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Abstract: Flood, a distinctive natural calamity, has occurred more frequently in the last few decades
all over the world, which is often an unexpected and inevitable natural hazard, but the losses and
damages can be managed and controlled by adopting effective measures. In recent times, flood
hazard susceptibility mapping has become a prime concern in minimizing the worst impact of
this global threat; but the nonlinear relationship between several flood causative factors and the
dynamicity of risk levels makes it complicated and confronted with substantial challenges to reliable
assessment. Therefore, we have considered SVM, RF, and ANN—three distinctive ML algorithms in
the GIS platform—to delineate the flood hazard risk zones of the subtropical Kangsabati river basin,
West Bengal, India; which experienced frequent flood events because of intense rainfall throughout
the monsoon season. In our study, all adopted ML algorithms are more efficient in solving all the non-
linear problems in flood hazard risk assessment; multi-collinearity analysis and Pearson’s correlation
coefficient techniques have been used to identify the collinearity issues among all fifteen adopted
flood causative factors. In this research, the predicted results are evaluated through six prominent
and reliable statistical (“AUC-ROC, specificity, sensitivity, PPV, NPV, F-score”) and one graphical
(Taylor diagram) technique and shows that ANN is the most reliable modeling approach followed
by RF and SVM models. The values of AUC in the ANN model for the training and validation
datasets are 0.901 and 0.891, respectively. The derived result states that about 7.54% and 10.41% of
areas accordingly lie under the high and extremely high flood danger risk zones. Thus, this study
can help the decision-makers in constructing the proper strategy at the regional and national levels
to mitigate the flood hazard in a particular region. This type of information may be helpful to the
various authorities to implement this outcome in various spheres of decision making. Apart from
this, future researchers are also able to conduct their research byconsidering this methodology in
flood susceptibility assessment.

Keywords: flood hazard; Kangsabati river; RS-GIS; subtropical climate; machine learning model

1. Introduction

In the world, flood is the most widely known and devastating hazard among various
hydro-meteorological hazards [1–3]. During flood time, severe human conditions and
socio-economic damage are caused. Floods occurred about 150,061 times worldwide as
per a report by the “United Nations Office for Disaster Risk Reduction Statistical Data”
(UNISDR). From 1995 to 2015, around 157,000 people died because of this hazard, which is
responsible for 11.1% of natural disaster fatalities [4]. According to Nicholls et al., 1999 [5],
worldwide, floods have an impact on almost 200 million people each year. According
to “climate change forecasts”, based on changes in land use patterns and an increase in
“population”, flood occurrence rates and severity are predicted to worsen by 2050 and may
result in significant losses [6]. However, the Great Himalayan Glaciers and the South Asian
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Subcontinent remain the most vulnerable. While wet weather is still the primary culprit for
floods in the area, glaciers and rising temperatures pose a long-term problem [7,8]. At a rate
of 40 percent, floods are the region’s most frequent natural calamity. In addition, 9.6 million
individuals in Bangladesh, India, and Nepal have been impacted by urban floods due to
solid waste management and declines in urban vegetation. Of them, 6.8 million are from
India alone. 9.6 million people have been impacted by the flooding in South Asia, making
this an increasingly urgent humanitarian disaster [7]. Therefore, it is vitally necessary to
conduct research on flood susceptibility at the basin size on the regional level in order to
implement management measures to control flood events. Extreme precipitation events are
expected to occur more often across the world in the near future, according to the IPCC’s
Sixth Assessment Report. In addition, it is anticipated that the natural water retention by
land use would diminish as urban land uses increase in the future. As a result, an increase
in the frequency and detrimental effects of flood occurrences is anticipated.

Like other natural disasters (“landslides, volcanoes, or earthquakes, flood”), disasters
occur more frequently associated with a broader impact [9]. Storm surges, severe or sudden
snowmelt, a rising water level from melting snow, and overtopped embankments are
all potential causes of flooding [10]. Flooding may also be caused by other disasters and
situations, such as landslides or tsunamis caused by an earthquake. Scientists anticipate that
as a result of climate change, the world will see an increase in the frequency and intensity
of floods and droughts worldwide, as well as an increase in the uncertainty around coastal
flooding due to rising sea levels. A basin may flood due to the fast population growth
brought on by urban development. Flood disasters are frequently more prevalent in regions
with higher population densities, more agricultural areas, or denser river networks [11]. As
a result, determining the carrying capacity of river basins at risk of flooding and managing
watersheds on a worldwide basis is crucial. Floods are a recurring natural occurrence that
cannot be avoided. However, it is possible and desired to lessen their negative effects,
particularly close to important infrastructure and residential areas. The expensive floods at
the start of the twenty-first century is one of the most influential aspect which is directly
influences the livelihood of the people [12]. For logical flood risk management and the
prioritizing of flood-prone regions, it is thus required to identify the critical infrastructure
(CI) and social infrastructure (SI) that is exposed to flooding. The capacity to analyze
the vulnerability of infrastructure to flooding on a national scale is now possible because
to the expanding availability of EO data and the widespread usage of GIS. The regional
differences of CI flood exposure that were uncovered in this study potentially reflect
various flood management techniques applied in different areas and sectors. These flood
management techniques are completely reliant on the decision makers’ consciousness of
and responsiveness to flood hazard, the operations and maintenance conditions of the CI
facilities, and the local socio-environmental conditions [13].

There have been many approaches used to evaluate and identify flood-prone locations,
but lately, the machine learning model incorporating geospatial techniques has gained
popularity. According to the literature, earlier studies have included “MCDA approaches,
including the AHP and the expert scoring system”. The accuracy of these approaches is
based on professional understanding. Numerous “physically based models” (like “VIC
and MIKE”) and as well as different hydrological models are used to study floods at
the continental and global levels [14]. Floods are studied using a variety of “physically
oriented models” (such as “VIC and MIKE”) at global level. The machine learning models
build a connection between the frequency of floods and the explanatory elements from
the historical flooding data, avoiding the subjective weight assessment. The benefit of ML
models became clearer in light of the complexity of the world’s floods, which may include
a big number of model parameters, repeated model debugging, and long computation
durations. On the basis of these advantages, it can be stated that the LSTM network has the
ability to enhance residual error characterization, allowing reliable probabilistic predictions
as well as predictive inferences for variables that are difficult to detect [15]. In order to
support decision-makers and hydrologists, hydrological models were created to evaluate
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the effects of climate change as well as to analyze, comprehend, and look at potential
approaches to sustainable water management [16].

A specific watershed was usually the subject of the “flood risk assessment”, which
was based on “machine learning methods”. For instance, Tehrany et al. used “SVM” with
a variety of “kernel types” in “flood susceptibility zone mapping (FSZM)” in identifying
flood-prospected areas. The input samples in the training section are utilized as a training
dataset for flood occurrence or non-occurrence points in this machine-learning model. In
actuality, the characteristics of the whole basin, rather than a single sampling site, are what
cause floods to occur. Additionally, it is essential to assess the “flood risk” for worldwide
watersheds since these evaluations have rarely used machine learning approaches. The
application of a machine learning algorithm in a GIS environment has not been done by
the researchers considering the maximum possible conditioning parameters. Here we
are trying to fill this gap by considering the maximum possible parameters in the overall
Kangsabati river basin for flood susceptibility assessment.

2. Materials and Methods
2.1. Study Area

Kanghasabati river is entirely positioned within four districts (“Bankura, Purulia,
East Midnapore, and West Midnapore”) by covering 4265 km2 and lies between 21◦45′

N to 23◦30′ N latitudes and longitudes from 85◦45′ E to 88◦15′ E (Figure 1). The highest
precipitation occurs in the wet monsoon season and reaches 1650 mm (June to September).
Summersare very hot in the months of May–June, and temperatures to 45 ◦C characterize
the sub-tropical type of climate. The natural vegetation along with agriculture is affected by
the dry and very hot summer with evaporation. Granite gneiss, Archean rock formations,
laterite, and alluvial deposits in the lower part together develop the geomorphological and
geological conditions of this selected study region. Soil, drainage, geology, and geomorphic
landscape both establish a strong metamorphic correlation here.
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2.2. Methodology

The machine learning model (SVM, ANN, and RF) through the GIS platform for
flood susceptibility mapping followed various steps (Figure 2): 1. The GIS database
is used for a selection of conditioning parameters. 2. Preparation of ‘flood inventory
mapping (FIM)’ with these collections. 3. Establish the flood susceptibility map using
SVM, ANN, and RF models with a machine learning technique 4. With the help of a multi-
collinearity test, investigation of the most suitable condition factors for flood occurrences.
5. Validated the established ‘susceptibility map’. The selection of causal parameters
was performed with the help of existing literature [17–20]. Then, the flood susceptibility
assessment was done with the help of SVM, ANN, and RF machine learning algorithms.
The spatial outcome of flood susceptibility assessment is shown in the GIS environment.
The natural breaks classifier in the GIS environment was considered for classifying
the flood susceptibility raster in different qualitative classes. A data categorization
technique called the “Jenks Natural Breaks Classification” (or optimization) system
seeks to maximize the grouping of a collection of values into “natural” classes. The best
class range discovered “naturally” in a data set is known as a natural class. A class range
in a data set is made up of objects having comparable qualities that constitute a “natural”
group [21].
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2.3. Flood Inventory Mapping

The creation of inventory maps is the foremost and essential aspect for future disaster
assessment [22]. An inventory map of the research region was created using the local field
survey report, and previous records from different organizations were used to find out the
flooded areas based on historical flood data. Numerous flooded places were arbitrarily
split into two different phases, namely training (70%) and validation (30%), respectively,
after the application of three models (SVM, ANN, and RF). The mentioned models selected
for flood susceptibility assessment were based on the previous existing literature related to
flood susceptibility research [23–26].

2.4. Causatives Parameter to Flood

Causative elements must be established as independent variables in order to create an
FSM [27]. All of the contributing variables are not employed in all research areas since they
may not have an influence in other areas, as claimed by Kia et al., (2012) [28]. In previous
literature different factors such as “drainage distance, altitude, land use pattern, drainage
density, water depth, rainfall and soil characteristics” has been considered [29–32]. The
investigation of flood behavior is important for receiving considerable attention; on the
other hand, the current focus is to establish flood susceptibility mapping by highlight-
ing the flood causal factors along with geospatial techniques in a region. In this study,
“aspect, elevation, plan curvature, Profile Curvature, slope, SPI, TRI, TWI, STI, rainfall,
distance to a river, distance to road, drainage density, geology, LULC, geomorphology”
were compared with previous flood related studies (Figure 3) [28,33,34]. According to
Tehrany et al., 2019 [35], the topography of any region plays a significant role in “flood
affected area” identification (FSI)’. It has direct effects on the speed of runoff [28], slope
steepness, accelerates runoff velocity, and decreases interception rates [36]. The distance
river distance from the adjacent settlement area has a significant impact on the flood’s size.
Flooding is influenced by drainage density, with higher drainage densities resulting in
poorer interception rates and hence higher runoff concentration [37,38]. Land use has an
impact on several aspects of hydrology, such as runoff, evapotranspiration of a region, and
interception of water to percolation process. Less vegetation causes more flooding, whereas
more vegetation causes less flooding. The features of the harmful relationship between
“flood events” and “vegetation cover” are as follows.

2.5. Methods
2.5.1. Multicollinearity Assessment

In the case of “FSM”, MC assessment has emerged as a most prominent and widely
used technique that is specifically used to delineate the interdependence among all adopted
conditioning parameters. Previous studies have shown that if two or more variables are
found interdependent, then the accuracy of the derived result significantly decreases [39].
Thus, it is an essential step toward susceptibility mapping [40]. Therefore, different schol-
ars [35,41] have applied this tool in the identification of linearity among “flood causative
factors”. Generally, two indices are used for MC analysis such as “variance inflation factor
(VIF)” and “Tolerance (TOL)”; the VIF value should be less than 10, and the TOL value
greater than 0.1, which defines the no collinearity issues in research work. The MC test was
performed by the following equations:

TOL = 1− R2
J (1)

VIF =
1

TOL
(2)

where “R2 demonstrates the coefficient of regression” [42].
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2.5.2. Random Forest (RF)

Breiman created the ensemble machine learning method random forest (RF), which
predicts a model employing several classification or regression trees [43,44]. By using a
“regression tree” the response variable was modeled in this study. It produces several
suitable regression tree-based training models and after that, it categorizes the data in
accordance with the voting results of numerous classifiers using sampling with replacement
and diverse sets of the sample that were produced [45]. Once the prediction has the smallest
node deviation achievable, the regression tree is trained to classify the observations based on
the response variables [46]. A “nonlinear decision surface” was created by the “regression
trees” rule, which is a collection of linear divisions of observed data. Because “regression
trees” have a propensity in overfitting the training data, they function poorly when no
data is supplied. This issue can be solved by a single regression tree trained with the
help of the RF method. Randomly chosen records and predictor variables from the input
data are used as input in the training section. Each set of “regression trees” and several
sampling procedures result in the production of a collection of regression trees. The RF and
generalization error are estimated using the following formulas [47]:

GE = Px,y(mg(x, y) < 0) (3)

mg(x, y) = avk I(hk(x) = y)−maxj 6=yavk I(hk(x) = j) (4)

where “x and y indicates several factors to specify the likelihood over x and y space, mg is
to subsidiary task and I(∗) indicates the marker task”.

2.5.3. Support Vector Machine (SVM)

Based on the “structural risk reduction” concept and “statistical learning theory” [48],
a supervised ML algorithm called SVM was used. Through the creation of hyperplanes,
the nonlinear properties of the world are reshaped into linearity, and SVM simplifies and
processes it into classes [49]. The kernel function is the name for the mathematical procedure
used to convert data. Using the training dataset, the original input is transformed by SVM
into a high-dimensional feature space. The initial space between the points of two different
classes is produced by hyper-plane separation and consists of n coordinates (xi parameters
in vector x). Marjanovi et al. (2011) [50] state that the classification “hyper-plane” is built by
SVM in the center of the “maximum margin” of separation between the classes. The point
will be classed as +1 if it is above the “hyper-plane”, and −1 if it is not. The hyper-plane in
an SVM model has been calculated using the following equations:

Min
n

∑
i=1

ϕi −
1
2

n

∑
i=1

n

∑
j=1

ϕi ϕjyiyj
(
xi, xj

)
(5)

Subject to:

Min
n

∑
i=1

ϕiyj = 0 and 0 ≤ αi ≤ D (6)

where “x = xi, i = 1, 2, . . . n stand for the key variables of vector, y = yi, j = 1, 2, . . . n
represent the output variables of vector and ϕi is Lagrange multipliers”.

The resulting task of SVM can be expressed as follows:

f (x) = sgn

(
n

∑
i=j

yi ϕiK
(
xi, xj

)
+ a

)
(7)

where “a is the bias that indicates the hyperplane’s linear distance from the origin, K
(

xi, xj
)

is Polynomial (POL) and radial basis function (RBF) are examples of kernel functions, and
they may be represented as follows”:
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KPOL
(

xi, xj
)
= ((x ∗ y) + 1)d (8)

KRBF
(
xi, xj

)
= e−y||x−xi ||2 (9)

2.5.4. Artificial Neural Network (ANN)

According to Luk, Ball, and Sharma (2001) [51], ANNs that mimic the human nervous
system may create answers that are meaningful even when the input data is inaccurate
or incomplete [52], it can also learn and generalize these data. A large variety of issues
to be resolved [53], another acronym used is ANN. It has the capacity to reproduce a
previously unrecognized association between a collection of “input elements (like rainfall)
and output components (like runoff)” [54] or “groundwater level” [55]. To start computing
the ANN, an array of numbers, xi, is initially introduced to the input layer of the processing
nodes. Then, owing to “connection-specific weights”, these signals may either be muted or
amplified as they traverse links to each of the nodes in the subsequent layer. After being
ignored by a “threshold function”, the processing units subsequently convert the input
signal into an output signal (Oj). The equation that follows is as follows:

f (x) =
1

1 + e−x (10)

The derived result is computed as follows if the final results or output range from 0
to 1:

Qj =
1

1 + e− ∑ x1w1
(11)

“The output from the processing unit, f(x), ranges between 0 and 1”.

2.5.5. Model Validation Techniques

Appropriate validation strategies are absolutely necessary for any scientific research.
No research work can be applied in reality if the employed models have not been ade-
quately validated [56,57]. Therefore, in our research, we have used the six most reliable
statistical techniques namely “specificity, sensitivity, PPV, NPV, F score, andarea under the
curve—receiver operating characteristics curve (AUC-ROC)”; in addition, one graphical
technique, including Taylor diagram [58] (also used in this study), to accurately assess
the model performance as well as predicted result. The validation approaches have been
calculated using the four statistical metrics “TP, TN, FN, and FP”. According to Pal et al.,
(2022) [59], the accuracy of the previously mentioned models is determined by these valida-
tion method values; the models performed better when the values were greater, and vice
versa. The following equations were employed to perform all the validation measures:

AUC =
(∑ TP + ∑ TN)

(P + N)
(12)

Sensitivity = TP/(TP + FN) (13)

Speci f icity = TN/(FP + TN) (14)

PPV =
TP

FP + TP
(15)

NPV =
TN

TN + FN
(16)

Precession =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)
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F score = 2 ∗ Precession ∗ Recall
Precession + Recall

(19)

3. Results
3.1. Multicollinearity Assessment

In our flood susceptibility assessment, the aforementioned MC analysis tools played
a notable role in improving the modeling approach by eliminating the parameter bias
and helping to select suitable flood conditioning factors. Therefore, sixteen variables are
considered for flood susceptibility mapping with the help of MC assessment. In our present
research, the VIF and TOL results show that there are no collinearity issues which range
from 0.83–3.13 and 0.32–1.21, respectively (Table 1); so, the highest VIF value is 3.13 whereas
the lowest TOL value is 0.32, which implies that all MC values of all 16 flood causative
factors are within permissible limits.

Table 1. Multi-collinearity assessment of all considered parameters.

Parameters
Multi-Collinearity

TOL VIF

Aspect 0.89 1.12
Elevation 0.53 1.89

Plan curvature 1.21 0.83
Profile curvature 0.99 1.01

Slope 0.49 2.04
SPI 0.63 1.59
TRI 0.69 1.45
TWI 0.85 1.18
STI 0.77 1.30

Rainfall 0.78 1.28
Distance to river 0.52 1.92
Distance to road 0.87 1.15
Drainage density 0.32 3.13

LULC 0.67 1.49
Geology 0.71 1.41

Geomorphology 0.89 1.12

3.2. Flood Susceptibility Assessment

In our research work, RF, SVM, and ANN ML algorithms have been employed in
delineating the FSZM with the help of all the adopted models, notably categorizing the
entire Kangsabati river basin area into five distinctive zones including very low, low,
moderate, high, and very high susceptibility areas for the well comprehended spatial
distribution of flood-prone regions.

In the case of the SVM modeling approach the southern portion, the low-lying areas
are significantly characterized by frequent flood occurrences (Figure 4a); therefore, the very
high and high flood-prone regions that are found in the southern portion of this river basin
contain 9.01% and 11.06%, respectively, of the total study area (Figure 5). Except for the
southern portion, the remaining parts are specifically characterized by moderate (10.71%),
low (22.01%), and very low (47.21%) regions.

In a very well-known ML algorithm, RF also shows remarkable results in flood sus-
ceptibility modeling (Figure 4b). In our study, the spatial distribution pattern is significant,
which gives a somewhat similar result to the SVM modeling approach; whereas the very
high (9.21%) and high (12.01%) flood zones are situated at the lower portion of the river
basin that fall under the southern portion of considered regions (Figure 5). The northern
and central regions are specifically associated with moderate (11.36%), low (24.17%), and
very low (43.25%) flood susceptibility areas.
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The FSZM is precisely developed by the ANN ML modeling approach, which
gave noteworthy results (Figure 4c). The derived result shows that the south-central
and southern part of the considered basin area notably fall under the very high to the
high susceptible region, which covered 10.41% and 7.54%, respectively, of the entire
region apart from those the northern and central 19.81%, 19.35% and 42.89% area come
under the moderate, low, and very low flood susceptible zones, respectively (Figure 5).
Therefore, the riparian residents who resided close to the river channel were severely
affected by this flood.

3.3. Model Evaluation

Model evaluation is a very important part of all scientific studies. Therefore, the
adopted models in our research work needed to be evaluated. In our current research work,
the validation is much more important due to its numerous data sources and remotely
sensed data, which may bring possible errors in research outcomes. Henceforth, Our models
have been validated through the six most important and widely used statistical techniques,
namely “specificity, sensitivity, PPV, NPV, F score, AUC-ROC”, and one graphical technique,
the Taylor diagram. All the validation techniques give noteworthy results that interpret
that the model accuracy and precision level are significantly evaluated. In the present study,
the result of AUC-ROC shown in Figure 6a (training) and Figure 6b (validating) shows
that the ANN modeling approach (training—0.901; validating—0.891) gives a more accu-
rate result followed by RF (training—0.880; validating—0.871) and SVM (training—0.835;
validating—0.805) in both sections. Apart from this, all other adopted validation techniques
also give similar results with AUC-ROC techniques, with ANN being the more prominent
result compared with RF and SVM techniques. The validation measures of all adopted speci-
ficity (“training—0.86; validating—0.85”), sensitivity (“training—0.93; validating—0.92”),
PPV (“training—0.85; validating—0.85”), NPV (“training—0.90; validating—0.91”), F score
(“training—0.89; validating—0.88”)techniques, and one graphical technique, the Taylor
diagram (r = 0.88) (Figure 7), shows the more reliability of ANN model followed by RF and
SVM (Table 2).
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Table 2. Validation of the models by using different validation measures.

Models Stage
Parameters

Sensitivity Specificity PPV NPV F Score AUC

ANN
Training 0.93 0.86 0.85 0.90 0.89 0.901

Validation 0.92 0.85 0.85 0.91 0.88 0.891

RF
Training 0.92 0.87 0.91 0.91 0.89 0.880

Validation 0.91 0.82 0.93 0.92 0.86 0.871

SVM
Training 0.91 0.86 0.89 0.95 0.88 0.835

Validation 0.89 0.83 0.86 0.97 0.86 0.805

4. Discussion

Flash floods are among the most severe and complicated natural disasters that may
result in an immediate loss of property and human life due to their quick occurrence, fast
water flow, and huge sediment transfer. However, full prevention of it is unfeasible. To
protect lives and decrease the economic consequences of flood occurrences, which provide
a variety of challenges for local government, flood prediction and mitigation strategies
must be developed. A Flash Flood Guidance System with Global Coverage (FFGS), which
has a hierarchical institutional framework, may provide alerts for South Asian nations
including India, Nepal, Bhutan, Bangladesh, and Sri Lanka roughly six to twenty-four
hours in advance. Since Bangladesh and India are now more densely populated than other
mentioned countries, riverbank protection in those countries is much more deeply rooted
at the state level, and powers are transferred to the grassroots level for implementation.
However, since the subcontinent’s legal and cultural foundations are still in place, execution
and behavioral intention are still subject to some risk [7]. Due to the existence of various
degrees of disaster-prone regions, India is one of the top ten most disaster-prone nations in
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the world (Centre for Research on the Epidemiology of Disasters (CRED). Several areas
have been susceptible to various natural dangers due to the geo-climatic conditions that
exist in different portions of the nation. Other variables that also contribute to the rising
catastrophe patterns in Indian states include global warming, faster population growth,
rapid industrialization, urbanization, and illegal constructions [60]. One of the frequent
occurrences of disasters in India is flooding. Various areas are very vulnerable to flood
catastrophes. The severity of exposure to floods in Indian states has increased for a number
of reasons, including high rain during monsoon seasons, a lack of river connection, rising
urbanization, and unlawful development in urban areas with insufficient drainage and
reservoir systems [61]. The incidence of flood catastrophe occurrences has an impact on
both the socioeconomic well-being of the populace and the nation’s economic progress [62].
The loss of life, damage to public and private property, and destruction of agricultural crops
in several Indian states are the direct effects of flood catastrophes. Several efforts have been
made by various researchers to develop an effective response plan; among them, FFZM
is one of the key flood prevention measures that enable the quick identification of flood-
susceptible areas as well as the adoption of appropriate and systemic procedures to reduce
the consequences of flooding. Until now, various models and prediction techniques have
been applied in delineating flood-prone areas, but the most suitable modeling approach for
a particular place by considering all the geo-environmental factors with higher accuracy
and reliability is crucial. Therefore, in our study, our foremost priority is to develop an
accurate FSZM of the Kangsabati river basin with the help of the most prominent ANN,
RF, and SVM modeling approaches. Henceforth, several studies [63–66] have been done
in the RS-GIS environment, but in recent times ML algorithms with the help of artificial
intelligence gain global acceptance in susceptibility modeling [67–71]. Based on the proper
flood-impacting factors in a certain area, all of these strategies have produced the best
results. Even though FSZM has made great advancements, more work must undoubtedly
be done to improve flash flood susceptibility mapping’s efficacy. Therefore, a thorough
analysis of this difference is required to choose the right method for a certain study topic [72].
In flood-affected areas, zonation SVM is a significant tool in recent times. Wu et al., (2019)
and Xiong et al., (2019) [73,74] have shown that SVM is the most reliable ML algorithm
in flood-affected zonation mapping in China. A significant number of research works
have been performed for flood-prone area mapping by using the RF modeling approach,
acquiring very prominent results [75–77]. Apart from these models, ANN became the
most used and reliable ML algorithm in prediction studies, not only in probable flood
zonation but also in several hazard zonation mapping [78–82]. Falah et al., (2019) [83]
and Shafizadeh-Moghadam et al., (2018) [84] have developed a modeling approach for
Mashhad city and the Mazandaran province of Iran with the help of the ANN model,
acquiring significant outcomes in flood hazard prediction.

According to Tehrany et al., (2015) [29], numerous geohydrological, morphological,
and topographical factors contribute to floods. Although just a few elements have a
major influence on the existence of flood events in a particular location, research on the
flood-prone areas of Iran suggests that slope has a substantial effect [85] among different
flood conditioning factors, whereas land use patterns are causing devastating floods in
Vietnam [86]. In our present study, three models have shown that several flood causative
factors, namely LULC, STI, distance to a river, and stream power index played crucial roles
in the Kangsabati river basin. Besides flood-causing factors, model validation measures are
also important, which can evaluate the adopted model. Likewise, in previous studies, these
predictive measures demonstrate that ANN ML algorithms in our study also give more
accurate results, followed by RF and SVM; the derived results are quite impressive and
similar to previous research work. Several researchers such as Dahri et al., (2022) [87] and
Samantaray et al., (2022) [88] show the wide acceptance of the ANN modeling approach
for this higher predictive capability. Additionally, traditional statistical approaches need
a lot of time, vast datasets, and additional input factors, making them inappropriate for
areas with a lack of data, particularly emerging nations like India. Thus, the ANN model is
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quite important for our study of FSZM in our study area due to the higher precision level
compared with other adopted ML algorithms.

Firstly, the proposed method has some degree of uncertainty because there is not
much knowledge available on flooding’s hydrodynamics. Second, using the recom-
mended method of applying the causative factors may be questionable due to the
variable spatial resolution of the causal factors generated by digital elevation models
(DEMs). Third, we limited our investigation to fluvial flash floods. Finally, based on
expert evaluation and historical flood data, non-flood locations in the study basin were
randomly selected, which might greatly distort the results. Therefore, to improve the
quality of the input datasets, future studies should concentrate on the model that selects
trustworthy non-flood locations.

The produced results and conclusions of the current study will assist administrators
and researchers of flood hazards in assessing FSZM and in making decisions about how to
manage and lessen the effects of flood events. The findings of our research also revealed
the causes of flood events in the Kangsabati river basin. It suggests that when taking into
account the geo-hydrological characteristics of a particular basin, in which hydrological
data may be accessible, the suggested method may effectively estimate flood hazard zone
in other basins. Additionally, it recommends that scholars use this aforementioned model
to judge a region’s sensitivity to flooding occurrences, and in the future, hydraulic models
will be utilized to gauge the severity of the flooding in this area.

5. Conclusions

For mitigating the effects of floods, precise and trustworthy FSZM is important. As-
sessment of the risk of FSZM has been a hot topic both nationally and internationally
in recent decades. Two significant problems that, in a regional context, contribute to an
increase in flash floods are an anthropogenic invasion on river banks and climate change.
In this study, we produced highly accurate flood-prone region predictions for a subtropical
climate that lacked sufficient data. For this study, we employed the three most accepted
distinctive ML algorithms worldwide, namely ANN, RF, and SVM in assessing the probable
FSZ, with the help of sixteen available important flood causative factors; multi-collinearity
tests by using two VIFs and tolerance techniques have a noteworthy role in flood condition
factors selection. The developed predicted outcomes were also evaluated through seven
validation measures: specificity, sensitivity, PPV, NPV, F-score Taylor diagram, and most
importantly, AUC-ROC in both training and validation. The entire study shows that the
central, south-central, and southern low-lying populated areas are significantly affected by
frequent flood events, which implies about 10.41% and 7.54% of the entire river basin fall
under very high and high FS, respectively. Therefore, among several factors, the increasing
nature of LULC change and encroachment towards the river basin emerge as the most
prominent factors for inundation in low-lying regions. All of the aforementioned validating
techniques scientifically evaluated all the adopted predictive models and display that ANN
is the most suitable model in this subtropical river basin. Henceforth, the derived map of
the Kangsabati river basin can be used for better planning and taking proper preventive
measures. In order to reduce flood impacts on human livelihoods and the local economy,
hazard prevention and reduction measures are therefore required at the regional level.
Therefore, it is important to educate the residents of flood-prone areas on the risk of flood-
ing in a timely manner. Therefore, this FSZM is a crucial tool in reducing human and
financial damages through the application of suitable management methods, which can
aid the financial system in providing flood-affected areas with adequate compensation and
enforcing the necessary regulations related to land use. The main task of future research is
to conduct flood susceptibility research in various changing conditions of the environment.
In this perspective, the uncertainty of the various climatic events should be incorporated to
get more robust outcomes in changing climates.
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