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Abstract: Over the past 10 years, urban floods have increased in frequency because of extreme rain-
fall events and urbanization development. To reduce the losses caused by floods, various urban 
flood models have been developed to realize urban flood early warning. Using CiteSpace software’s 
co-citation analysis, this paper reviews the characteristics of different types of urban flood models 
and summarizes state-of-the-art technologies for flood model development. Artificial intelligence 
(AI) technology provides an innovative approach to the construction of data-driven models; never-
theless, developing an AI model coupled with flooding processes represents a worthwhile chal-
lenge. Big data (such as remote sensing, crowdsourcing geographic, and Internet of Things data), as 
well as spatial data management and analysis methods, provide critical data and data processing 
support for model construction, evaluation, and application. The further development of these mod-
els and technologies is expected to improve the accuracy and efficiency of urban flood simulations 
and provide support for the construction of a multi-scale distributed smart flood simulation system. 

Keywords: artificial intelligence technology; remote sensing; crowdsourcing geographic data; Inter-
net of Things; spatial data management and analysis; distributed smart flood simulation system 
 

1. Introduction 
In recent years, frequent extreme rainfall events have caused severe flooding world-

wide. In addition, the rapid increase in impervious areas associated with urbanization has 
aggravated urban floods. For example, the peak flow of urban floods is several times or 
even dozens of times higher than that of natural rivers [1]. Frequent urban floods have 
seriously affected the normal functioning of cities. During and after rainstorms, rapidly 
accumulated floods cannot be discharged within a short time, which may have a signifi-
cant impact on traffic, human lives, and even cause casualties. Given that urban areas 
have highly dense populations, numerous buildings, developed industries, and com-
merce activities, the impacts of floods are much more severe in urban areas than in natural 
areas. According to the Emergency Events Database, flooding is responsible for over one-
third and more than half of global emergency event-related economic losses and fatalities, 
respectively [2]. For example, a flood in Queensland in September 2010 affected more than 
200,000 people and led to a loss of $2.38 billion [3]. A total of 641 out of 654 cities have 
been exposed to urban floods in China [4]. The ‘7.21′ flash flood of Beijing in 2012 affected 
nearly 1.9 million people, caused a disaster area of 14,000 km2, and produced losses of 
approximately $1.6 billion [5]. The extraordinary rainstorms and floods in Henan Prov-
ince, China that took place on July 16, 2021 affected 150 counties, 1616 towns, and 1.47 
million people and caused direct losses of $17.96 billion [6]. Moreover, a large amount of 
pollutants is washed off during runoff periods and enters rivers and groundwater, which 
consequently degrades the water environment. To reduce disaster consequences while 
guaranteeing the normal functioning of cities, flooding prevention and mitigation 
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measures must be formulated, and the timely warning of urban floods is an indispensable 
basis. Spatial assessments of infrastructure flood exposure are a necessity for rational 
flood risk assessments, targeted mitigation measure implementation, and for ensuring lo-
cal community preparedness [7]. To that end, large-scale assessments of flood-exposed 
areas and their spatial inequalities have attracted research attention [8]. 

Urban flood simulation is a generally used and valid approach for timely flood warn-
ing and spatial flooding assessments [1,9], and associated models are constantly evolving. 
The widely used models include the storm water management model (SWMM) [10–12], 
the MIKE FLOOD model [13], the InfoWorks ICM (integrated catchment management) 
model [14,15], and the Hydrologic Engineering Center’s hydrologic modeling system 
(HEC-HMS) and river analysis system (HEC-RAS) [16]. These models can simulate sur-
face runoff and overflow processes, and the results can be used to derive rainstorm flood 
information. However, more accurate simulations are required to realize more reliable 
flood warning, including the refinement of inputs with higher temporal and spatial reso-
lution; the collection, processing, management, and analysis of a large amount of multi-
source spatially heterogeneous data; the finer demarcation of sub-catchments or land 
cover patches; the calibration and automatic adjustment of a variety of parameters; and 
more detailed descriptions of hydrological and hydrodynamic processes. Moreover, the 
actual flooding process is difficult to observe during severe rainstorms, and measured 
flooding data are not easily obtained from government departments or companies, which 
are issues that hinder the validation of modeled results. 

The accuracy of flood model data for inputs and validation can be improved by ap-
plying advanced technologies, such as remote sensing [17], crowdsourcing geographic 
data, and Internet of Things (IoT) technologies [18]. However, a higher simulation accu-
racy generally implies a lower computational efficiency. Hence, models involving detailed 
processes at a fine spatiotemporal grain level are not suitable for urgent flood warning 
systems. Data-driven models based on artificial intelligence (AI) technology or models 
fused with AI can address this contradiction by ignoring or attenuating the interior mech-
anisms of hydrological and hydrodynamic processes and only if there is sufficient high-
quality data. Geographic information systems (GIS) are integrated platforms that play an 
important role in data management, analysis, and simulation. In recent decades, GIS use 
has been well established, and Earth observation data have become increasingly available, 
which has increased the feasibility of large-scale evaluations at fine resolutions. Ap-
proaches and methods of spatial analysis are helpful for extracting multi-scale spatial in-
formation on input and output data and for linking multi-scale processes. In summary, 
these advanced technologies can be used at each level of model development, including 
constructing multi-scale flood models or fusing different models; obtaining, selecting, 
processing, managing, and analyzing model input variables and parameters; validating 
modeled flooding processes; and presenting spatial patterns of modeled flooding status. 

This review first summarizes the characteristics of different types of main urban 
flood models. Approximately ten studies and review articles have already performed 
comparisons of different urban flood models [19–21]; therefore, this study focuses on the 
recent applications of advanced technologies in urban flood simulation and discusses in-
sights into promising opportunities for future research. 

2. Methods 
The process of collecting and analyzing the literature consists of three steps. First, we 

selected “urban flood” and “model” as the key strings for the topic search. The literature 
published during 1980–2022 (up to March 9, 2022) was searched in the Web of Science 
(WOS). All publications containing either of these key strings in their abstracts, titles, or 
keywords were retrieved from the bibliography. We assumed that the publications in the 
WOS represented influential works capable of demonstrating the trends in the research 
field; however, the retrieved works did not cover all related studies, such as those in non-
English languages. Second, using the co-citation analysis tool in CiteSpace software, 120 
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important publications with higher co-citation intensity were selected from the biblio-
graphic records. Moreover, some recently published articles were also reviewed. Finally, 
from these important publications, we extracted information related to urban flood mod-
els and advanced technology applications. 

3. Descriptions of the Main Urban Flood Models 
Urban flood models have been developed to understand various hydrological or hy-

drodynamic processes of floods in urban areas and to obtain flooding conditions, such as 
inundation area, flood depth, and volume. 

The main simulated processes include surface runoff, surface convergence, pipe con-
vergence, and flood inundation (Figure 1) [22,23]. Surface runoff is determined based on 
the amount of rain falling to the surface and the subtraction of the amount of evaporation 
from rain intercepted by the canopy, absorbed through infiltration, and detained in de-
pressions [24]. The most commonly used methods for simulating surface runoff include 
the full storage runoff method, the infiltration curve subtraction method, the index deduc-
tion method, and the runoff coefficient method [25]. Surface convergence is the process of 
surface flow into drainage networks and rivers, and it is usually simulated using hydro-
logical and hydrodynamic methods [26,27]. Hydrological methods include isochronal, lin-
ear, and nonlinear reservoir algorithms. Hydrodynamic methods are based on micro-
scopic physical laws by numerically solving continuity and momentum equations. The 
most widely used method is the 2D shallow water equation. Pipe convergence refers to 
the confluence process of surface runoff after it enters rainwater pipe networks, and it is 
commonly simulated using the kinematic wave, diffusion wave, dynamic wave, instanta-
neous unit hydrograph, and Muskingum methods [28]. The flood inundation process de-
scribes the overflow of water in rivers or pipelines, and is mainly simulated using the 2D 
hydrodynamic method, the terrain submergence method, and the cellular automata 
method [29]. 

 
Figure 1. Urban flooding simulation processes (adapted from [30]). The simulations involve hydro-
logical processes, from precipitation, to surface runoff and hydrodynamic processes, that generate 
flood inundation. 

Distinct urban flood models involve different hydrological and hydrodynamic pro-
cesses. Based on previous classifications [20,21,31], we summarized these models as sim-
plified flood models, physical flood models, and data-driven models according to the 
complexity of the model structure, the described processes, and the amounts of required 
data (Figure 2). Simplified flood models require less input data, owing to their simple 
structure and relatively few model parameters. Physical flood models have the most com-
plex structures and largest number of model parameters, and they require more data for 
parameter calibration and model validation. Data-driven models do not have complex 
structures but require massive data on the characteristics of flood events. 
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Figure 2. Classification and characteristics of the main urban flood models based on the complexity 
of the model structure and modeled processes and the amount of required data. 

3.1. Simplified Flood Models 
Simplified flood models can be regarded as gray-box models that do not clearly de-

scribe the internal laws of urban flooding. They have been widely used when the physical 
mechanisms of floods are unclear [32] and simulate flood processes by solving simplified 
equations (e.g., shallow water equations) that omit one or two acceleration terms [33]. The 
final or maximum flood range and related depth are obtained by solving the water balance 
equation. 

These models have obvious advantages, such as reduced computational time. Jamali 
et al. developed a simplified model and showed that it could reduce the simulation time 
by two orders of magnitude when compared with MIKE FLOOD, although differences 
were observed in the simulated flood depth [33]. When the required simulation accuracy 
is not high or the situation is urgent, a simplified model can provide a stop-gap approach 
for rapid flood prediction. 

3.2. Physical Flood Models 
Compared to simplified flood models, physical flood models can be regarded as 

white-box models that describe the internal mechanisms of flood generation and are more 
suitable for the refined simulations of complex urban underlying surfaces. 

Typical physical flood models include SWMM [10,34], MIKE FLOOD [35,36], In-
foWorks ICM [15,37], and HEC-HMS/RAS [16,38]. Urban hydrological models have also 
been developed based on cellular automata, which we call UHCA models [39–41] (Figure 
2). Most physical flood models use the catchment as the basic hydrological unit, whereas 
UHCA models use grid cells as units to achieve the fine division of underlying surfaces. 
Except for the SWMM, most physical flood models can simulate the flow of floods on a 
2D surface. Moreover, some models include a pipe network module, some include a GIS 
module to achieve efficient processing of the driving variables and parameters, and some 
include a low-impact development (LID) module to describe local eco-hydrological pro-
cesses in detail. The SWMM takes less time owing to more simplifications, and it may 
have lower simulation accuracy. By contrast, InfoWorks ICM and MIKE FLOOD can ob-
tain more accurate surface flood distributions, although their calculation speeds are rela-
tively low. The calculation speed and accuracy of the HEC-HMS/RAS model are relatively 
low [38]. UHCA models have the advantages of the above models and can simulate a 
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flood event at the second to 10 min level [41]. They also present high accuracy based on 
the use of high-precision data at the grid cell scale and high efficiency based on the use of 
parallel computing rules. Hence, UHCA models can support large-scale and high-preci-
sion spatial calculations in urban areas (Table 1). 

Table 1. Comparisons of the main physical flood models. 

Model SWMM * 
InfoWorks ICM 

* MIKE FLOOD 
HEC-

HMS/RAS 
* 

UHCA * 

Basic unit catchment catchment catchment catchment grid cell 
Dimension 1D 2D 2D 2D 2D 
GIS module × √ √ × × 
Pipe module √ × √ × √ or × 
LID * module √ × imperfect × √ or × 
Calculation speed ***** *** ** * **** 
Accuracy ** **** **** ** ***** 
Open source √ × × × √ or × 
Note(s): * SWMM, storm water management model; InfoWorks ICM, InfoWorks integrated catch-
ment management model; HEC-HMS/RAS, Hydrologic Engineering Center’s hydrologic modeling 
system and river analysis system; UHCA, urban hydrological models based on cellular automata; 
LID, low impact development. The larger number of the character of “*” means the higher 
calculation speed or the higher accuracy.  

Developing a hybrid model by utilizing the distinct advantages of different models 
or modules is a feasible and efficient approach. For example, we developed and validated 
a cellular automata-based distributed hydrological model for urban surface runoff (CA-
DUSRM) [42], and then the simulated surface runoff was input into the pipe convergence 
module in SWMM for pipe overflow. Ultimately, the simulated overflow was input into 
a developed flood inundation module for the occurrence and expansion of inundation. 
This hybrid model has been validated in a small area and a large area using the measured 
and crowdsourced data. 

These physical flood models describe the complex hydrological and hydrodynamic 
processes of floods in cities through physical laws formulated by differential equations, 
such as the Saint Venant, shallow water, and Boltzmann equations [43]. To simulate the 
temporal dynamics and spatial patterns of runoff and flood processes, these models gen-
erally require various data, such as topography, soil types, sewer conveyance networks, 
infiltration conditions, flow curves, and runoff parameters [43]. If these required data are 
difficult to obtain, it becomes impossible to use a physical model, especially for urban 
catchments with complex underlying surface conditions, boundary conditions, and intri-
cate drainage systems. In addition, iterative calculations in simulations of urban runoff 
and flood processes require substantial time, and parallel computation in UHCA models 
requires adequate preparation for massive computing performance, which contradicts the 
short duration of urban flooding. All of these factors have greatly restricted the timely 
application of these models. 

3.3. Data-Driven Flood Models 
Data-driven flood models can be regarded as black box models without presenting 

the internal mechanism of flooding. These models have the most straightforward ap-
proach to forecasting the occurrence and magnitude of floods, which are based on histor-
ical data [20,21,31,44–49]. The black box nature of AI technology makes it a core algorithm 
for data-driven models. 

Data-driven models exhibit good self-learning and continuous evolution capabilities 
[50]. In particular, they do not require an understanding of internal specific mechanisms 
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and can avoid describing complicated hydrological and hydrodynamic processes. Data-
driven flood models can automatically better extract flood features than simplified flood 
models. Moreover, they have a higher calculation efficiency and much lower require-
ments for flooding parameters than physical flood models. Therefore, data-driven flood 
models may provide rapid forecasts for urgent urban floods. However, these models re-
quire considerable historical data to train the simulation process and validate the simula-
tion results. 

To realize accurate prediction and control over an entire study area, flood models 
should contain more spatial elements; thus, spatially explicit models may be necessary 
[51]. Even if the model is not spatially explicit or developed for local sites or single sub-
catchments, the spatial heterogeneous nature of flooding conditions and associated driv-
ing variables must be characterized. Obviously, both the development of spatial models 
and the identification of spatial patterns can benefit from emerging technological ad-
vances. 

4. Development of Urban Flood Models Using Advanced Technologies 
The development of urban flood models requires a consideration of model construc-

tion, evaluation, and application. In addition to the model structure and algorithms, data 
issues penetrate throughout the process of model development. 

4.1. Model Construction 
AI algorithms have been utilized in urban flood fields to develop data-driven models 

that can provide timely prediction of the imminent incidences of flash floods [52]. Many 
AI systems rely on machine learning methods, and deep learning is a new method for 
machine learning (Figure 3). The deep learning method analyzes and learns by establish-
ing and simulating the neural network of the human brain. Compared to traditional ma-
chine learning methods, in which features are first manually extracted from data, deep 
learning methods can learn these features while training a large amount of data [53]. 

 
Figure 3. Categories of artificial intelligence algorithms that can be applied in urban flood simula-
tions. 

Common AI models involve three main layers: input, hidden, and output layers (Fig-
ure 4). The output layer contains data on flood variables, such as inundation area [54], 
flood volume [9], and flood depth. The input layer contains data on feature factors that 
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may impact flood variables, such as precipitation [9], topography [55], normalized differ-
ence vegetation index (NDVI) [50], soil moisture, land use type (or imperviousness) [56], 
and urbanization level, which can be identified by correlation analysis. Although various 
input data can be provided to train a model, a systematic investigation should be consid-
ered to determine which inputs are optimal to predict flood variables [49]. AI algorithms 
and network structures are trained in one or multiple hidden layers to determine the ap-
propriate weights that describe the relationships between the input and output variables. 
Flood data that are independent of those used for model training are used to validate the 
simulation results. After the model is validated to be reliable and accurate, model evalu-
ations can be conducted, including sensitivity analysis of the model parameters, uncer-
tainty analysis of the simulation results, and comparisons with other models. Further-
more, the validated models can be used to provide flood warnings, flood risk assessments, 
and advice for landscape planning. 

 
Figure 4. General flow chart for constructing an artificial intelligence model. 

Over the last decade, a tremendous increase in the use of AI technologies has been 
observed for urban hydrological simulation, which has provided early warnings and real-
time forecasts to decrease flood risks and losses [57]. AI algorithms have been used at 
single sites (1D) and achieved better results than traditional physical models. For example, 
Ke et al. used a rainfall threshold to differentiate flood events from non-flood events based 
on a support vector machine (SVM), which improved the accuracy of flood identification 
to 96.5% when applied to Shenzhen, China [58]. Tian et al. used a recurrent neural network 
for 1D flood runoff prediction, and the Nash coefficient was greater than 0.8 [59]. Further-
more, the prediction of a 2D flood inundation area and flood depth is more difficult, be-
cause there are many more feature factors and more complex nonlinear relationships be-
tween the input and output variables. To this end, exploratory studies have been con-
ducted. For example, Berkhahn et al. implemented an ensemble training approach and 
network growing algorithms for an artificial neural network (ANN) for 2D distributed 
maximum water level prediction in urban areas [47]. Chang et al. used a convolutional 
neural network to predict potential rainfall events from hyetograph feature parameters 
and to further estimate flood depth [52]. Hou et al. established a model that can rapidly 
estimate urban flood inundation based on machine learning algorithms (random forest 
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and K-nearest neighbor) and showed that these algorithms can effectively improve the 
estimation accuracy; for example, the mean relative errors between the modeled and 
measured inundation area and flood depth values were less than 5%, and the mean rela-
tive errors between the modeled and measured flood volume values could be controlled 
to within 10% [60]. Moreover, AI-based systems have been developed. Ye et al. suggested 
an AI-driven platform for urban flood prevention and warning [61], and Goyal et al. cre-
ated a system for real-time post-flood management using an ANN to analyze the areas 
affected by floods, and they found that this system was better than previous flood control 
systems [62]. 

The application of AI in urban flood simulations has greatly improved the efficiency 
and intelligence of estimations, as well as provided important support for the develop-
ment of smart water cycle systems. AI algorithms can numerically formulate the nonline-
arity of urban flood dynamics based solely on data. In addition, they can avoid iterative 
calculations of complex physical equations. Therefore, data-driven AI algorithms are 
promising tools for rapidly training and validating models. 

However, the advantage of AI models also implies a disadvantage associated with a 
limitation. We cannot generate an explicit understanding of the underlying physical pro-
cesses from either a data-driven AI model or its simulation results, which may lead to 
doubts in the model reliability, even if the simulation results have higher accuracy. More-
over, conflicts may occur between the simulation results and known physical principles 
[63]. To overcome this limitation, new AI theories and methods that couple data with a 
priori knowledge represent promising approaches [64]. For example, after the hydrologi-
cal-related values modeled by physical models under various rainfall scenarios are vali-
dated, they can be used as training and test samples for an AI model. Bermúdez et al. used 
a hydrological model to generate discharge, which was input for SVM models with ap-
proximately 25,000 control points in an urban catchment for the output of the maximum 
flood depth and velocity [65]. Lin et al. generated a synthetic event database using the 
hydrological model LARSIM (large area runoff simulation model) [48] for discharge hy-
drographs and the HEC-RAS 2D hydrodynamic model for flood inundation map, and, 
then, these databases were used for training and validating an ANN. This is considered a 
loose coupling approach. 

When the model is used over a large spatial extent, close coupling between a spatially 
distributed flood model and an AI algorithm becomes necessary. This type of coupling 
model has higher requirements for the training algorithms and network structures be-
cause of the complex nonlinear relationships between the spatial input and output varia-
bles that may exist at distinct scales. The structure of an AI flood model (such as the net-
work topology and convolution core) can be adjusted according to the generation and 
evolution of spatially distributed flooding processes [64]. Moreover, prior knowledge can 
be used to constrain the range of model outputs to enhance the authenticity of simulation 
results. At present, the development of AI models driven by data that are guided and 
constrained by prior knowledge is still in the stage of theoretical exploration [66]. Alt-
hough few related examples are available in the field of flooding, this idea has been ap-
plied in geosciences. For example, Chen and Zhang proposed a mechanism-mimicking AI 
network structure designed according to geomechanical equations [67]. 

In addition to AI algorithms, this type of coupling model has the requirements for 
the physical mechanisms that describe hydrological and hydrodynamics processes. There 
are certain uncertainties in the physical mechanisms. For example, the Saint Venant, 
shallow water, and Boltzmann equations generally used in physical models are more 
suitable for continuous processes on free surfaces [21].For noncontinuous processes on a 
surface with large undulations or complex and heterogeneous land covers (typically in 
cities), there might be big errors. Although UHCA models can address this problem, our 
study showed that there is much room for the improvement of rules that describe 
intercellular water exchanges in multiple flow directions [42]. The incomplete laws and 
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imperfect algorithms in numerical simulation and deep learning increase the uncertainties 
of simulation results. 

4.2. Data for Model Construction and Application 
The construction of both pure data-driven models and data-driven models coupled 

with mechanisms require massive amounts of data for model training, and it also requires 
a large amount of data for model inputs and validation when a constructed model is ap-
plied over a large space. Therefore, collecting, processing, and identifying high-quality 
data have become major issues in both model construction, evaluation, and application. 

In the era of big data, the amount of data related to urban flooding has sharply in-
creased with the development of information collection technology. For instance, a large 
amount of meteorological data (4–5 PB) have been collected, with an annual increment of 
1 PB, and frequent exchanges occur among countries worldwide [68]. Representative big 
data include crowdsourcing geographic data and IoT data, in addition to remote sensing 
and traditional site data (Figure 5). Various data have been used as inputs to provide me-
teorological data and flood-related data for urban flood simulation during both model 
training and application, and some can provide information for the calibration of param-
eters and the validation of modeled results. Model-predicted flood information (e.g., in-
undation area and flood depth) is generally communicated to mobile instruments or web 
users. Big data technology essentially unifies data from different sources and structures 
to provide support for urban flood simulations. 

 
Figure 5. Big data technology involved in the construction, parameter calibration, validation, and 
application of urban flood models. 

4.2.1. Remote Sensing Data 
Remote sensing technology has become increasingly significant in the field of flood 

simulation, especially with the continuous emergence of multi-platform, multi-temporal, 
and high-spatial-resolution remote sensing products. This technology can be used to de-
tect broad-scale land surface data at a low cost and high efficiency, which may compensate 
for the shortcomings of traditional in situ measurements. Moreover, it can also provide 
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information on underlying surfaces, meteorological factors, and water flows to develop 
and implement flood laws, although such technology is currently mainly applied in nat-
ural watersheds. 
1. Underlying Surface Information 

In urban flood models, underlying surface information with an effect on floods 
mainly includes topographic and land surface characteristics (e.g., buildings and land 
cover) [69]. 

The depth and speed of floods are easily affected by urban micro-topographical char-
acteristics. Thus, small topographic errors may lead to significantly distorted simulation 
results. The complex variation in microtopography in urban areas may involve various 
combinations of altitude differences, slopes, undulations, and overland flow widths, 
which can generate nonlinear water flow processes [70]. For example, the altitude differ-
ence between two sites directly affects the water flow direction, which, thus, implies the 
expected position of the outlet within a sub-catchment and determines the discretization 
of sub-catchments. The combination of terrain undulation (concaveness/convexity of ter-
rain) and slope affects the water flow speed and, thus, the water storage within a sub-
catchment, which ultimately has an effect on runoff, convergence, and flooding [42]. 
Therefore, obtaining terrain data with a high spatial resolution is critical for revealing the 
flood flow mechanisms influenced by the terrain. 

Currently, commonly used digital elevation model (DEM) data sources include the 
shuttle radar topography mission (SRTM, 30–90 m resolution), the advanced space-borne 
thermal emission and reflection radiometer (ASTER, 30 m resolution), and Google Earth 
(from multi-source data fusion and interpolation at approximately 7 m resolution) [71]. In 
addition, the latest remote sensing technologies, such as synthetic aperture radar interfer-
ometry (InSAR) and light detection and ranging (LiDAR), have further improved the ac-
curacy and speed of terrain data acquisition. InSAR and LiDAR can provide terrain data 
with meter-level resolution over a large range. Fine LiDAR data are used to identify highly 
heterogeneous microtopography and building contours, which can facilitate the rapid de-
velopment of high-spatial-resolution flood simulations [72,73]. However, this high-reso-
lution data may not be necessary for a sub-catchment with small terrain undulations. Our 
studies showed that the modeled surface runoff processes for a sub-catchment without 
apparent depressions did not change significantly when the spatial grain size increased 
from 1 m to approximately half the sub-catchment area [42]. 

Land cover is another indispensable input data type when modeling runoff and 
flooding processes. Pervious and impervious covers have significantly different effects on 
overland flows, because they have different capacities for water retention, storage, ab-
sorption, and infiltration, which are determined by their physical characteristics (e.g., 
roughness, depression storage, and permeability), as well as biological and chemical at-
tributes (e.g., plant utilization and soil absorption) [74]. Thus, the pervious or impervious 
area ratio is critical for the generation and dynamics of surface runoff and flooding. The 
spatial configuration among pervious covers, impervious covers, and outlets determines 
the overland flow routing and is also considered in some models, such as SWMM and 
MIKE FLOOD [75]. For plant cover, distinguishing herbs and shrubs from trees and de-
termining their leaf areas are also necessary to better understand the effects of different 
vegetation types in mitigating flooding by more accurately simulating eco-hydrological 
processes, such as canopy interception of rainfall [76]. For hardened surfaces, different 
underlying surface materials (e.g., asphalt, cement, and brick) with different roughness 
values and permeabilities must be identified. Other land use types, especially those 
closely associated with human activities in urban areas, such as LID facilities, need to be 
identified because of their different eco-hydrological effects. The complexity and diversity 
of urban land cover and land use require data with a high spatial or spectral resolution to 
identify the types and materials of the underlying surface and to discretize sub-
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catchments. In some dynamic urban research, land use data with a high temporal resolu-
tion are also needed [77]. 

In the past few decades, remote sensing techniques have been used to obtain land 
cover and land use data through feature extraction and classification based on distinct 
electromagnetic wave information of the land surface objects. In contrast, hyperspectral 
remote sensing technology has greatly improved the ability to distinguish and recognize 
urban features, because it reduces the occurrence of phenomena in which different objects 
may have the same spectrum and the same object may have different spectra [78,79]. How-
ever, the spatial resolution of an image is generally low when its spectral resolution is 
high, which increases the difficulty of extracting and classifying complex features in urban 
areas. Generally, easily obtained high-spatial-resolution images are used as supplements 
to hyperspectral data. Globally, the mainstream remote sensing satellites with high spatial 
resolution include IKONOS, SPOT-5, the Earth Observation System, QuickBird, 
WorldView-1/2, Beijing-1, and Gaofen, and their spatial resolutions can reach the meter 
level [80]. 
2. Meteorological information 

Meteorological data represent important inputs for urban flood models. With the de-
velopment of remote sensing technology, many meteorological-related data, such as rain-
fall [81], evapotranspiration [82], and soil moisture [83,84], can be rapidly quantified using 
retrieval algorithms [85,86]. 

Precipitation observations based on remote sensing images represent the most effec-
tive method for obtaining spatial and temporal distribution characteristics and changes in 
urban rainfall. Satellite and fusion precipitation products have been widely used in urban 
flood simulations [87]. Satellite precipitation information primarily depends on the radi-
ation characteristics of clouds in the atmosphere acquired from onboard sensors [88]. The 
radiation characteristics of clouds are directly related to the state parameters of the cloud 
layer, such as the cloud layer height and thickness, cloud top temperature, and cloud ex-
pansion rate. These parameters can be characterized using brightness temperature data 
obtained from sensors. At present, the cloud index and cloud life history methods are 
widely used to retrieve precipitation data based on the radiation characteristics of the 
cloud layer from visible/infrared images [89]. A precipitation calculation method based 
on statistical data and cloud radiation models was established for the retrieval of micro-
wave observations [90]. 

Various satellite precipitation products have been produced, including tropical rain-
fall measuring mission (TRMM) multisatellite precipitation analysis (TMPA, 0.25°, 3 h), 
global satellite mapping for precipitation (GSMap, 0.1°, 30 min–1 day), and integrated 
multisatellite retrievals for global precipitation measurement (IMERG, 0.1°, 30 min). These 
products can provide precipitation data with a wide variety of spatial and temporal reso-
lutions for urban flood simulations. Their application in urban flood simulations have 
provided useful insights regarding the temporal evolution and spatial variation of the 
precipitation [91–94]. However, all satellite precipitation products failed to provide accu-
rate rainfall records [92]. In general, these products have large systematic errors and ran-
dom errors, which are affected by atmospheric attenuation, sensor performance, spatial 
resolution, and inversion algorithms [95]. In particular, IMERG data cannot reproduce 
local scale extreme precipitation, with an error of more than 70 mm, because of their coarse 
spatial resolution. Compared to satellite data, ground data have higher accuracy, and cou-
pling with ground weather station data is a critical approach to obtain high-accuracy pre-
cipitation products. For example, the hourly precipitation grid dataset issued by the China 
Meteorological Data Service Center was coupled with CMORPH precipitation products 
based on data from the automatic weather stations from over all of China. However, these 
products cannot meet the requirement for the simulation of rapidly occurring and chang-
ing flash flood processes because of their low temporal resolution [91]. Given that ground 
weather stations and weather radar can provide the massive precipitation data 
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continuously measured at minute or second levels, some studies developed the methods 
of fusing satellite data with ground data to generate precipitation products that can have 
a spatial resolution of 1 km and temporal resolution of 6 min under ideal conditions [95]. 

Evapotranspiration represents the water flux that diffuses from the endothermic 
phase change of surface water and vegetation water to the atmosphere, and it includes 
vegetation transpiration, soil evaporation, and canopy interception evaporation. Evapo-
transpiration may be ignored during rainstorms. However, it can greatly affect the water 
cycle and the ultimate soil water condition of an ecosystem before rainfall, which then 
influences infiltration, surface runoff, and flood genesis during rainfall. In urban areas, 
land use changes from permeable and moist natural surfaces (e.g., soil and vegetation) to 
large areas of impervious artificial surfaces (e.g., roads and buildings) fundamentally in-
fluence the thermodynamics, water circulation, and aerodynamic characteristics of the 
underlying surface and, thus, have direct consequences on surface evaporation and veg-
etation transpiration [96]. Currently, remote-sensing sensors cannot directly observe 
evapotranspiration and mainly measure surface parameters that are closely related to 
evapotranspiration, such as surface temperature, specific emissivity, surface type, surface 
albedo, vegetation index, and vegetation coverage. These parameters can be used to esti-
mate evapotranspiration. 

Typical evapotranspiration products include the global evapotranspiration product 
MOD16, which is based on the moderate-resolution imaging spectrometer (MODIS), on 
global evapotranspiration products based on the advanced very high-resolution radiom-
eter, and on global land evaporation Amsterdam model products. However, continuous 
evapotranspiration is difficult to estimate in space and time because of the transient nature 
of remote sensing images and cloud interference. 

Soil water conditions can determine the water exchange between the atmosphere and 
land surface. Hence, soil moisture is an important parameter or an initial variable in flood 
models. Soil moisture can be retrieved from remote sensing images based on the spectral 
reflectance or emission characteristics of the soil and vegetation. For example, soil mois-
ture estimates from the temperature vegetation dryness index rely on the land surface 
temperature and vegetation index, which can be easily retrieved from thermal infrared 
and visible near-infrared spectrum images, respectively [97]. Soil moisture estimates from 
soil thermal inertia depend on land surface albedo and the diurnal temperature range of 
topsoil, which can be retrieved from the multispectral reflectance and thermal infrared 
emissivity of topsoil at different times, respectively [98]. Some soil moisture estimates are 
retrieved from the brightness temperature obtained from microwave remote sensing im-
ages [99]. 

Existing soil moisture remote sensing products include essential climate-variable soil 
moisture (0.25°), soil moisture and ocean salinity (25 km), advanced microwave scanning 
radiometer 2 (25 km), and soil moisture active/passive detection satellite products (36 km) 
[100]. Although great progress has been made in the remote sensing inversion of soil mois-
ture, many aspects need to be strengthened. For example, existing soil moisture data 
mainly represent moisture information of the top soil layer (usually 0–20 cm), which has 
limited applications in eco-hydrology studies, because the roots of most plants (especially 
trees) can reach far below the top layer [101]. In particular, current soil moisture data have 
low spatial resolutions and, thus, have limited applications in urban flood models. The 
development of future soil moisture inversion methods based on physical principles will 
be challenging because of the high number of factors (such as soil physical and chemical 
properties) that may affect soil moisture and the limited number of parameters that can 
be retrieved from remote sensing data under the current technical situation. 
3. Flood information 

Remote sensing technology has been widely used to identify water bodies (including 
floods) since the late 1970s, especially through the Earth Resources Technology Satellite 
and Landsat series [102]. Floods were identified based on the spectral characteristics of 
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water compared with other land cover types. Flood information (range, depth, and dura-
tion) was extracted from the electromagnetic spectrum reflected by water to realize the 
dynamic monitoring of flood processes. This information can be used as samples for train-
ing urban flood models, calibrating parameters, validating simulated flood range or 
depth, and assimilating models [103]. 

Different types of remote sensing data have different advantages and limitations for 
identifying floods (Table 2). Optical remote sensing data have a large range of spatial and 
temporal resolutions and, thus, can meet the requirements for identifying flood range, 
depth, and duration at different scales. For example, the Gaofen-2 satellite data have a 
spatial resolution finer than 10 m, and the WorldView commercial satellite data even 
reach the submeter level. MODIS data can capture the dynamic process of water inunda-
tion during floods well because of their prominent advantages in high temporal resolution 
(0.5 d), high spatial resolution (250 m), and wide spectral range (0.4–14 μm) [104]. How-
ever, optical sensors are easily affected by clouds and weather, and obtaining effective 
data during flood events is difficult due to overcasting [105]. 

Table 2. Application of different types of remote sensing data to flood information identification for 
urban flood models. 

Remote Sensing Data Type 
(Temporal and Spatial Res-

olution) 

Flood 
Information Characteristic Satellite/Sensor 

Optical data 
(0.5–26 days, <500 m) 

Flood range 
Flood depth 
Flood duration 

Vulnerable to clouds and 
weather 

MODIS * 
Landsat TM * 

Passive microwave data 
(twice a day, 10–70 km) 

Flood range 
Flood duration 

Less affected by weather; 
low spatial resolution; 
high temporal resolution 

AMSR-E * 
TRMM/TMI * 
SSM/I * 

Active microwave data 
(14–28 days, 1–10 m) 

Flood range 
Flood depth 

Unaffected by weather 
high spatial resolution; 
low temporal resolution 

TerraSAR-X * 
COSMO-SkyMed 
* 
ALOS *-2 
Sentinel-1 

Note(s): * MODIS, moderate resolution imaging spectroradiometer; TM, thematic mapper; AMSR-
E, advanced microwave scanning radiometer for the Earth Observation System; TRMM, tropical 
rainfall measurement mission; TMI, TRMM microwave imager; SSM/I, special sensor microwave 
imager; TerraSAR-X, terra synthetic aperture radar-X; COSMO-SkyMed, constellation of small sat-
ellites for Mediterranean basin observation-SkyMed; ALOS, advanced land observation satellite 
phased array L-band synthetic aperture radar. 

Passive microwaves can penetrate clouds or vegetation and are less affected by 
weather conditions or land cover (Table 2). Passive microwave remote sensing sensors 
have a short revisit period, and their observation frequency can reach twice a day over 
most parts of the world; thus, they are suitable for monitoring broad-scale flood processes 
and ranges. Brakenridge et al. demonstrated that electromagnetic radiation reflected or 
emitted from the surface of floods (water) and land was very easy to distinguish when the 
band frequency of the horizontal polarization of the sensor was 36.5 GHz or 37 GHz [106]. 
However, passive microwave systems are rarely used alone to extract urban flood infor-
mation because of the coarse spatial resolution of the data [107]. In contrast, active micro-
wave systems have a high spatial resolution (1–10 m); thus, more accurate flood range and 
depth information can be obtained. Microwaves transmitted from such sensors can pene-
trate cloud cover, haze, and dust, regardless of the weather conditions, which means that 
flood events can be observed during the day and night [108,109]. Studies have developed 
automated flood detection algorithms or systems based on synthetic aperture radar (SAR) 
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images. However, SAR may not be able to observe most of the land surface in urban areas 
with high buildings or tall trees because of its side-viewing nature, as well as the corner 
reflection that frequently appears for urban buildings with a rectangular surface structure 
[107,110]. 

The use of satellite remote sensing technology in flood monitoring and disaster emer-
gency response is limited because of the transient transit time of satellites [111]. Un-
manned aerial vehicle (UAV) technology is a new emerging technology that can compen-
sate for this limitation. UAVs capable of carrying different sensors have become an im-
portant means of monitoring flood disasters over the past 10 years, because UAV surveys 
are flexible and convenient and can generate high-precision (submeter level) data [112]. 
Feng et al. used a UAV carrying an RGB digital camera to obtain optical images and mon-
itor serious urban waterlogging in Yuyao, Zhejiang Province, China [113]. Researchers 
have also used UAVs carrying LiDAR (mainly composed of a global position system, an 
inertial measurement unit, and digital cameras) to reconstruct high-precision 3D models 
and DEMs, and they also combined UAVs with GIS spatial analysis technology to extract 
flood range data and assess flood risk [114]. In addition, the simultaneous localization and 
mapping (SLAM) technique with LiDAR equipment can quickly reconstruct the real-time 
surrounding scenes without time and place limitations; thus, it can obtain more precise 
flood-related data [115]. 

4.2.2. Crowdsourcing Geographic Data 
Crowdsourcing geographic data refer to open geographic data obtained by a large 

number of voluntary nonprofessionals and professionals and provided to the public in 
the form of text, pictures, and videos via the Internet (Figure 5) [116]. In current society, 
the public can play an unexpected role in the issue of real-time flood information, which 
increases the data size considerably. 

Crowdsourced data are a type of unstructured data that belong to natural language 
text. Flood information extraction from crowdsourced data mainly rely on natural lan-
guage processing, which is a type of AI algorithm. Fohringer et al. were the first to man-
ually derive flood inundation area maps from social media posts on Twitter [117]. Li et al. 
used flood-related text information released on Sina Weibo to monitor rainstorm events 
in Wuhan and Shenzhen, China [118]. In addition to monitoring and presenting the cur-
rent flood occurrence, these data may be used to validate the simulated flood situations 
and further develop a model with high reliability and accuracy [21]. Furthermore, the vul-
nerability to urban flood disasters or the risk of urban flooding can be assessed based on 
real-time crowdsourcing data [119]. 

4.2.3. Internet of Things Data 
IoT refers to a network that combines various sensors, such as infrared sensors, laser 

scanners, and global positioning systems, via the Internet or telecommunications net-
works [120]. In the field of flood studies, common IoT devices include wireless sensors, 
cameras, mobile phones, and automatic weather stations (Figure 5). They are usually lo-
cated at specific locations, such as water-prone road sections, low-lying areas, under-
passes of overpasses, and tunnels. By using these devices, the network can automatically 
identify, locate, track, and monitor real-time flood events [121], from which we can gen-
erate a large amount of continuous flood-related data (such as rainfall, flood flow speed, 
and flood depth) that can be used to construct or evaluate urban flood models. For exam-
ple, an electronic water gauge can accurately monitor the dynamics of flood depth on a 
road at a minute level. The entire process of surface flooding and receding water in wa-
terlogging events can be obtained from video surveillance systems; then, flood inundation 
information can be retrieved using computer image recognition technology. Based on the 
aforementioned technologies, high-definition cameras can detect real-time floods within 
a few seconds [117,122]. 
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IoT systems are suitable for the early forecasting of urgent events, such as urban 
floods, because they can efficiently collect, manage, analyze, and share real-time data. Im-
minent rainstorm events can be predicted from the current meteorological conditions 
monitored by an IoT system and can then be used as inputs to predict the range and in-
tensity of potential waterlogging through urban flood models. Subsequently, the IoT sys-
tem can issue this information to the public via the Internet. 

Hyper-resolution monitoring of urban floods that relies on crowdsourced geographic 
data and IoT data can supplement the deficiencies in traditional urban flood data and be 
expected to reveal more phenomena. However, the current application of these big data 
methods in urban flood simulation is limited. First, collecting a large amount of data is 
difficult because of the protection of users’ personal privacy or intellectual property and 
the inability to deploy IoT devices over an entire urban area. Second, processing these big 
data requires a considerable amount of time. There are considerable redundancies and 
noise contained within these big data, and considerable data cleaning work is required, 
including checking the credibility of information and evaluating the uncertainty of flood 
location and depth [123]. Data cleaning relies on more advanced cloud computing tech-
nology for data resources and a more comprehensive big data computing framework for 
algorithm support. 

4.3. Spatial Data Management and Analysis 
Although current advanced technologies have provided rich data for urban flood 

simulations, they have also introduced new challenges. First, rapid increases in various 
high-resolution data necessitate strict requirements for high-performance data pro-
cessing, storage, and management. Second, approaches for fusing massive multi-source 
data and forming a comprehensive basic database should be developed. Most critically, 
the data obtained at multiple spatial and temporal levels also creates issues related to scal-
ing, such as determining the relationships that occur between adjacent-scale or cross-scale 
data or information. Tackling these challenges requires more effective spatial data man-
agement and analytical methods. 

4.3.1. Spatial Data Platform 
GIS has been widely used in flood simulations to provide spatial data management 

functions. More importantly, given that most urban flood models cannot express the spa-
tial distribution of floods, the strong spatial analysis capabilities of GIS become indispen-
sable. 

Basic data analysis tools in GIS can be used to calculate the various parameters re-
quired for urban flood models. For example, hydrological analysis tools (e.g., basin, flow 
direction, and flow accumulation in ArcGIS software) have been used to determine the 
flow direction and water outlets in a sub-catchment using DEM data, based on which the 
sub-catchments become discretized [124]. The 3D analyst tool in ArcGIS has been used to 
calculate various parameters, such as the average slope of a sub-catchment. Zonal statis-
tics in ArcGIS have been used to calculate the sub-catchment area and the pervious to 
impervious surface ratio based on land use data [125]. By using the topology function in 
ArcGIS, a drainage pipe network layout that represents the actual situation can be estab-
lished, which is crucial for improving the simulation accuracy of pipe convergence pro-
cesses [126]. Based on these tools, ModelBuilder programming techniques in ArcGIS can 
be used to develop automatic workflows of calculation processes, which can greatly im-
prove the efficiency of processing data [124]. 

GIS can also provide a platform that integrates different technologies or models, such 
as spatial information technology, big data technology, AI technology, and hydrological 
models, to build an integrated urban flood information system. Jing et al. developed a 
model based on 2D unsteady flow theory using the ArcView software platform to con-
struct a rainstorm and waterlogging monitoring and early warning system in Harbin, Hei-
longjiang Province, China [127]. Wang et al. used 1D open channel unsteady flow and 2D 
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unsteady flow equations, combined with real-time rainfall monitoring data from regional 
automatic stations, to refine precipitation forecasts, as well as construct a dynamic forecast 
and early warning system on the Meteo GIS platform for urban waterlogging manage-
ment in Langfang, Hebei Province, China [128]. Urban flood models have also been de-
veloped based on GIS platforms, such as MIKE Urban, InfoWorks ICM, and Digital Water 
DS. These platforms can convey detailed flood physical mechanisms, have fast processing 
capabilities for spatially distributed data, and present efficient modeling capabilities. 
Some studies mixed AI models and GIS analysis to extrapolate local forecasts to flooded 
areas at sub-catchment scales [129]. 

Future research will mainly focus on supporting real-time data formats [130], and 3D 
GIS will become a support platform for ensuring the accuracy and credibility of flood 
simulations [131]. Such research has considerable room for improvement. 

4.3.2. Spatial Data Analysis 
Spatial analysis methods (especially spatial statistics methods) can play indispensa-

ble roles in determining suitable data inputs, in analyzing the spatial patterns of simulated 
flooding processes, in linking the patterns and processes among different scales, and in 
developing multi-scale distributed flood models. 

The selection of spatial data depends mainly on the research purpose, scale of discre-
tized catchments, and average size of historical inundation areas [132]. If we are concerned 
only with large inundation areas in a large region, then coarse-resolution data and catch-
ments are practicable. In contrast, if we are concerned with all the inundation areas re-
gardless of their sizes or depths, then the fine-resolution data must be selected to identify 
catchments at a fine scale. Regardless of the type of concern, the spatial grain size of the 
data should be smaller than the average size of the inundated patches [133]. Thus, a 
method for determining the average patch size before performing spatial data selection is 
required. The average size of inundated patches (and their connectivity, proximity, isola-
tion, aggregation, and dispersion) can be calculated using spatial pattern analysis soft-
ware, such as Fragstats 4.2 [134], based on a generated raster image with various patch 
types. For a large and spatially complicated urban area, some spatial statistical methods 
(such as lacunarity index, spatial autocorrelation analysis, and scale variance analysis or 
scale variance analysis coupled with Moran’s I scalogram) can help identify the average 
patch size [135,136]. 

The identification of multi-scale spatial patterns of flood-related variables (such as 
rainfall, soil moisture, evapotranspiration, and surface runoff) relies on spatial statistical 
methods. In addition to the methods mentioned above, which are used for patch-type 
data, wavelet analysis is widely used for quantitative variables. From the spatial statistical 
analysis, we may determine the nested hierarchical structure of these variables across 
scale domains in a large range, such as the small flooding aggregation occurring at local 
sites, medium aggregation covering multiple land covers, and large aggregation across 
adjacent sub-catchments. These spatial statistical methods can also identify whether a var-
iable is spatially random, uniform, aggregated, or dispersed within each scale domain, as 
well as whether the two variables have a spatially positive or negative association. Within 
a limited range or scale domain, if the spatial pattern analysis shows that a variable pre-
sents a fractal structure rather than a hierarchical structure, then the complex flooding 
processes can be dealt with in a simple way based on power laws [137]. 

The multi-scale spatial pattern analysis of inundated patches and flood-related vari-
ables can help us not only explore the spatial patterns of patches and variables and their 
associations with hydrological processes within each scale domain, but also explore the 
pattern–process relationships across scales. Thus, spatial pattern analysis is the basis for 
developing a multi-scale distributed flood model across cell (or site), patch, sub-catchment 
(or catchment), and landscape (or region) scales [40,137]. If water flow interactions among 
cells are fully comprehended, then upscaling from cells to patches can be realized, and if 
water flow routings among adjacent patches are determined, then hydrological processes 
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can be intrinsically upscaled from patches to sub-catchments or catchments [138]. We de-
veloped CA-DUSRM, a cellular automata-based distributed hydrological model for urban 
surface runoff, in which the nonlinear reservoir algorithm was improved and combined 
with a weighting system to simulate surface runoff processes. We assumed that each cell 
interacted with other cells in its neighborhood via local surface water exchange rules. Such 
rules realize the upscaling of runoff, first from cells to their neighborhoods, and then from 
cell neighborhoods to their distinct nearest outlets. Ultimately, runoff converged to mul-
tiple outlets is lumped to a sub-catchment [42]. The whole upscaling is realized within the 
bottom-up simulation framework of cellular automata. The similar upscaling approach 
can be implemented when simulating the spatial expansion of water overflowed from 
pipe network nodes to their nearest neighborhoods and then to farther surroundings. 
More heuristic simulation approaches or sophisticated spatial technologies are required 
for future model development, which represents one of the most rewarding challenges. 

4.3.3. Uncertainty in Spatial Analysis 
Although advanced technologies have facilitated flood model development, uncer-

tainties exist in the spatial analysis methods for such models. Original data have errors, 
and estimated data have uncertainties [19]. For example, fine urban meteorological data 
and underlying surface parameters (e.g., depression storage, Manning’s roughness coef-
ficient, and soil texture) are mainly obtained from local ground stations and sample sites. 
Uncertainties always occur when such data are spatially extrapolated to a large area, due 
to insufficient sample density and imperfect upscaling methods [138]. When multiple data 
with different types and sources are input to a flood model, data transformation to unified 
formats (e.g., the same resolution and geographical project) will inevitably produce devi-
ations. Scale effect is another source of uncertainty for model outputs. Different spatio-
temporal grains for the same variables or parameters may generate great discrepancies in 
simulated runoff and flood processes; for example, our study showed that increasing tem-
poral grains can result in aliasing in hydrographs [42]. In these cases, the uncertainties of 
model outputs over a space can be estimated based on the statistical distributions of input 
data (and correlations between inputs) from their actual values or generated random val-
ues that conform to their statistical characteristics. 

In addition, although certain technologies and approaches can theoretically be used 
to obtain the information on flood inundation range and depth, there might be still many 
places and times for which the information has not been covered. Such cases will make 
model validation difficult and uncertainty evaluations incomplete, especially for small 
flooded sites. 

5. Conclusions 
Urban flood models can be classified into three categories: simplified, physical, and 

data-driven. With the application of advanced technologies in flood models, the simula-
tion accuracy and efficiency have improved markedly, thus providing support for the es-
tablishment of a smart and integrated model framework for urban floods. 

Although a perfect urban flood model has not yet been developed, the advantages of 
distinct models can be combined to produce an optimal model. The designed perfect 
model framework should be a multi-scale distributed smart simulation system that con-
siders cells as the basic units and supports simulations within and across distinct scales, 
such as cells, patches, sub-catchments, and catchments. 

The optimal system involves three main parts: inputs, models (algorithms, functions 
or rules), and outputs. For model input variables and parameters, remote sensing, 
crowdsourcing geographic data, and IoT big data technologies and methods that have 
been sufficiently developed and improved should be considered via the spatial data man-
agement functions of GIS platforms. By using image processing software and 3D GIS tech-
nologies, the synthesis and presentation of real-time and authentic flooding maps should 
be a critical output part of systems for the early warning and control of floods. 
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Regarding the model, the expected models should integrate two types of general 
strategies that have separate requirements for flood simulation. The first general strategy 
focuses on simulation accuracy. For accuracy, modules associated with eco-hydrological 
and hydrodynamic processes at multiple scales, such as overland flow and inundation at 
the cell or local scale, runoff generation and confluence at patch-scale LID facilities, and 
overflow in pipe networks at the sub-catchment scale, should be considered and com-
bined into the system using a common GIS platform. The modules should be continuously 
updated using the developed mechanisms. The second general strategy focuses on simu-
lation efficiency. For efficiency, AI models that are trained using advanced algorithms 
based on a large amount of meteorological, topographic, land cover, and flood data are 
required. Given that we must simultaneously address the issues of simulation accuracy 
and efficiency during urgent urban waterlogging, the expected models should not be com-
pletely mechanism models or completely non-mechanism (or statistical) models; rather, 
they should effectively couple mechanism and non-mechanism models. 

Although many advanced spatial technologies have been developed for the construc-
tion of the expected multi-scale distributed smart simulation system, challenges remain. 
The most difficult task is to determine the scaling laws of eco-hydrological and hydrody-
namic processes based on the spatial pattern characteristics of processes and pattern–pro-
cess relationships across scales. Resolving these issues will not only require advanced 
methods in spatial analysis, but will also require an understanding of the dynamics and 
mechanisms at multiple scales. The second most difficult task is to develop models that 
can couple calculations driven by flooding processes with AI algorithms that are driven 
by data to realize high simulation accuracy and efficiency. 

We suggest that a multi-scale distributed smart simulation system will provide more 
accurate flood information in a highly efficient manner, and such characteristics will be 
essential for the wide application of such systems for the early warning and control of 
floods. 
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