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Abstract: The Monongahela River Basin has an extensive history of fossil fuel development, including
coal mining and natural gas extraction. In late summer 2008, total dissolved solids (TDS) concentra-
tions exceeding the United States Environmental Protection Agency′s (EPA) secondary drinking water
standards were detected. After determining the source, a voluntary discharge management plan
(VDMP) was developed by the West Virginia Water Research Institute (WVWRI) and implemented
by the coal industry (2010). Additional remediation actions included Pennsylvania’s prohibition
of produced wastewater in publicly owned treatment facilities (2011) and construction of a reverse
osmosis treatment facility (2013). We used a locally weighted polynomial regression in conjunction
with a segmented regression to assess the discharge and concentration trends/changepoints for
bromide, chloride, sulfate, and total dissolved solids at various locations relative to the three remedial
actions. We detected significant (α < 0.05) positive trends for discharge and significant negative
trends for bromide, chloride, sulfate, and total dissolved solids. In conjunction, we also detected
1–4 changepoints within each model. Additionally, a linear mixed effects model containing discharge
and remedial actions was used to measure the effectiveness of each remediation action in reducing
TDS over time. Of the three remedial actions, the VDMP by itself was effective in maintaining river
sulfate and TDS levels below the secondary drinking water standards (−0.12, p-value = 0.002). The
combination of the VDMP with Pennsylvania’s produced water prohibition (−0.16, p-value < 0.001)
and the combination of the VDMP with the reverse osmosis treatment facility (−0.19, p-value < 0.001)
were also effective. The use of all three remedial actions produced the strongest effect (−0.37, p-value
< 0.001) Since the implementation of these changes, primarily the VDMP which encompasses most
of the watershed, TDS in the Monongahela has not exceeded the EPA′s secondary drinking water
standards. Future management decisions should include efforts to further expand the VDMP and to
monitor changes in land use or severe changes in discharge.

Keywords: water quality management; total dissolved solids; discharge management; reverse
osmosis; trend analysis; mixed effects model

1. Introduction

The Monongahela River Basin, a 19,104 square kilometer watershed spanning north-
central West Virginia, southwestern Pennsylvania, and western Maryland, has supported a
variety of industrial uses throughout its history, most notably historic and present-day coal
mining and contemporary oil and gas development. Mine discharges are major sources of
sulfate and other salts in the Monongahela River Basin, while oil and gas developments are
a major source of halogens such as chloride and bromide. The extent to which these indus-
tries have contributed to total dissolved solids (TDS) loading in the Monongahela River
is of interest to researchers and water managers. Elevated TDS within the Monongahela
River has been shown to impact drinking water during low-flow events [1]. Historically,
TDS concentrations in the Monongahela River have exceeded the secondary drinking water
standard of 500 mg/L only when flow drops below 2000 cubic feet per second based on
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United States Geological Survey (USGS) flow data that were collected near Masontown
and Elizabeth, PA. In late 2008, TDS began trending upward in the Monongahela River [2].

Prior to 2008, most of the mine drainage entering the Monongahela River came from
deep mine discharges or surface mine seeps at pre-law abandoned mine sites [3,4]. Acid
mine drainage (AMD) contains large quantities of TDS, including sulfate, calcium, magne-
sium, sodium, iron, aluminum, and manganese [5]. Active mines must treat discharged
water to remove metals and neutralize acidity. However, treatment processes do not gen-
erally remove calcium, sodium, and sulfate ions. In this way, treated mine drainage also
contributes to the Monongahela River′s TDS load. Drought conditions that result in low
flows often exacerbate the problem by reducing the river′s assimilative capacity when mine
discharges are not regulated by seasonal variations in flow [6]. Another potential source of
TDS in the Monongahela River Basin is natural gas development which rapidly expanded
starting in 2008. Notably, unconventional natural gas development, which utilizes hor-
izontal drilling and hydraulic fracturing to target and extract natural gas from both the
Marcellus and Utica Shale formations, has become more prevalent throughout the region
right around the same time TDS began trending upwards [2].

In the late fall of 2009, the West Virginia Water Research Institute (WVWRI) sampled
the Monongahela River and its major tributaries and determined that active deep coal
mines were the most easily managed component of the TDS problem. WVWRI began
working with major coal companies in the Upper Monongahela River Basin to implement a
voluntary discharge management plan. The model accounted for the pumping capacities
of the 14 major mine pumping and treatment plants in the Upper Monongahela River Basin
using typical TDS concentrations as well as the flow in the Monongahela on any day [7]. It
was designed to ensure the Monongahela River′s mainstem would not exceed the secondary
drinking water standards for sulfate or TDS (250 and 500 mg/L, respectively). Operators
of mine discharge treatment facilities voluntarily implemented discharge management in
January 2010 and continue to this day.

In addition to AMD, a new source of TDS was emerging with the rapid expansion of
unconventional oil and gas production in the Monongahela River Basin. From 2009 to 2011
there was sufficient evidence showing that the produced water from unconventional gas
extraction was degrading surface waters and elevating TDS in Pennsylvania [2]. The point
source for the degradation was identified as centralized publicly owned treatment works
not being able to properly treat the produced water and discharging untreated wastewater
into surface waters [8,9]. Contained within this produced water is a mixture of brine, toxic
metals, and radioactive elements including chloride and bromide ions, which severely
damage aquatic ecosystems [1,8,10]. The presence of chloride and bromide in source water
can contribute to higher levels of disinfection byproducts such as trihalomethanes (THMs)
and haloacetic acids in drinking water [11,12]. In addition, bromide in source waters can
lead to a shift toward more carcinogenic brominated THM forms [13].

As a response to the disposal of produced water in publicly owned treatment works,
the Pennsylvania state legislature passed a new regulation that went into effect on 1 May
2011, restricting the disposal of produced water into new public treatment facilities to
eliminate produced water from making its way into Pennsylvania rivers and lakes [14].
Pennsylvania discharges of inadequately treated produced water ultimately contributed to
higher TDS and bromide levels in the Pennsylvanian portion of the Monongahela River
Basin before 2011 [15]. Prohibiting the improper disposal of produced water into publicly
owned treatment works is likely to have helped alleviate some of the problems, but to what
extent is currently unknown.

Another key point took place in the fall of 2009 at Dunkard Creek, a tributary of
the Monongahela River, where a combination of low flows and disastrously high TDS
concentrations resulted in a devastating fish kill. Improper disposal of produced water
within deep mines and exceedingly low flows combined with traditional AMD discharges
in Dunkard Creek led to a golden algae (Prymneisum parvum) bloom [16]. Nearly 30 miles
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of Dunkard Creek was impacted leading to the death of many aquatic organisms including
18 species of fish and 14 species of freshwater mussel [17,18].

Following the Dunkard Creek fish kill investigation, a coal mining company, which
operates several active coal mines, was ultimately held responsible for the fish kill. The
mining company was then tasked with constructing a new reverse osmosis treatment
facility as a part of the legal settlement between the company and the PADEP [19]. The
established AMD treatment facilities previously discharged their treated wastewater into
smaller tributaries of the Monongahela River including Dunkard Creek. These tributaries
flowed into the Monongahela River at various points spanning from the confluence of
the Monongahela up to the West Virginia-Pennsylvania state border [20] (Figure 1). Con-
struction of the new reverse osmosis treatment facility was completed in May 2013 with
a stated objective of treating chloride content in receiving waters. Reverse osmosis treat-
ment facilities are capable of desalinating and purifying waters that have been polluted
because of fossil fuel extraction. Unlike passive treatment systems which typically use
settling ponds and wetlands to naturally remove contaminants, reverse osmosis plants
actively remove contaminants by forcing water through various types of semi-permeable
membranes. Reverse osmosis can remove low molecular weight organics, multivalent ions,
and monovalent ions which include sulfate, chloride, bromide, and other salts and metals
that contribute to TDS [21–23]. TDS levels in the Monongahela River Basin have since
decreased from their peak in 2008 and 2009, however to what extent the reverse osmosis
facility has contributed to this decline is not currently known.
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Figure 1. Location of the reverse osmosis plant relative to other AMD treatment facilities. Pipelines
on the map are not representative of exact location.

In this study, we seek to evaluate the effectiveness of the voluntary discharge manage-
ment plan in maintaining compliant TDS and sulfate concentrations in the Monongahela
River. We also seek to evaluate the impacts of the Pennsylvania legislature restricting
produced water in publicly owned treatment works and the reverse osmosis treatment
plant. We attempted to quantify the trends and inflection points caused by the management
decisions regarding the concentrations of halogens, bromide, and chloride, as well as the
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concentration of sulfate and TDS that result from the coal and natural gas industries in the
Monongahela River and its tributaries from 2009 to 2019.

2. Materials and Methods
2.1. Study Area

Sampling sites were located throughout the Monongahela River basin which includes a
drainage area of 19,104 square kilometers. The Monongahela River forms at the confluence
of the West Fork and Tygart Valley rivers in Fairmont, WV, and flows northward 206 km to
the confluence with the Allegheny River whereby it flows into the Ohio River in Pittsburgh,
PA [24]. Of the 18 sites that are currently sampled within the Three Rivers Quest (3RQ)
monitoring program, we selected 12 sites with datasets dating back to the summer of 2009.
The reason for this date criterion is based on the voluntary discharge management plan
initiation date of January 2010. Out of these 12 sites, 6 are located on the Monongahela
River itself or the rivers that form the confluence while the other 6 sites are distributed
among key tributaries (Figure 2). The mainstem and the tributaries of the Monongahela
River are subject to coal mine AMD, and more recently unconventional gas extraction.
Located throughout the Monongahela River basin is a network of private and state-run
treatment facilities. The predominant treatment facilities are AMD treatment sites, many
of which are enrolled in the voluntary discharge management plan (Figure 3). Other land
uses within the Monongahela River basin that have potential impacts include agriculture
and general urbanization.
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2.2. Data Collection
2.2.1. Water Quality Data

Water samples and water quality parameters were collected and measured twice a
month from July 2009 to April 2015. Beginning in May 2015, sample collection was reduced
to once a month and took place between the 10th and 20th day of each month. We attempted
to consistently collect water samples when the river/stream discharges were near their
30-year median as determined by the USGS.

At each site, 2 water samples were collected, one in a 500 mL unfiltered, unpreserved
grab sample and a second 250 mL bottle with ~10 drops of nitric acid as a preservative.
Prior to adding the raw water sample to the acidified bottle, the water was filtered using a
Nalgene vacuum filtration device (Fisher Scientific) with 47 mm diameter, 0.45 µm pore
cellulose filter papers (Millipore). All water samples were placed inside a cooler that was
filled with ice and transported to either the laboratory for analysis or placed in a refrigerator
until they were ready to be analyzed. Water samples were analyzed for dissolved alkalinity
(mg/L CaCO3 equivalents; EPA method SM-2320B); dissolved Al, Ca, Fe, Mn, and Na
(mg/L; EPA method 60140B); and dissolved Br, Cl, and SO4 (mg/L, EPA method 300).
Temperature (Celsius), specific conductivity (µS/cm), pH, and calculated total dissolved
solids (mg/L) were collected in the field via handheld water probes (YSI 556 and YSI
Professional Series).

2.2.2. Hydrologic Data

Discharge (f/s3) data were obtained from nearby USGS gauges at the time of sample
collection. When direct gauge measurements were not available at a site, flow was estimated
by averaging flow between an upstream and downstream gauge (Table 1).



Water 2023, 15, 631 6 of 30

Table 1. River and tributary discharge data sources and/or relative formulas used to estimate
discharge based on known discharges.

Site CFS Formula

Youghiogheny River (YO) USGS Gauge 03083500
Monongahela River Mile 23 (M23) USGS Gauge 03075071
Tenmile Creek (TM) USGS Gauge 03073000
Monongahela River Mile 82 (M82) USGS Gauge 03072655
Whiteley Creek (WH) DU/2
Dunkard Creek (DU) USGS Gauge 03072000
Cheat River (CH) M82/2
Monongahela River Mile 89 (M89) M82-WH-DU-CH
Deckers Creek (DE) USGS Gauge 03062500
Monongahela River Mile 102 (M102) M89-DE
Tygart Valley River (TV) USGS Gauge 03056250 + USGS Gauge 03056250
West Fork River (WF) USGS 03061000

2.3. Statistical Analyses
2.3.1. Water Quality Characteristics

Summary statistics, average, and standard deviation, were calculated for flow, bro-
mide, chloride, sulfate, and TDS. Summaries were done on a site-by-site basis to show the
variability among the mainstem and tributary sites.

2.3.2. Locally Weighted Polynomial Regression (LWPR)

Trend analyses are often used to determine if the measured water quality parameter is
increasing or decreasing over a specified period. The basic linear trend model for a water
quality series WQi is:

WQi = αti + β +εi (1)

where ti is time, α is the regression coefficient indicating the slope of the line, β is the regres-
sion constant, and εi is an irregular noise term. LWPR uses either a local linear polynomial
regression or a local nonlinear regression model depending on the circumstances [25]. For
this study, a local linear polynomial regression model was used. The LWPR equation for all
water quality series WQi is:

WQi = f (ti) + εi (2)

where f(ti) is a smoothed function and εi is an irregular noise term. LWPR was applied
to all parameters within the dataset with local polynomial fits being first or second order
using weighted least squares. This method gives more weight to points near the point
whose response is being estimated and less weight to points that are further away [26].
Traditionally, the weighted function is the tricube weight function, but other functions
are suitable if they meet the requirements. Additional information on the LWPR method
that was used in this study can be found in Rajagopalan and Lall [27], and Proiettie and
Luati [28]. We fitted the LWPR models in R using the “stats” package [29].

2.3.3. Segmented Regression (SegReg)

Segmented regression, also known as piecewise regression or broken-stick regression,
is commonly employed with interrupted time series. While often employed in other fields
of study such as political science, economics, and healthcare, segmented regression has
shown to also be effective at evaluating the effectiveness of environmental pollution control
measures [30–32]. Each segment in a segmented regression is separated by breakpoints
(i.e., changepoints) with the least squares method being applied separately to each segment
and optimized to minimize the sum of squares of the differences (SSD). For a water quality
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time series WQi with m change-points (CPs), a segmented linear regression with m + 1 is
depicted as: 

WQi = α1ti + β1(ti ≤ CP1)

WQi =
α2ti+β2(CP1<ti≤CP2)

...
WQi = αm+1ti + βm+1(ti ≤ CPm)

, (3)

where ti represents time, αm represents the regression coefficient for each line segment,
and βm is the regression constant. A positive α is indicative of an increasing trend while a
negative α is indicative of a negative trend. To assess the overall trend, the average annual
percent (AAPC) was calculated for each model based on the slopes of each segment and
weighted based on the lengths of each segment [33]. Davies statistical test was used to
determine the statistical significance of trend for each segmented regression model [34].
The adjusted R-squared value was also used to evaluate the model fit for each regression
model. Models were fitted and evaluated in the statistical program R using the “segmented”
package [35]. Additional information regarding segmented regression can be found in
Mathews and Hamilton [36], Wu and Chang [37], and Muggeo [38].

2.3.4. Linear Mixed Effect Model

In addition to the LWPR-SegReg models, we also used a linear-mixed effect model
to quantify the effect of management changes on TDS within the Monongahela River
Basin. Discharge and TDS were log[x] transformed to achieve approximate normality. By
including a random effect structure, we were able to account for site-specific characteristics
that could potentially affect TDS on a site-by-site basis [39]. This was especially crucial
given that not all management changes of interest were applied to all sites of interest.
Furthermore, this modeling approach enabled us to determine the effectiveness of single
management changes against the effect of several management changes. The optimal model
was selected by comparing the global model to all possible parameterized models where we
retained models with a ∆AIC > 2 [40]. We also assessed model performance by comparing
marginal (variance explained by fixed effects) and conditional (variance explained by fixed
and random effects) coefficients of determination (R2). Reported p-values are based on
Satterthwatie′s degrees of freedom method [41]. A similar approach has been used for
predicting TDS based on discharge [6]. In addition, models that failed to properly converge,
were unstable, or displayed singular boundary issues were disregarded. The ‘lme4’ [41]
and ‘lmerTest’ [40] packages were used to create and extract model statistics. The ‘MuMIN’
package was used for model selection and for the calculation of R2 values [42]. All analyses
were performed in the Program R [29].

3. Results
3.1. Water Quality Characteristics

There was a high degree of variability in flow and concentration within and among
the mainstem sites (Table 2). The mean flow steadily increased downstream with a range
of 4003–9192 cfs. The maximum average for flow occurred at M23 (9192 cfs) which is the
furthest downstream site among the mainstem sites. The mean bromide concentrations
ranged between 0.01 and 1.01 mg/L across all sites. WH, TM, and DU reported the three
highest average bromide values of 0.37, 0.35, and 1.01 mg/L, respectively. The mean
chloride concentrations varied greatly from site to site (range = 3.5–132.9 mg/L) with the
largest mean chloride concentrations occurring at WH, YO, and TM with values of 132.9,
59.5, and 57.3 mg/L, respectively. For sulfates, the mean concentrations throughout all
sites ranged from 24.8 to 692.4 mg/L with the highest means recorded on DU (692.4 mg/L),
WH (607.8 mg/L), and WF (190.0 mg/L). The mean TDS concentrations also varied greatly
between each site with a range of 51.0–966.75. WH and DU displayed the largest mean TDS
concentrations compared to all other sites with mean values of 966.8 mg/L and 922.5 mg/L,
respectively.
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Table 2. Discharge in cubic feet per second (cfs) and concentration (mg/L) averages with confi-
dence intervals for all 12 sample sites. Mainstem sites are identified as ‘M’ followed by river mile,
increasing upstream.

Discharge Bromide Chloride SO4 TDS

TV 2536 ± 406 0.01 ± 0.004 5.5 ± 0.37 26.5 ± 1.06 62.5 ± 2.13
WF 1061 ± 253 0.05 ± 0.017 14.9 ± 1.16 190.0 ± 11.57 334.0 ± 16.51

M102 4003 ± 650 0.03 ± 0.009 9.6 ± 0.58 89.3 ± 6.27 161.1 ±8.84
M89 4082 ± 649 0.04 ± 0.013 11.3 ± 0.67 95.4 ± 6.84 169.5 ± 9.53
M82 8949 ± 1478 0.04 ± 0.011 11.0 ± 0.73 88.1 ± 6.63 152.3 ± 9.08
M23 9192 ± 1486 0.07 ± 0.016 17.8 ± 1.20 90.6 ± 6.50 172.1 ± 9.58
DE 106 ± 22.4 0.02 ± 0.006 15.2 ± 1.27 102.6 ± 12.29 186.8 ± 16.93
CH 4541 ± 745 0.01 ± 0.003 3.5 ± 0.20 24.8 ± 1.03 51.0 ± 1.65
DU 338 ± 90.3 0.37 ± 0.082 56.2 ± 6.40 692.4 ± 117.5 922.5 ± 136.88
WH 172 ± 46.0 1.01 ± 0.208 132.9 ± 19.70 607.8 ± 73.17 966.8 ± 101.13
TM 169 ±45.2 0.35 ± 0.081 57.3 ± 6.93 157.0 ± 16.44 351.2 ± 25.98
YO 3485 ± 576 0.07 ± 0.020 59.5 ± 6.30 94.5 ± 5.24 242.6 ± 11.30

3.2. LWPR-SegReg Concentration Results

The LWPR-SegReg analysis of the concentration data resulted in the creation of 60 seg-
mented regression models across 12 sites with each site containing a discharge, bromide,
chloride, sulfate, and TDS segmented regression model (Appendices A and B). Within every
LWPR-SegReg model, at minimum one breakpoint was identified and each segment was
assigned a slope value with the overall trend being measured as average annual percent
change (AAPC). Each model returned the estimated date(s) of the changepoint(s), the p-
value as determined by Davie’s test, and the adjusted R-squared value (Tables A1 and A2).

All concentration segmented regression models displayed significant trends with the
alpha level being set at 0.05 (p-values ≤ 0.001). Following LWPR smoothing, the segmented
models explained between 96 and 99% of variation. The AAPC values for discharge among
all the mainstem sites were positive (range = 5.41–56.40) and the AAPC values for the tribu-
tary sites were also entirely positive (range = 0.76–27.97). Bromide AAPC among the main-
stem sites presented negative values at M102 (−0.0002), M82 (−0.0003), TV (−0.0001), and
WF (−0.0002) and positive values at M89 (0.0001) and M23 (0.0001). Additionally, bromide
AAPC values for all tributaries were negative (range = −0.014–−0.0001). Chloride AAPC
values were negative across all the mainstem and tributary sites (range = −1.47–−0.005).
Sulfate AAPC values displayed negative values across all the sample sites
(range = −10.761–−0.012) with DU (−10.761) displaying the largest negative AAPC value
by far. Finally, TDS AAPC followed the same pattern as sulfate and chloride with neg-
ative values at all sites (range = −12.961–−0.012) with DU (−12.961) and WH (−6.281)
possessing the largest negative values by far compared to all other sites (Figure 4).

The number of change points for each parameter varied (1 to 4 CPs) with most models
possessing two change points (Figure 5). Regarding the discharge models, five out of the
six mainstem sites displayed two changepoints with WF being an exception displaying
three changepoints (Appendix A). All tributary sites displayed at least two change points
within the discharge models (Appendix B). The first changepoints with regards to the
discharge models are estimated to have occurred in 2011 while the second changepoint
is often estimated to have occurred between late 2013 and the middle of 2014 (Figure 5).
The bromide models routinely possessed a greater number of changepoints per model
when compared to the other parameters. Dates for bromide changepoints vary between
July 2010 and October 2016 with the majority of changepoints occurring between 2012 and
2014 (Figure 5). In comparison, each chloride model identified two changepoints with the
first changepoint often occurring in 2012 and the second changepoint occurring in 2014.
Sulfate models for the mainstem sites directly on the Monongahela River displayed a single
changepoint that ranged between May 2011 and January 2014. However, the sulfate models
for the tributaries displayed either one or two changepoints with the first changepoint
falling between December 2010 and March 2012. For the sulfate tributary models that



Water 2023, 15, 631 9 of 30

contained a second changepoint, it fell between May 2014 and July 2016. There was one
exception with YO′s second sulfate changepoint taking place in April 2012. Finally, the TDS
models showed two changepoints for four mainstem sites and all the tributary sites with
M23′s TDS model detecting a single changepoint. The first changepoints for the mainstem
TDS models fell between February 2011 and June 2013 and the second changepoints fell
between November 2011 and June 2017 (Figure 5).
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3.3. Linear Mixed Effects Model Results

The optimal model for estimating management changes related to TDS concentration
included random intercepts and slopes among the sites (Figure 6). Discharge, year, and
treatment(s) all had significant negative effects on TDS while the interaction between year
and discharge had a significant positive effect (Table 3). All but one treatment type, PA’s
prohibition on produced water in POTWs (PA_Pro), displayed significant negative effects
on TDS concentrations. Combined, the fixed and random effects explained 91% percent of
the total variation in TDS (conditional R2 = 0.91), whereas discharge, year, and treatment
type explained 38% of the overall variation (marginal R2 = 0.38).
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Table 3. Parameter estimates for the most optimal hierarchical linear mixed effects model predicting log[x]
transformed total dissolved solids within the Monongahela River Basin. VDMP (voluntary discharge
management plan), PA_Pro (Pennsylvania’s prohibition on produced water in POTWs), VDMP_PA
(combined treatments of the voluntary discharge management plan and Pennsylvania’s prohibition on
produced water in POTWs), VDMP_ROP (combined treatments with the voluntary discharge management
plan and the reverse osmosis plant), VDMP_PA_ROP (combination of all three treatments).

Parameter Estimate SE t-Value p-Value

Fixed Effects

Intercept 153.14 15.08 10.15 <0.001
Log[cfs] −19.95 2.17 −9.21 <0.001

Year −0.07 0.01 −9.68 <0.001
VDMP −0.12 0.04 −3.10 0.002
PA_Pro 0.05 0.03 1.53 0.126

VDMP_PA −0.16 0.04 −3.65 <0.001
VDMP_ROP −0.19 0.05 −4.12 <0.001

VDMP_PA_ROP −0.37 0.05 −7.93 <0.001
Log[cfs]:Year 0.01 0.00 9.08 <0.001

Random effects
σ1|Site 1.36 – – –

σ1cfs|Site 0.01 – – –
σResidual 0.09 – – –
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4. Discussion

We showed temporal and spatial changes for bromide, chloride, sulfate, and TDS
concentrations throughout the Monongahela River Basin, thereby providing valuable under-
standing of how the overall river basin is changing over time in relation to both discharge
and various management decisions. Concentrations for bromide, chloride, sulfate, and
TDS showed significant overall downward trends throughout the river basin. Most LWPR-
SegReg models identified one or two changepoints over the 10-year time period which
often coincided with the changepoints that were identified within each site′s discharge
model. Bromide and chloride linear segments exhibited a delayed inverse relationship with
their sites′ respective discharge segments. As discharge increased, bromide and chloride
concentrations would often decrease and vice versa. By comparison, the sulfate and TDS
models for the mainstem sites and some of the tributaries displayed permanent long-term
downward shifts regardless of changes within the river or stream discharge following the
implementation of the voluntary discharge management plan. After implementing the
voluntary discharge management plan, sulfate and TDS concentrations failed to return to
their pre-management plan levels. By comparison, bromide, chloride, sulfate, and TDS
concentrations showed limited to no change or maintained their trajectories following
Pennsylvania′s restriction of produced water into publicly owned treatment works and/or
the opening of the reverse osmosis treatment facility.

We followed up the LWPR-SegReg trend analysis with a linear mixed effects model
focusing solely on how TDS concentrations responded to changes in discharge over time
as well as the various combinations of management decisions that were implemented
throughout the Monongahela River Basin. TDS was most significantly affected by discharge,
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which has been well established by previous works [6,43,44]. However, TDS was also
significantly reduced because of the management changes. More specifically, the voluntary
discharge management plan was effective in reducing TDS, an effect that was enhanced by
other TDS reduction measures. Specifically, Pennsylvania′s prohibition of produced water
in POTWs did not have a significant effect on TDS concentrations when it was the only
management change in place. The reverse osmosis treatment facility was always paired
with other management changes but appears to have played some role in further reducing
TDS concentrations in the Monongahela River.

The effectiveness of the voluntary discharge management plan is demonstrated by the
significant and sustained reduction in sulfate and TDS concentrations after its implementa-
tion in January 2010. While discharge varied spatially and temporally on a site-by-site basis,
the sulfate and TDS reductions were consistent throughout the Monongahela River basin
in streams that were affected by the discharge management plan. Similar management
plans have been implemented by state and federal agencies as part of the Clean Water
Act (CWA) to reduce various types of pollution and are referred to as total maximum
daily loading (TMDL) regulations. The total maximum daily loadings regulations are a
common and effective tool for point-source pollution and non-point source pollution that
contributes to the impairment of water bodies such as rivers, lakes, and estuaries [45,46].
The voluntary discharge management plan is a non-regulatory TMDL that was developed
and deployed by the West Virginia Water Research Institute in partnership with leaders
from the coal industry within the Monongahela River basin. This TMDL targets sulfate
and TDS originating from treated AMD discharges into surface waters by limiting treated
AMD discharges during low flow conditions in the Monongahela River watershed [7].
The discharge management plan went into effect in January 2010 and is still employed
as of publishing this study. The voluntary discharge management plan utilizes the large
assimilative capacity that is provided by the Monongahela River during high flows to
reduce sulfate and TDS concentrations. During low flows, AMD treatment facilities reduce
their treated water discharge rates to match the assimilative capacity that is provided by
the Monongahela River at these low flows [6,7]. AMD treatment facilities that are involved
with the voluntary discharge management plan are distributed among the tributaries and
the main stem of the Monongahela River (Figure 3). Our results indicate that the WVWRI
voluntary discharge management plan was successful in significantly reducing sulfate and
TDS concentrations in the Monongahela River almost immediately upon implementation.
The results seen within the Monongahela River basin are just one example of the effec-
tiveness of TMDL plans, both voluntary and regulatory as a tool for implementing the
objective of the Federal Clean Water Act. For example, the Chesapeake Bay watershed
uses a TMDL in conjunction with other remediation measures to control excessive nutrient
loading that has had detrimental effects on the aquatic ecosystem [47]. Other examples
include the implementation of TMDLs in the Middle Cuyahoga Valley and the Lynnhaven
River to reduce nutrient loads and reduce fecal coliform, respectively [48,49]. In addition
to the TMDL, managers and stakeholders in the Monongahela River basin have attempted
to use additional remediation actions to further improve water quality.

The second change made to the Monongahela River Basin regarding water quality was
Pennsylvania′s prohibition of depositing produced water into publicly owned treatment
works, effective May 2011. Based on the results from our study, this regulation had a very
limited effect on reducing bromide, chloride, sulfate, or TDS concentrations among most
sites. It did, however, appear to have reduced bromide concentrations at the TM and WH
sites in Pennsylvania. The reduction in bromide concentrations at TM and WH is likely
tied to the major publicly owned wastewater treatment facilities that are located along
these two streams and their relatively low flows. While this regulation does not appear
to have reduced chloride, sulfate, or TDS in a significant way, that is not to say that this
regulation has not had a positive impact on water quality or aquatic ecosystems. Benefits
of this localized reduction include lowering risks that are associated with excess bromide
such as brominated disinfectant byproducts (DBPs) which are a known carcinogen and
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readily form when bromide concentrations are greater than 0.1 mg/L [8,50]. There is also
evidence that produced water from hydraulic fracturing is detrimental to soil quality [51].
Additionally, produced water entering surface waters can impact the gill structures of
fish leading to oxidative stress as well as potential liver damage when exposed to larger
volumes of produced water [52]. Thus, limiting the volume of produced water entering
surface waters does possess positive benefits for the environment.

The final watershed scale change of interest was the impact of opening a new reverse
osmosis treatment facility in May 2013, located in Mannington, West Virginia. The results
from our study showed limited significant reductions in chloride and TDS concentrations.
Dunkard Creek (DU) was the lone site that displayed further downward trends in chloride
and TDS concentrations following the opening of the treatment facility. This is to be
expected due to the low assimilative capacity of Dunkard Creek based on median discharge
and because several AMD plants that were discharging into Dunkard Creek are now
sending their wastewater to a reverse osmosis treatment facility. However, when looking at
the other sites where concentrations displayed changepoints following the opening of the
reverse osmosis treatment facility, it was concluded that the changes more likely coincided
with trend changes that were related to discharge. This pattern was observed across many
sites, including sites that were not utilizing the reverse osmosis treatment plant which leads
us to believe that increased stream or river discharge caused these changes via dilution and
not via contaminant removal.

Reverse osmosis treatment facilities differ from TMDL-based waste load reductions
and wastewater restrictions by physically removing contaminants from wastewater prior
to final discharge and thus do not rely on the assimilative capacity of their receiving
waters [21,22]. While a single reverse osmosis facility will have difficulty processing
wastewater throughout an entire watershed, TMDLs are capable of being implemented at
the watershed scale and are far more cost-effective. Reverse osmosis technology is difficult
to implement on a wide scale largely due to the technological complexity and their capital
and operating costs [53]. Reverse osmosis is most effective when removing highly soluble
salts such as NaCl. However, they suffer from severe scaling when applied to low solubility
salts such as CaSO4, typical of AMD. Reverse osmosis facilities are best suited for treating
large quantities of wastewater that are discharged to streams that lack the capacity to
assimilate salts through natural processes. With real-world implementation, this is not
always feasible and, depending on the scale, multiple reverse osmosis facilities may be
required to match the effectiveness of other management decisions.

The observed downward trends in concentrations for all four parameters (bromide,
chloride, sulfate, and TDS) throughout the Monongahela River Basin are important for im-
proving ecosystem services and drinking water services. Decreasing bromide and chloride
concentrations are particularly helpful as both these ions are key components in DBPs such
as trihalomethane (THM) formation [8,50,54,55]. THMs are known to be carcinogenic and
teratogenic to humans and thus the formation of THMs in drinking water has been linked to
serious health risks including birth defects and various types of cancer in humans [56–61].
Chloride reductions are also important as elevated chloride concentrations in surface
waters can lead to chronic toxicity impacts to aquatic organisms [62]. Elevated sulfate con-
centrations within underwater sediments can cause environmental degradation through
acidification of significant reductions in dissolved oxygen within aquatic ecosystems [63].
Regarding drinking water, elevated sulfate can lead to a bitter taste, and at exceedingly
high levels there is the potential to cause gastrointestinal problems in both humans and
animals [64]. Sulfate and chloride ions are notorious for causing infrastructure damage to
reinforced concrete as well [65]. Therefore, by reducing the sulfate concentrations in the
Monongahela River basin, the risk of degradation to aquatic environments is reduced, the
quality of the drinking water has improved, as well as lessening the potential infrastructure
damage that is caused through sulfate-related corrosion. Reducing the sulfate concen-
tration throughout the Monongahela River resulted in the river being officially delisted
from sulfate impairment by the Pennsylvania Department of Environmental Protection
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5 years after the implementation of the voluntary discharge management plant [66]. Finally,
reductions in TDS concentrations throughout the Monongahela River basin provide key
benefits to drinking water treatment facilities; benefits include better-tasting water, minimal
odors, rand educed corrosion and scaling of pipes and boilers. In fact, TDS and sulfate
concentrations within the Monongahela River proper, not including the West Fork and
Tygart Valley Rivers, have not exceeded the EPA′s secondary drinking water standards
since implementation of the Voluntary Discharge Management Program in January 2010.
(Figure 7). In addition, reductions in salts that lead to increased surface water salinity
are important for preventing harmful algal blooms such as the one that occurred in 2009
at Dunkard Creek [18]. The downward trends of these concentrations provide benefits
for the short-term and long-term health of the Monongahela River Basin as well as the
communities that rely on the river for various services.
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Large datasets over long periods of time enable researchers and managers alike to
conduct better observational studies and it also enables researchers to analyze river systems
of interest over both temporal and spatial scales not often found in smaller datasets [67]. For
example, trend analyses are often used to investigate temperature or precipitation change
over time but the 3RQ dataset allows researchers to analyze a wide array of concentration
changes over 10 years at consistent intervals, providing a level of detail that is not found
in many water quality datasets. Previous studies have utilized the 3RQ dataset to create
models that are of direct use to managers such as how flow impacts TDS concentrations as
well as characterizing fossil fuel extraction activities in the Monongahela River Basin [1,5,6].
3RQ has also enabled researchers to identify potential areas of concern for targeted studies
that focus on a specific issue within any of the three watersheds or a specific location
in the watersheds (3riversquest.wvu.edu/data/targeted-studies). Going forward, 3RQ
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provides a plethora of new opportunities for additional research focused on water quality
improvement and watershed recovery. Similar analyses can be conducted for the upper
Ohio and Allegheny rivers utilizing 3RQ data to better characterize trends in major ions
that contribute to elevated TDS concentrations within these basins. Future research should
focus on generating detailed, consistent long-term datasets for other major bodies of water
and their contributing rivers to enable researchers and managers to better characterize
contaminants of concern.

The methodology that was used for this study can be readily applied to other large
water quality datasets to determine significant trends and when trend changes occurred
relative to key dates or major changes to a system by managers. In addition, using the
LWPR-SegReg method on interrupted or non-traditional time series datasets enables greater
flexibility compared to traditional time series analysis with environmental datasets. A
potential improvement for this methodology includes reducing the number of estimated dis-
charges and instead using direct discharge measurements at as many sites as possible. This
study also highlights the advantages of long-term monitoring datasets and the utility that
they can provide to researchers and managers alike when investigating various pollutants.

Based on the results of our study, the Monongahela River Basin has seen a signifi-
cant reduction in sulfate and TDS concentrations from 2009 to 2019. In addition to the
sulfate and TDS concentration reduction, bromide and chloride concentrations have also
either decreased or remained stable. These concentration reductions coincide with several
management decisions, primarily the voluntary discharge management of treated acid
mine drainage, followed by state legislation restricting produced water in public treatment
facilities, and the construction of a new reverse osmosis wastewater treatment facility.
While these management decisions have improved the water quality of the Monongahela
River, future threats to the Monongahela River Basin including anthropogenic impacts
through land use as well as changes in flow regime through the effects of climate change [6].
Examples of land-use changes include continued urbanization, expansion of unconven-
tional gas extraction, increased acid mine drainage inputs, and reductions in treatment
to acid-mine drainage. Climate change-related problems including increasing temper-
atures and increased probability of drought could leave the Monongahela River Basin
vulnerable to low flow events. Continued monitoring of the Monongahela River and key
tributaries will allow managers to respond faster to these changes and aid in the creation
and implementation of future solutions.

5. Conclusions

The results from this study have demonstrated how bromide, chloride, sulfate, and
TDS trend changes coincided with discharge and critical water quality management alter-
ations to the Monongahela River Basin. While individual management decisions may be
effective, combining multiple watershed-scale decisions targeting contributing constituents
of TDS can lead to greater overall effectiveness. The Monongahela River Basin is a potential
example for other watersheds actively managing coal mining and natural gas activities.
However, effective management decisions need to first identify the various sources of TDS
and its key constituents throughout the entire watershed. It is also important for managers
to assess the assimilative capacity of their streams and rivers, especially during low flows, to
protect the areas that are currently minimally impacted. Given limited assimilation capacity,
the removal or prohibition of pollutants that contribute to TDS may be preferred. Further
research will be necessary to determine the appropriate removal methods depending on
the source of TDS within a given watershed. Future watershed management scenarios will
need to take into consideration several factors, including but not limited to, new emerging
pollutants, changes in land use, and climate change.
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Appendix A

The following figures show the results of the LWPR-SegReg models for the mainstem
sites of the Monongahela River. Within each site discharge (cfs), bromide (mg/L), chloride
(mg/L), sulfate (mg/L), and TDS (mg/L) were modeled and changepoints were estimated
based on the segmented regression. Also included within the figures are key dates for each
site, which may include the implementation of the voluntary discharge management plan,
Pennsylvania’s prohibition on depositing produced water into publicly owned treatment
works, and the opening of a new reverse osmosis treatment facility.
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Figure A1. Model output for the West Fork River showing key dates and changepoints. Color coded
dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles
represent the smoothed data from the locally weighted polynomial regression, and the red lines are
the segments from the segmented regression.
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Figure A2. Model output for the Tygart Valley River showing key dates and changepoints. Color
coded dashed lines are key dates and changepoints, blue triangles represent the raw data, green
circles represent the smoothed data from the locally weighted polynomial regression, and the red
lines are the segments from the segmented regression.
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Figure A3. Model output for the Monongahela River at river mile 102 showing key dates and
changepoints. Color coded dashed lines are key dates and changepoints, blue triangles represent the
raw data, green circles represent the smoothed data from the locally weighted polynomial regression,
and the red lines are the segments from the segmented regression.
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Figure A4. Model output for the Monongahela River at river mile 89 showing key dates and
changepoints. Color coded dashed lines are key dates and changepoints, blue triangles represent the
raw data, green circles represent the smoothed data from the locally weighted polynomial regression,
and the red lines are the segments from the segmented regression.
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Figure A5. Model output for the Monongahela River at river mile 82 showing key dates and
changepoints. Color coded dashed lines are key dates and changepoints, blue triangles represent the
raw data, green circles represent the smoothed data from the locally weighted polynomial regression,
and the red lines are the segments from the segmented regression.
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Figure A6. Model output for the Monongahela River at river mile 23 showing key dates and
changepoints. Color coded dashed lines are key dates and changepoints, blue triangles represent the
raw data, green circles represent the smoothed data from the locally weighted polynomial regression,
and the red lines are the segments from the segmented regression.
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Table A1. LWPR-SegReg model results for the mainstem sites.

Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value

WF Discharge α1 16.406 0.319 <0.001 TV Discharge α1 18.876 0.404 <0.001 M102 Discharge α1 48.522 1.274 <0.001
α2 −4.999 0.222 α2 −8.267 0.223 α2 −29.214 0.828
α3 13.08 0.222 α3 16.540 0.010 α3 40.486 0.352
α4 −2.554 0.355 AAPC 9.093 0.054 AAPC 22.234 0.0185

AAPC 5.411 0.058 CP1 2011-02 0.488 CP1 2013-06 0.279
CP1 2011-04 0.505 CP2 2013-06 0.377 CP2 2017-01 0.942

CP2 2013-08 0.562
Adjusted

R2 0.996
Adjusted

R2 0.999
CP3 2016-07 0.708 Bromide α1 −0.0002 1.35 × 10−6 <0.001 Bromide α1 −0.0006 6.57 × 10−6 <0.001

Adjusted
R2 0.992 α2 0.0002 7.00 × 10−6 α2 0.0007 4.01 × 10−5

Bromide α1 −0.0002 3.56 × 10−6 <0.001 α3 −0.0001 9.30 × 10−7 α3 −0.0002 5.37 × 10−6

α2 −0.0008 2.33 × 10−5 AAPC −0.0001 3.96 × 10−7 AAPC −0.0002 2.00 × 10−6

α3 0.0004 1.39 × 10−5 CP1 2012-07 0.287 CP1 2012-08 0.416
α4 −0.0003 4.38 × 10−6 CP2 2013-07 0.350 CP2 2014-01 0.594

AAPC −0.0002 1.17 × 10−6
Adjusted

R2 0.998
Adjusted

R2 0.984
CP1 2012-08 0.531 Chloride α1 −0.009 0.0005 <0.001 Chloride α1 −0.041 0.002 <0.001
CP2 2013-07 0.332 α2 0.034 0.0011 α2 0.069 0.002
CP3 2014-10 0.473 α3 −0.041 0.0006 α3 −0.083 0.002

Adjusted
R2 0.995 AAPC −0.010 0.0002 AAPC −0.192 0.0004

Chloride α1 −0.069 0.002 <0.001 CP1 2012-07 0.880 CP1 2012-03 0.761
α2 0.126 0.003 CP2 2014-07 0.500 CP2 2014-11 0.551

α3 −0.099 0.001
Adjusted

R2 0.977
Adjusted

R2 0.968
AAPC −0.036 0.001 Sulfate α1 0.008 0.001 <0.001 Sulfate α1 −0.422 0.002 <0.001

CP1 2012-05 0.601 α2 −0.057 0.001 α2 −0.012 0.002
CP2 2014-03 0.504 α3 0.020 0.001 AAPC −0.221 0.001

Adjusted
R2 0.976 AAPC −0.012 0.0003 CP1 2013-08 0.472

Sulfate α1 −1.227 0.015 <0.001 CP1 2011-11 0.771
Adjusted

R2 0.998
α2 −0.0663 0.004 CP2 2014-10 0.629 TDS α1 −0.460 0.001 <0.001

α3 0.355 0.005
Adjusted

R2 0.991 α2 0.004 0.003
AAPC −0.376 0.002 TDS α1 0.042 0.002 <0.001 α3 −0.177 0.007

CP1 2010-12 0.633 α2 −0.071 0.001 AAPC −0.254 0.001
CP2 2014-07 0.274 α3 0.006 0.001 CP1 2013-06 0.279

Adjusted
R2 0.999 AAPC −0.012 0.0002 CP2 2017-01 0.942

TDS α1 −1.509 0.013 <0.001 CP1 2011-03 0.421
Adjusted

R2 0.999
α2 −0.602 0.004 CP2 2013-11 0.511

α3 0.141 0.004
Adjusted

R2 0.995
AAPC −0.488 0.002

CP1 2011-02 0.381
CP2 2014-06 0.379

Adjusted
R2 0.999
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Table A1. Cont.

Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value

M89 Discharge α1 53.235 1.124 <0.001 M82 Discharge α1 122.150 3.009 <0.001 M23 Discharge α1 106.760 2.365 <0.001
α2 −25.968 0.627 α2 −52.374 1.369 α2 −31.677 1.200
α3 43.066 0.341 α3 116.030 1.045 α3 94.725 0.754

AAPC 23.462 0.165 AAPC 56.401 0.446 AAPC 54.798 0.347
CP1 2011-03 0.446 CP1 2011-03 0.527 CP1 2011-03 0.529
CP2 2013-09 0.419 CP2 2014-02 0.452 CP2 2013-12 0.477

Adjusted
R2 0.994

Adjusted
R2 0.992

Adjusted
R2 0.995

Bromide α1 0.0008 1.55 × 10−5 <0.001 Bromide α1 0.0004 1.33 × 10−5 <0.001 Bromide α1 5.05 × 10−4 1.30 × 10−5 <0.001
α2 0.0001 1.30 × 10−5 α2 0.0008 3.73 × 10−6 α2 −1.82 × 10−4 7.90 × 10−5

α3 −0.0007 1.55 × 10−5 α3 −0.0003 4.16 × 10−6 α3 −6.48 × 10−4 9.07 × 10−6

α4 0.0001 1.35 × 10−6 AAPC −2.70× 10−5 1.66 × 10−6 α4 −2.74 × 10−5 1.02 × 10−5

AAPC 0.0001 1.17 × 10−6 CP1 2010-12 1.095 AAPC 0.0001 2.08 × 10−6

CP1 2010-07 0.410 CP2 2014-05 0.650 CP1 2011-03 0.584

CP2 2011-07 0.354
Adjusted

R2 0.970 CP2 2013-07 0.807
CP3 2012-07 0.300 Chloride α1 −0.103 0.003 <0.001 CP3 2015-12 0.634

Adjusted
R2 0.990 α2 0.052 0.001

Adjusted
R2 0.997

Chloride α1 −0.028 0.0010 <0.001 α3 −0.094 0.001 Chloride α1 −0.111 0.001 <0.001
α2 0.079 0.0016 AAPC −0.036 0.001 α2 0.082 0.002
α3 −0.068 0.0009 CP1 2011-09 0.687 α3 −0.042 0.001

AAPC −0.016 0.0003 CP2 2015-04 0.712 AAPC −0.029 0.0003

CP1 2012-04 0.590
Adjusted

R2 0.964 CP1 2012-05 0.397
CP2 2014-06 0.419 Sulfate α1 −1.018 0.066 <0.001 CP2 2014-10 0.620

Adjusted
R2 0.981 α2 −0.165 0.005

Adjusted
R2 0.985

Sulfate α1 −0.459 0.002 <0.001 AAPC −0.366 0.003 Sulfate α1 −0.543 0.001 <0.001
α2 0.061 0.003 CP1 2011-05 0.651 α2 −0.091 0.001

AAPC −0.231 0.001
Adjusted

R2 0.992 AAPC −0.267 0.0003
CP1 2014-01 0.497 TDS α1 −1.227 0.016 <0.001 CP1 2012-08 0.146

Adjusted
R2 0.998 α2 −0.135 0.004

Adjusted
R2 0.999

TDS α1 −0.486 0.002 <0.001 α3 −0.476 0.033 TDS α1 −0.784 0.005 <0.001
α2 0.011 0.002 AAPC −0.449 0.004 α2 −0.034 0.002

AAPC −0.253 0.001 CP1 2011-06 0.495 AAPC −0.313 0.001
CP1 2013-10 0.298 CP2 2017-06 1.898 CP1 2012-06 0.339

Adjusted
R2 0.999

Adjusted
R2 0.994

Adjusted
R2 0.998
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Appendix B

The following figures show the results of the LWPR-SegReg models for the mainstem
sites of the Monongahela River. Within each site discharge (cfs), bromide (mg/L), chloride
(mg/L), sulfate (mg/L), and TDS (mg/L) were modeled and changepoints were estimated
based on the segmented regression. Also included within the figures are key dates for each
site, which may include the implementation of the voluntary discharge management plan,
Pennsylvania’s prohibition on depositing produced water into publicly owned treatment
works, and the opening of the new reverse osmosis treatment facility.

Water 2023, 15, x FOR PEER REVIEW 27 of 40 
 

 

Appendix B 

The following figures show the results of the LWPR-SegReg models for the mainstem 

sites of the Monongahela River. Within each site discharge (cfs), bromide (mg/L), chloride 

(mg/L), sulfate (mg/L), and TDS (mg/L) were modeled and changepoints were estimated 

based on the segmented regression. Also included within the figures are key dates for 

each site, which may include the implementation of the voluntary discharge management 

plan, Pennsylvania’s prohibition on depositing produced water into publicly owned treat-

ment works, and the opening of the new reverse osmosis treatment facility. 

  

Figure B1. Model output for Deckers Creek showing key dates and changepoints. Color coded 

dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles 

represent the smoothed data from the locally weighted polynomial regression, and the red lines are 

the segments from the segmented regression. 

Figure A7. Model output for Deckers Creek showing key dates and changepoints. Color coded
dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles
represent the smoothed data from the locally weighted polynomial regression, and the red lines are
the segments from the segmented regression.
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Figure B2. Model output for the Cheat River showing key dates and changepoints. Color coded 

dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles 

represent the smoothed data from the locally weighted polynomial regression, and the red lines are 

the segments from the segmented regression. 

Figure A8. Model output for the Cheat River showing key dates and changepoints. Color coded
dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles
represent the smoothed data from the locally weighted polynomial regression, and the red lines are
the segments from the segmented regression.
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Figure B3. Model output for Dunkard Creek showing key dates and changepoints. Color coded 

dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles 

represent the smoothed data from the locally weighted polynomial regression, and the red lines are 

the segments from the segmented regression. 

Figure A9. Model output for Dunkard Creek showing key dates and changepoints. Color coded
dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles
represent the smoothed data from the locally weighted polynomial regression, and the red lines are
the segments from the segmented regression.
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Figure B4. Model output for Whiteley Creek showing key dates and changepoints. Color coded 

dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles 

represent the smoothed data from the locally weighted polynomial regression, and the red lines are 

the segments from the segmented regression. 

Figure A10. Model output for Whiteley Creek showing key dates and changepoints. Color coded
dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles
represent the smoothed data from the locally weighted polynomial regression, and the red lines are
the segments from the segmented regression.
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Figure B5. Model output for Tenmile Creek showing key dates and changepoints. Color coded 

dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles 

represent the smoothed data from the locally weighted polynomial regression, and the red lines are 

the segments from the segmented regression. 

Figure A11. Model output for Tenmile Creek showing key dates and changepoints. Color coded
dashed lines are key dates and changepoints, blue triangles represent the raw data, green circles
represent the smoothed data from the locally weighted polynomial regression, and the red lines are
the segments from the segmented regression.
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Figure B6. Model output for the Youghiogheny River showing key dates and changepoints. Color 

coded dashed lines are key dates and changepoints, blue triangles represent the raw data, green 

circles represent the smoothed data from the locally weighted polynomial regression, and the red 

lines are the segments from the segmented regression. 

Figure A12. Model output for the Youghiogheny River showing key dates and changepoints. Color
coded dashed lines are key dates and changepoints, blue triangles represent the raw data, green
circles represent the smoothed data from the locally weighted polynomial regression, and the red
lines are the segments from the segmented regression.
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Table A2. LWPR-SegReg model results for the tributary sites.

Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value

CH Discharge α1 59.917 1.350 <0.001 DE Discharge α1 1.613 0.040 <0.001 DU Discharge α1 7.002 0.156 <0.001
α2 −28.258 0.726 α2 −0.757 0.017 α2 −3.511 0.081
α3 53.644 0.446 α3 1.773 0.017 α3 6.806 0.067

AAPC 27.974 0.204 AAPC 0.761 0.006 AAPC 3.120 0.026
CP1 2011-03 0.489 CP1 2011-04 0.533 CP1 2011-05 0.504
CP2 2013-11 0.436 CP2 2014-05 0.426 CP2 2014-04 0.442

Adjusted
R2 0.993

Adjusted
R2 0.991

Adjusted
R2 0.991

Bromide α1 −2.00 × 10−4 4.12 × 10−6 <0.001 Bromide α1 −0.0004 5.58 × 10−6 <0.001 Bromide α1 0.0034 8.10 × 10−5 <0.001
α2 −4.00 × 10−5 1.72 × 10−6 α2 0.0002 7.33 × 10−6 α2 −0.0003 8.44 × 10−5

AAPC −0.0001 1.06 × 10−6 α3 −0.0002 4.42 × 10−6 α3 −0.0068 1.30 × 10−4

CP1 2012-05 1.578 AAPC −0.0002 1.45 × 10−6 α4 −0.0021 4.02 × 10−5

Adjusted
R2 0.980 CP1 2012-02 0.529 α5 −0.0062 7.49 × 10−5

Chloride α1 −0.018 0.0007 <0.001 CP2 2014-06 0.653 AAPC −0.0022 1.20 × 10−5

α2 0.027 0.0006
Adjusted

R2 0.985 CP1 2011-01 0.671
α3 −0.022 0.0006 Chloride α1 −0.029 0.002 <0.001 CP2 2012-06 0.410

AAPC −0.005 0.0002 α2 0.101 0.002 CP3 2013-07 0.512
CP1 2012-01 0.745 α3 −0.108 0.001 CP4 2016-10 0.523

CP2 2014-09 0.662 AAPC −0.022 0.0004
Adjusted

R2 0.999
Adjusted

R2 0.961 CP1 2012-02 0.687 Chloride α1 −1.651 0.037 <0.001
Sulfate α1 −0.144 0.002 <0.001 CP2 2014-06 0.409 α2 0.085 0.010

α2 0.039 0.001
Adjusted

R2 0.984 α3 −0.908 0.017
α3 −0.144 0.004 Sulfate α1 −0.706 0.013 <0.001 AAPC −0.582 0.005

AAPC −0.057 0.001 α2 −0.358 0.004 CP1 2011-02 0.573
CP1 2012-01 0.583 α3 0.102 0.008 CP2 2014-11 0.847

CP2 2016-07 0.675 AAPC −0.299 0.002
Adjusted

R2 0.988
Adjusted

R2 0.981 CP1 2011-03 1.078 Sulfate α1 −39.463 0.772 <0.001
TDS α1 −0.192 0.003 <0.001 CP2 2015-04 0.741 α2 −4.265 0.085

α2 0.057 0.002
Adjusted

R2 0.997 AAPC −10.761 0.091
α3 −0.135 0.005 TDS α1 −1.164 0.013 <0.001 CP1 2011-01 0.517

AAPC −0.062 0.001 α2 −0.377 0.002
Adjusted

R2 0.990
CP1 2012-01 0.556 α3 0.152 0.011 TDS α1 −44.495 0.602 <0.001
CP2 2016-05 0.800 AAPC −0.415 0.002 α2 −3.184 0.142

Adjusted
R2 0.978 CP1 2011-01 0.412 α3 −8.984 0.341

CP2 2016-08 0.586 AAPC −12.961 0.088
Adjusted

R2 0.999 CP1 2011-02 0.388
CP2 2015-04 2.408

Adjusted
R2 0.994
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Table A2. Cont.

Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value Site Model Parameter Estimate Std. err p-Value

TM Discharge α1 3.500 0.078 <0.001 WH Discharge α1 3.018 0.078 <0.001 YO Discharge α1 22.987 0.737 <0.001
α2 −1.757 0.041 α2 −1.735 0.037 α2 −10.487 0.237
α3 3.403 0.033 α3 3.396 0.030 α3 56.820 0.271

AAPC 1.559 0.013 AAPC 1.447 0.012 AAPC 21.837 0.102
CP1 2011-05 0.504 CP1 2011-06 0.515 CP1 2011-02 0.599
CP2 2014-04 0.441 CP2 2014-04 0.402 CP2 2014-06 0.244

Adjusted
R2 0.991

Adjusted
R2 0.992

Adjusted
R2 0.998

Bromide α1 0.001 1.85 × 10−4 <0.001 Bromide α1 −0.031 0.0005 <0.001 Bromide α1 −0.0002 3.25 × 10−6 <0.001
α2 −0.007 3.40 × 10−4 α2 0.005 0.0003 α2 −0.0001 8.33 × 10−6

α3 0.002 3.48 × 10−5 α3 −0.026 0.0008 α3 −0.0007 5.34 × 10−6

AAPC −0.002 2.59 × 10−5 AAPC −0.014 0.0001 AAPC −0.0003 1.29 × 10−6

CP1 2011-03 0.825 CP1 2012-03 0.714 CP1 2013-01 2.303
CP2 2012-05 1.218 CP2 2015-12 0.883 CP2 2014-12 0.505

Adjusted
R2 0.992

Adjusted
R2 0.984

Adjusted
R2 0.998

Chloride α1 −0.316 0.009 <0.001 Chloride α1 −3.730 0.085 <0.001 Chloride α1 −0.319 0.015 <0.001
α2 0.592 0.017 α2 1.028 0.038 α2 0.457 0.011
α3 −0.582 0.008 α3 −3.646 0.093 α3 −0.542 0.010

AAPC −0.208 0.003 AAPC −1.471 0.019 AAPC −0.132 0.003
CP1 2012-06 0.647 CP1 2011-10 0.689 CP1 2011-09 0.847
CP2 2014-05 0.495 CP2 2015-10 0.715 CP2 2014-07 0.609

Adjusted
R2 0.979

Adjusted
R2 0.973

Adjusted
R2 0.966

Sulfate α1 −1.037 0.023 <0.001 Sulfate α1 −12.888 0.218 <0.001 Sulfate α1 −0.284 0.014 <0.001
α2 1.077 0.031 α2 0.851 0.060 α2 −0.017 0.015
α3 −1.205 0.018 α3 −9.530 0.243 α3 −0.136 0.002

AAPC −0.525 0.006 AAPC −4.447 0.041 AAPC −0.142 0.002
CP1 2012-03 0.625 CP1 2011-06 0.479 CP1 2010-12 1.569
CP2 2014-05 0.559 CP2 2016-07 0.652 CP2 2012-04 2.835

Adjusted
R2 0.979

Adjusted
R2 0.988

Adjusted
R2 0.986

TDS α1 −0.943 0.032 <0.001 TDS α1 −17.748 0.339 <0.001 TDS α1 −0.700 0.028 <0.001
α2 2.060 0.055 α2 2.199 0.100 α2 0.399 0.011
α3 −2.025 0.027 α3 −14.405 0.362 α3 −0.778 0.013

AAPC −0.623 0.009 AAPC −6.281 0.066 AAPC −0.278 0.004
CP1 2012-05 0.675 CP1 2011-06 0.543 CP1 2011-04 0.796
CP2 2014-05 0.485 CP2 2016-04 0.664 CP2 2014-07 0.630

Adjusted
R2 0.978

Adjusted
R2 0.983

Adjusted
R2 0.973
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