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Abstract: The water quality monitoring of lotic and lentic ecosystems allows for informing the
possible use in human activities and the consumption of the vital liquid. This work measures the
biochemical parameters in Coyuca Lagoon and Tecpan River, localized in Guerrero, Mexico. A
comparative statistical analysis of six physicochemical factors in lentic and lotic ecosystems was
carried out, finding individual pH values slightly higher for the lagoon ecosystem and lower for the
river. For electrical conductivity, we find river sites with parameters lower than 500 µS/cm ideal for
human use and consumption. On the contrary, in sites of the lagoon system, the conductivity was
higher. As for the total hardness of the river, the values are within the Mexican standard; however,
for the lagoon ecosystem, the water has a higher amount of calcium and magnesium salts and is
not recommended for human consumption. For chlorides, the lagoon system exceeds the limits of
regulations for human consumption; otherwise, it happens with the lotic system. The values of total
alkalinity and total dissolved solids are higher for the lentic system than for the lotic one. Finally, the
machine learning method shows the importance of measuring other parameters to determine the
water quality, especially the salinity and calcium hardness.

Keywords: artificial intelligence; aquatic ecosystems; applied mathematics; punctual water condition

1. Background

Water quality (WQ) defines the biochemical and physical factors applying stan-
dards [1]. Therefore, a water quality assessment considers the biochemical and physical
factors; the importance of good quality is so it is possible to use in human activities (con-
sumption, agriculture, and breeding, among others [2,3]). The quality represents a water
status considering parameters and the water body’s pollution grade.

Water bodies are subjected to various anthropogenic pressures that alter their quality,
causing deep levels of contamination [4–6]. These water systems are home to a great
diversity of fauna and flora influenced by altitudinal, geological, and climatic factors and
physicochemical transformations of the water [7,8]. As the most notable element of water
resources, rivers have a crucial function in improving the life longing of living animals or
plants [9].

These variations in water quality are the result of the combination of natural processes
(weathering and soil erosion) and anthropogenic contributions, such as the discharges [10–12]
of waste that come from various human activities [13].
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The water’s physical characteristics are those that directly impact the quality condi-
tions and acceptability of the water [14], such as the turbidity, soluble and insoluble solids,
color, smell, taste, temperature, and pH. Water can contain any element on the periodic
table as a universal solvent.

As part of objective 6 of the sustainable development goals (SDGs), this work reaffirms
that everyone has the right to access and dispose of and to the sanitation of water for
personal and domestic consumption in an acceptable, healthy, and affordable manner.

Therefore, assessing water quality in lotic and lentic ecosystems becomes relevant
for sustainable water management. The collaboration of artificial intelligence in the man-
agement of specific data is essential for projections in the medium and long term for the
establishment of conservation and management strategies [15].

In this sense, the consequences of the change in ecosystems, their state of conservation,
and the use of the services they generate for society, and their impact on human well-being,
can compromise the well-being of future generations [16]. In this way, the relationships
between the functioning of ecosystems and human well-being, the human–water link,
humanistic perspectives, and the interpretation of cultural prosperity are related to human
aggregation toward this type of ecosystem [17].

Good quality water is indispensable for sustainable socioeconomic development [18].
Consequently, monitoring programs that provide spatiotemporal representations and
reliable estimates of water quality are necessary [19].

Various works were proposed to study water quality, and some of them utilize statistics
or machine learning methods to model or predict. The work of [9] conducted a study in
the Karoun River, southwest of Iran; they obtained a dataset with electrical conductivity
(EC), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), orthophosphate (PO4

3−), nitrite
(NO2− ), nitrate-nitrogen (NO3− ), turbidity, and pH.

They applied diverse artificial intelligence techniques to estimate the water quality
indices, particularly the least square support vector machine (LS-SVM) and multivariate
adaptive regression spline (MARS). The parameters to predict were the five-day biochemical
oxygen demand (BOD5) and chemical oxygen demand (COD).

In [20], the water quality of a region of Mexico, particularly Zamora, Michoacán, was
studied. Their work was mainly based on a biochemical analysis and used the weighted
arithmetic average method. The advancement of technology and its applications in machine
learning have allowed its users to become more and more widespread, in this case, in water
quality analysis.

Moreover, the use of machine learning methods helps identify other kinds of param-
eters to determine the water quality. In this work, we use the Spearman correlation to
identify the principal features to improve machine learning methods to classify the water
quality for human use.

Then, the results of a logistic regression (LR) and support vector machine (SVM) model
achieved 98% accuracy, adding parameters of those marked in the standard used in Mexico.
This finding allows a measure of biochemical factors to analyze the water quality for human
utilization.

Despite the advantages of specific analyses (physiochemical) for evaluating the water
quality in aquatic ecosystems, there are challenges related to the projection of data for
the visualization of future scenarios. In this context, we are testing the applicability of
machine learning models as a tool to incorporate into this type of study. In addition, this
type of support could reduce the costs by implementing low-end devices for data collection
and processing.

The study area of the Tecpan River is located at the extreme coordinates of 17◦ and
from 08′ to 17′ north latitude and 100◦ from 36′ to 39′ west longitude. Moreover, the
Coyuca Lagoon is at 16◦ and from 56′ to 57′ north latitude and from 099◦58′ to 100◦08′

west longitude. The Tecpan River and the Coyuca Lagoon are bodies of water impacted
by human activities on different scales. We consider the comparison of physicochemical
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factors important as a mechanism that provides information for both ecosystems’ protection,
conservation, and management, describing the background of this work and its aims.

This paper is organized as follows: The Methods introduce the materials and methods.
Then, the performance of the computational experiments for the machine learning methods
is shown, and the results are presented. Finally, some concluding remarks are given.
Furthermore, some ideas on the importance of coming works are outlined.

2. Methods
2.1. Data

For the Coyuca Lagoon, four sampling stations were established in the lagoon perime-
ter (Paraíso de los Manglares, El pedregoso, Base Aérea, and La Barra). The samples were
taken fortnightly on the shore for six months, from May to October, and all stations were
georeferenced (see Figure 1 and Table 1).

Figure 1. Geographical coordinates of sampling points in the Coyuca Lagoon.

Table 1. Location and coordinates of sampling stations in the Coyuca Lagoon and the Tecpan River.

Station Latitude Longitude Altitude

Paraiso de los Manglares 16◦57′59′′ N 100◦01′44′′ W 7 masl
Pedregoso 16◦55′05′′ N 099◦58′23′′ W 6 masl
Base Aérea 16◦54′41′′ N 099◦58′58′′ W 7 masl

La Barra 16◦56′58′′ N 100◦06′53′′ W 1 masl

Boca Chica 17◦08′18′′ N 100◦38′’ 46” W 9 masl
Tetitlan 17◦09′03′′ N 100◦39′08′′ W 11 masl

Puente libramiento 17◦12′02′′ N 100◦38′15′′ W 15 masl
Puente roto 17◦13′24′′ N 100◦38′07′′ W 20 masl

Puente prepa 17◦14′06′′ N 100◦37′32′′ W 29 masl
Pozumiche 17◦15′35′′ N 100◦37′45′′ W 43 masl

El verde 17◦17′14′′ N 100◦36′40′′ W 94 masl
El paraje 17◦18′02′′ N 100◦36′19′′ W 108 masl
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For the Tecpan River, eight sampling stations were established (Boca Chica, Tetitlan,
Puente Libramiento, Puente Roto, Puente Prepa, Pozulmiche, El verde, and El Paraje), and
the samples were taken on the banks of the river for the same period, and all stations were
georeferenced (see Figure 2 and Table 1).

Figure 2. Geographical coordinates of sampling points in the Tecpan River.

The representative area was selected in each sampling station following the recom-
mendations [21]. The bottles were duly labeled and preserved in coolers for transport to the
CCDR Water Laboratory, where six physicochemical parameters were analyzed according
to the Official Mexican Standards (see Table 2).

Table 2. Physicochemical parameters measured.

Physicochemical Parameter Analytical Method Official Mexican Standard

pH Potentiometric NMX-AA-008-SCFI-2000
Electrical conductivity (µS/cm) Potentiometric NMX-AA-093-SCFI-2000

Total alkalinity Volumetric (acid base) NMX-AA-036-SCFI-2001
Total hardness Volumetric (complexometry) NMX-AA-072-SCFI-2001

Chlorides Volumetric (argentometric) NMX-AA-073-SCFI-2001
Total dissolved solids Gravimetry NMX-AA-034-SCFI-2001

For the analysis and determination of water quality, a statistical package was used to
compare the interrelationships presented, and the maximum permissible limits of NOM-
127-SSA1-1994 (see Table 3), which is a standard used to evaluate quality, were compared
to water for human consumption, as well as the Ecological Criteria for Water Quality
CE-CCA-001/89.
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Table 3. Maximum permissible limits of NOM-127-SSA1-1994.

Characteristic Maximum Limit

Chlorides 250 mg/L
Total hardness (TH) 500 mg/L

pH 6.5–8.5
Total dissolved solids (TDS) 1000 mg/L

Electrolytic conductivity -
Total alkalinity -

2.2. Physicochemical Parameters

The interpretation of the physicochemical variables estimates the quality indices
and water contamination indices, when representing the valued parameters, allowing
evaluation of the water quality. The National Sanitation Foundation (NSF) used nine
parameters; the European Community developed the universal water quality index based
on twelve variables [22]. In Peru, two indicators were applied in which, in addition
to the NSF parameters, electrical conductivity, chlorides, and ammoniacal nitrogen are
considered [23].

According to [24], there are at least 30 commonly used water quality indices globally,
considering 3 to 72 variables. Practically all of these indices include at least 3 of the
following parameters: oxygen demand (OD), biochemical oxygen demand (BOD), or
chemical oxygen demand (COD), nitrogen in the form of ammonia and nitrates (NH3−N
and NO3−N), phosphorus in the form of orthophosphate (PO4−P), pH, and total solids (TS).

This work presents a statistical and comparative analysis of six physicochemical
variables: pH; the total hardness that considers implicit calcium hardness and magnesium
hardness; electrical conductivity; chlorides; total alkalinity that includes bicarbonates; and
total dissolved solids, which according to the literature, the indices must include at least
three parameters.

2.2.1. pH

A measurement used to assess the acidity or alkalinity of a solution [25]. pH water for
human consumption [26] should be between 6.5 and 8.5 (neutral and slightly alkaline) and
from 6.0 to 9.0 according to NOM-001-SEMARNAT-2021. Waters with a pH of less than 6.5
are corrosive due to carbon dioxide, acids, or acid salts in the solution.

In general, the pH of the water does not present significant variations and is around
neutrality. The problem is in wastewater or industrial discharges that can give extreme
pH values. The pH varies as a function of temperature; if it increases, the pH decreases
and tends to acidity. It can also vary depending on salinity, pressure or depth, and aquatic
organisms’ vital activity.

2.2.2. Total Hardness

The total hardness of the water or the sum of the individual hardnesses due to calcium
and magnesium ions in the form of bicarbonate (NMX-AA-072-SCFI-2001), the degree
of hardness is directly proportional to the concentration of metallic salts present in wa-
ter [27,28]. It depends on the soil from which they come, being able to be soft or hard water.
Water with less than 75 mg/L of CaCO3 is considered soft; between 75 and 150 mg/L, it is
moderately hard; from 150 to 300 mg/L, it is hard; and more than 300 mg/L, it is tough.

The authors of [29] adopted 100 mg/L of CaCO3 as the maximum desirable concentra-
tion and 500 mg/L as the maximum admissible concentration. People generally tolerate up
to 500 mg/L, the guideline value established by the World Health Organization (WHO).

2.2.3. Electrical Conductivity

This parameter refers to the ions’ ability to conduct electrical current in a solution.
Pure water behaves as an electrical insulator, with the substances dissolved in it providing
the water with the ability to conduct electric current. It is determined by electrometry with
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a conductometric electrode, expressing the result in microsiemens. Pure water is a poor
conductor of electricity because its ionization ability is limited. The more ions are present
in the water, the higher its conductivity.

The conductivity of water depends on the concentration and nature of the ions dis-
solved in it and the temperature. Usually, an increase in salts implies an increase in
conductivity. The value established as usual is between 100 and 1000 µS/cm [30], although
at some point it can be exceeded naturally [31].

2.2.4. Chlorides

They are salts resulting from chlorine gas with a metal, such as sodium. The chloride
ion is incorporated into surface waters through atmospheric deposition by weathering
sedimentary rocks, and discharges from industrial and wastewater in urban areas [31]
are mainly associated with sodium ions [32]. Calculus kidney formation is related to the
salinity and hardness of the water due to the combination of salts and calcium [29].

2.2.5. Total Alkalinity

According to NMX-036-SCFI-2001, the amount of solid acid necessary to reduce or
neutralize the pH to 4.3 [33,34]. This parameter is not of significant health importance, but
it generates rejection due to the bad taste in high concentrations.

2.2.6. Total Dissolved Solids

The set of total solids is defined as the remaining material that is obtained in the form
of residue after subjecting the water to an evaporation process between 103 and 105 ◦C.
Sedimentary, suspended, and dissolved solids are distinguished, and the total solids are the
sum of all. In addition to being able to suppose the presence of foreign bodies or substances
that could, in some cases, not be recommended, these solids increase the turbidity of the
water and decrease its quality [35].

2.2.7. Salinity

A measure of the number of dissolved salts in water. Salts accumulate due to flooding
in low-lying areas, high evaporation, plant transpiration, and, in many cases, the proximity
of groundwater that can reach the surface and become salinized due to low rainfall and
poor management of the water—irrigation water and fertilizers [36]. The saline content of
many lakes, rivers, or streams is so tiny that these waters are called freshwater. The salt
content in drinking water is, by definition, less than 0.05%. If not, the water is marked as
brackish or saline [37].

2.2.8. Calcium Hardness

Calcium is an element present in water closely linked to its hardness. It is naturally
present in surface waters due to the weathering of rocks and minerals, especially gyp-
sum and limestone, and industrial discharges may also contribute to the increase in the
concentration of this cation [31].

2.2.9. Magnesium Hardness

Magnesium, like calcium, is a parameter related to the hardness of the water. Magne-
sium is also found naturally due to the weathering of the rocks [31].

2.2.10. Bicarbonates

The presence of bicarbonates influences the hardness and alkalinity of the water. Its
presence in freshwater can occur naturally by the dissolution and weathering of rocks or
by contributions from industrial discharges. Bicarbonates are present in waters with a pH
value between 6.5 and 8.5 [31].
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2.3. Analysis Techniques
2.3.1. Analysis of Variance and Tukey Test

The analysis of variance (ANOVA) is the basis of the experimental design or statistical
methodology oriented to the planning and analyzing of an experiment or tests that verify
the validity of the hypotheses established about the causes of a particular problem or that
affects a specific object variable of study [38,39].

As an aid to these designs, studying variance in its most basic form is to check whether
a variable with several levels, called independent, can explain the variations observed in
one or more, which others call dependent [38,40].

The operation of the ANOVA technique is, broadly speaking, as follows: In order to
compare the means of Y associated with the different levels of the factor (X1, X2, . . . , Xn),
we will compare a measure of the variation between different levels (MS-factor) with a
measure of the variation within each level (MS-error). If the MS-factor is significantly
greater than the MS-error, we will conclude that the means associated with different factor
levels are different. It means that the factor significantly influences the dependent variable
Y. If, on the other hand, the MS-factor is not significantly more significant than the MS-error,
we will not reject the null hypothesis that all the means associated with different levels of
the factor coincide [41].

Moreover, the Tukey test is used, which aims to compare the individual means from
an analysis of variance of several samples subjected to different treatments; recommended
for its simplicity because it allows all possible comparisons to be made two by two and
because it has confidence limits [42,43]. It also allows for discerning whether the results
obtained are significantly different.

2.3.2. Spearman Coefficient Analysis

The correlation structure between the variables is studied using the Spearman coeffi-
cient. Spearman correlation is a widely used metric [44], competent in estimating linear and
nonlinear connections; this coefficient is calculated, and the examination establishes the
constant lowering or growth in the values of a variable, defined as monotonically increasing
or decreasing [45].

2.3.3. Logistic Regression

The logistic regression method specifies the relation between dependent and indepen-
dent variables. The employment of this technique is beneficial when the dependent variable
can be observed. The model is provided for the practical answers using the maximum
likelihood approach, then the best match is predicted [46].

2.3.4. Support Vector Machine

Ref. [47] presented a supervised machine learning technique called support vector
machines. SVM employs kernel procedures to separate classes by support vectors; the
input interprets the training data to transform it into an upper-dimensional space. Then, a
hyperplane is divided to obtain the correspondences of the classes.

2.3.5. Performance Metric

The performance of machine learning algorithms is measured by applying some
metrics; in this work, accuracy, precision, and recall [48].

Accuracy is the expression for all the samples classified correctly between all sam-
plings, and Equation (1) represents the mathematic estimation.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is the relation between the positive samples categorized correctly and the sum
of all samples classified as positive, and Equation (2) defines the mathematic computation.
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Precision =
TP

TP + FP
(2)

The recall is the relation between the positive samples categorized correctly and the
sum of valid positive samples, and Equation (3) describes this ratio.

Recall =
TP

TP + FN
(3)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

2.4. Experimental Setup

The machine learning techniques used in this work are programmed in Python 3.7
and the sklearn library; these techniques are employed to corroborate the water quality
classification, selecting the features by Spearman correlation.

The data used are acquired in all the samples in the eight parameters presented in the
above section.

3. Results

The physicochemical values were compared considering the permissible limits of the
NOM-127-SSA1-1994 (see Table 4) found for the Coyuca Lagoon in which the total hardness,
chlorides, and total dissolved solids exceed the limits of the norm. On the contrary, in the
Tecpan River, only the pH exceeds the permissible limits.

On the contrary, in the Tecpan River, only the pH is slightly below the permissible
limits. It can be recommended for agricultural irrigation and human consumption after
purification treatment because the other parameters, such as the total hardness, chlorides,
and solids, are in the range according to the standards.

Table 4. Maximum permissible parameters.

Ecosystem Place pH Conductivity TH Chlorides Alkalinity TDS

Lagoon

Paraiso manglares 6.6 6265 1008 1832 670 3099
Pedregoso 7.0 7060 1366 1958 761 3291
Base aérea 6.8 6429 953 1719 465 3091
La barra 6.6 1752 479 344 395 1494

River

Boca chica 6.2 318 249 77 236 161
Tetitlan 6.2 141 124 44 99 75

Puente libramiento 5.9 241 232 67 213 124
Puente roto 6.1 107 97 29 96 52

Puente prepa 6.0 102 86 27 83 51
Pozulmiche 6.1 128 96 31 93 64

El verde 6.2 110 103 32 95 59
El paraje 5.9 119 103 35 95 59

Physicochemical Parameters

The pH values registered in the Tecpan River and in the Coyuca Lagoon are shown
in Table 4. The lagoon with values between 6.60 to 7.01 is within the permissible limit of
6.5–8.5 according to NOM-127-SSA1-1994 [49], with a slight tendency to alkalinity in the
lagoon system, similar to that reported by [50] in Laguna de Chautengo, Guerrero. On
the contrary, in the Tecpan River, values from 5.95 to 6.26 were found, showing a slight
tendency to an acidic pH in the Libramiento and Paraje sites, similar to those reported
by [51], mentioning that in the Tres Palos Lagoon, the pH can increase if there is much
water discharged of untreated wastewater and organic matter or it may decrease due to
low concentrations of dissolved oxygen.
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Moreover, the pH variability can be impacted by the water treatment applied or
the type of basin from which it comes from, the minerals’ richness, given that the soil is
acidified [52].

It results in water reactions with Al3+, Fe2+, Mn2+, and NO3− , which release H+ into
the solution [53,54], altering the potential of hydrogen in the water.

We can see slightly higher individual values for the lagoon ecosystem at the Air Base,
La Barra, and El Pedregoso stations; on the contrary, for the lotic ecosystem of the Tecpan
River, the lowest values were reported at the El Paraje and Puente Libramiento sites, as we
can see in Figure 3.

Figure 3. pH values in each location; the grey points refer to the data dispersion in relation to the
mean represented by the blue line.

An analysis of the information was carried out (ANOVA in Mini Tab 17) (Table 5)
using the option boxes and whiskers by the Tukey method that considers the grouped
means, obtaining a comparison in pairs where the conformation of groups with similar
means in sites is appreciated.

In Table 5, the means that do not share a letter are significantly different, and the
means that share a letter have certain similarities in such a way that groups with similar
means were formed. Group AB: the “Base Aérea” and “La Barra” sites have similarities in
the lagoon ecosystem sites, group BC: the “Paraíso de los manglares” site, group CD: the
“Tetitlan” and “El Verde” sites. The sites of the letters A and D are significantly different.
The sites of group D correspond to the river that must be purified for human use.

The results obtained in six months of sampling show that the electrical conductivity
is a numerical expression that indicates the capacity of a solution to transport an electric
current and gives us an idea of the degree of mineralization of natural, potable, residual,
treated residual, and processed water (NMX-AA-093-SCFI-2000).

There are no reference values that can be used as the maximum permissible limit;
therefore, according to [51], it is recommended to compare and relate to the salinity, total
dissolved solids (TDS), and biochemical oxygen demand (BOD).

The comparison of this study can be seen in Table 6, where we find that the sites located
in the river with ranges lower than 318 µS/cm with little saline influence and values lower
than 500 µS/cm are ideal for human use and consumption. On the contrary, sites in the
lagoon system, due to the proximity to the sea, the deposition of organic matter, and the
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discharge of untreated wastewater, have higher conductivity due to the concentrations of
sodium chloride and chloride ions, similar to that reported by [51].

Table 5. Tukey’s pairwise comparisons, grouping of information using the Tukey method confidence
of 95%.

Factor N Mean Pair

Pedregoso 12 7.0108 A
Base aérea 12 6.8425 A B
La barra 12 6.672 A B

Paraíso mangle 12 6.6025 B C
Tetitlan 12 6.2675 C D
El Verde 12 6.2650 C D

Boca chica 12 6.2200 D
Puente Roto 12 6.1442 D
Pozulmiche 12 6.1400 D

Puente Prepa 12 6.0675 D
Punte Libramiento 12 5.9775 D

El Paraje 12 5.9525 D

Table 6. Mean electrical conductivity.

Place Mean

River

Boca Chica 318 µS/cm
Tetitlan 141 µS/cm

Puente libramiento 241 µS/cm
Puente roto 107 µS/cm

Puente prepa 102 µS/cm
Pozulmiche 128 µS/cm

El verde 110 µS/cm
El paraje 119 µS/cm

Lagoon

Paraiso de los manglares 2459 µS/cm
El Pedregoso 2322 µS/cm

Base aérea 2253 µS/cm
La barra 1831 µS/cm

Figure 4 shows the total hardness values for the two ecosystems found. For the Tecpan
River, the values are within the norm; however, for the lagoon ecosystem, in sites such as
El pedregoso, Paraiso de los manglares, La Barra, and the Base Aérea, the water is hard
and is not recommended for human consumption.
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Figure 4. Total hardness values in each location; the grey points refer to the data dispersion in relation
to the mean represented by the blue line.

In Mexico, there is the NOM-127-SSA1-1994 regulation that indicates the permissible
parameters of water for human consumption, establishing a value of 250 mg/L for the
concentration of chlorides. Figure 5 shows the comparison of the two environmental
systems where we can see that the lagoon system exceeds the limits of the NOM; on the
contrary, the lotic system of the Tecpan River is within the permissible limits for human
consumption.

Figure 5. Chlorides values in each location; the grey points refer to the data dispersion in relation to
the mean represented by the blue line.

It is natural to find values from 200 to 500 mg/L. Specifically for the lagoon ecosystem,
we found higher total alkalinity values, unlike the Tecpan River, where we found values of
up to 500 mg/L, as shown in Figure 6.
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Figure 6. Total alkalinity values in each location; the grey points refer to the data dispersion in
relation to the mean represented by the blue line.

Water is a means of transport that contains a variety of solid materials such as sand,
clay, silt, and other loose soil particles from erosion [55] or from the decomposition of plants
and animals that gives it high turbidity, which is dragged from the upper part of the basin.
In aquatic environments, particulate matter transports chemical compounds from the water
column to the bottom sediments [56]. Specifically, Figure 7 of the TDS shows us that in the
lagoon ecosystem, the highest values of these solids were presented due to the composition
and structure of the lentic system (2743 mg/L), unlike the lotic ecosystem of Tecpan, which
presented low values of the TDS (80 mg/L).

Figure 7. Total dissolved solids values in each location; the grey points refer to the data dispersion in
relation to the mean represented by the blue line.



Water 2023, 15, 640 13 of 16

Applying the Spearman correlation coefficient, the fourth main features selected are
the salinity, conductivity, total dissolved solids, and total hardness; the above is directly
related to the water quality according to the lotic or lentic system.

These four parameters are used to train the logistic regression and support vector
machine models; the samples are divided into 80% for the train and 20% for the test. The
accuracy for the logistic regression is 96.55%, a precision of 96.72%, and a recall of 96.55%.
The best performance is in the accuracy, precision, and recall for the SVM, obtaining 100%
in the three metrics.

4. Discussions

The statistical projection of the data obtained allows us to quickly know the conditions
of the water systems in the study areas. The alkalinity is an important indicator that
provides information on the atmospheric carbon sequestration ratios and the inherent
chemical ratios in the water and soil.

Anthropogenic activities are a primary factor in the disturbances in the quality of these
natural sources. The increase in atmospheric CO2 has caused a considerable increase in the
acidification of hydrological systems. Mathematical and statistical projections are powerful
and low-cost tools that make projections of the current and future conditions of the quality
of hydrological bodies.

This exploratory research presents an approximation of the current conditions of the
quality of the lotic and lentic systems studied in this work, mainly in the relationship
between the pH and alkalinity concentrations. It is suggested to carry out more monitoring,
expanding the analytical spectrum to find out other causes that could impact the decrease
in pH and its relationship with capturing atmospheric carbon.

Lentic systems do not present a constant unidirectional flow due to the volume re-
tention of water that allows the solids’ precipitation and nutrient enrichment; the above
determine their trophic status. This explains the values found in the Laguna de Coyuca
under the Mexican regulations (NOM-127-SSA1-1994) where the permissible limits are
exceeded in the electrical conductivity, total hardness, chlorides, alkalinity, and total dis-
solved solids parameters. Therefore, previous purification treatment is recommended for
its use. Otherwise, in the lotic ecosystem of Tecpan, it occurred.

It should be noted that the determining factors in altering the taste of drinking water
correspond to the level of the hardness and alkalinity present in the water due to the
dragging of minerals. The total hardness and the calcium and magnesium presence de-
termine the potable water, and they must be monitored because, in excess, they can drive
cardiovascular problems.

The total alkalinity influences the pH due to the acidification processes in the la-
goon ecosystem (underneath the permissible limit) and affects the potability for human
consumption (pH 6.5). The punctual analysis of the physical, chemical, and biological
properties of both the lotic and lentic ecosystems, as well as the data projection in future
scenarios, are based on scientific information that, together with the application of machine
learning models, provides an alternative low-cost means of processing data on these types
of ecosystems that are increasingly impacted and require conservation.

Likewise, artificial intelligence methods can remarkably reduce water supply and san-
itation systems costs and help ensure compliance with drinking and wastewater treatment
quality. Therefore, modeling and predicting water quality to control water pollution has
been widely researched.

5. Conclusions

The parameter with the most significant influence in both ecosystems for the water
quality is the total dissolved solids, attributable to the dragging of solids from the upper
parts of the watershed, especially in the rainy season.

The sites with the highest physicochemical values in both ecosystems are located very
close to human settlements, in the Coyuca Lagoon and the Tecpan River, and the Boca
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Chica (with higher conductivity) and Puente Roto sites. In the river, the parameters were
determined within the regulations (electricity conductivity, total hardness, chlorides, total
alkalinity, and total dissolved solids), but not for the lagoon system.

Regarding the pH of the river, we found slight acid values for the Puente Libramiento
site. This is consistent with the existence of a sewage treatment plant that is not in operation,
and municipal discharges are not treated.

The decrease in pH is associated with the use of phosphorous fertilizers, which can
lower the pH of the soil, and with the removal of sediment in the rainy season, the pH of
the water also tends to rise downstream.

The total hardness, total alkalinity, and total dissolved solids for the Tecpan River were
three slightly high parameters for the Puente Libramiento and Boca Chica sites, probably
caused by tourist activity in both places and the existence of a treatment plant that is not
in operation.

This work demonstrates that machine learning techniques are helpful in training
models to predict or classify water quality; the support vector machine (SVM) has the
best performance.
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