs when
pore pressure exceeds minimum principal stress. The threshold value for the Arbuckle
caprock can be measured from geomechanical tests. Formation pressures are highest at
the wellbore, making caprock around the wellbore more susceptible to pressure changes,
requiring a detailed geomechanical analysis of the caprock formation using wellbore core
samples (Figure 6). Both CO2 and low-salinity water can move denser formation fluids
into the basement and induce seismicity along basement faults. Pressure buildup of about
0.6 MPa in the Arbuckle has been observed to induce seismicity in the basement [9]. If the
permeability of the reservoir is on the order of 500 mD (as suggested by well tests), the
chance of induced seismicity is lower (Figure 11). If the permeability is on the order of
10 mD, as is suggested from well logs, seismicity maybe induced in the basement due to
pressure buildup in the Arbuckle (Figure 12).

This study used a kv/kh ratio to describe the heterogeneity of the reservoir (Table 1,
Figure 9a). In homogenous reservoirs, the buoyant CO2 does not flow through a large
portion of the rock volume due to gravitational forces. However, in heterogeneous reser-
voirs, the resulting disperse flow paths can increase the portion of the rock that comes into
contact with the flow. Thus, heterogeneity and geometry of depositional facies can control
storage efficiency, capacity, and injectivity. The Arbuckle aquifer is highly heterogeneous
and is known to have fractures and vugs with permeability ranging from a few milliDarcy
to more than one Darcy [14,38]. Thus, the actual CO2 plume development in the reservoir
is expected to be strongly controlled by uncertainty in these geological factors. In addition,
the Arbuckle contains barriers and baffles (e.g., shales); therefore, it is expected that the
developed plume will be multi-layered and counteract the effect of buoyancy, which may
cause the plume to quickly rise to the top of the Arbuckle.

This study has several limitations due to limited availability of dynamic data (e.g.,
formation pressure data) for the Patterson area. These statistical models are relevant when
the reservoir parameters are within the ranges of parameters given in Table 1. Proper
site characterization is necessary for using proxy models because they require average
values for each parameter. Well pressure monitoring is required during and after CO2
injection stage and these data should be used for tuning dynamic modeling. A downhole
measurement of pressure and temperature eliminates the uncertainties in calculations based
on wellhead pressure and temperature and should be used in Patterson area development.
Anomalies in the developed pressure models compared to field pressure measurements can
be used to detect the leakage through caprock or seal. Measuring the actual pressure plume
extent in the reservoir, however, requires geophysical measurements (e.g., seismic, gravity,
and satellite data). One method for detecting the elevated pressure at the Patterson site and
inferring the flow within the reservoir can be to measure the elastic deformation of surface
rocks using high-quality interferometric synthetic aperture radar (InSAR) observation,
which is shown to be successful at other CO2 injection projects such as In-Salah Field,
Algeria [39]. Finally, the presented proxy models can be used as an early screening tool
to obtain pressure build-up estimations when detailed geological data are limited. These
models cannot substitute detailed geological modeling in which geological features affect
the flow and the results.

6. Conclusions

Modeling CO2 and pressure plume propagation in the reservoir and around the
wellbore is an important component for understanding viability and risks of CCUS. CO2
injection can create pressure buildup near the wellbore and at the top of the reservoir which
can hydraulically fracture the caprock or trigger leakage. Detailed geological characteriza-
tion and numerical modeling are primary tools that can estimate the pressure buildup due
to CO2 injection. However, these models are expensive to develop. Here, we presented
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proxy models for pressure buildup around the wellbore and average pressure buildup
in the reservoir due to CO2 and low-salinity water injection. Simple proxy models offer
a quick way to screen the reservoir and eliminate the need to develop time-consuming
geological models and numerical simulations for primary assessments.

Our study showed that when injecting CO2, the pressure buildup was higher at the top
of the aquifer compared with the buildup associated with injecting a similar mass of low-
salinity water. We also found that permeability was the most important factor controlling
pressure buildup around the wellbore during CO2 injection, but average reservoir pressure
buildup was affected primarily by porosity. Pressure buildup due to CO2 injection is more
than water injection (the same mass) because CO2 is less dense and occupies more volume.
Thus, injecting CO2 is more likely to induce seismicity than injecting a similar mass of
water. The average pressure buildup around the wellbore under the described conditions
is in the order of 0.1 MPa. When injection ceases, this pressure buildup diffuses into the
reservoir and is significantly reduced in the subsequent years. This study shows the value
of proxy modeling in reducing the time and cost of initial screening candidate reservoirs
for CCUS projects.
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BHP Bottom Hole Pressure (kPa)
Pres Average reservoir pressure (kPa)
K Permeability (mD)
KVH Vertical to horizontal permeability ratio (unitless)
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Ri Injection rate (m3/day)
T Temperature (◦C)
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