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Abstract: In the past decade, more than 300 people have died per year on average due to mountain
torrents in China. Mountain torrents mostly occur in ungauged small and medium-sized catchments,
so it is difficult to maintain high accuracy of flood prediction. In order to solve the problem of the
low accuracy of flood simulation in the ungauged areas, this paper studies the influence of different
methods on the parameter regionalization of distributed hydrological model parameters in hilly
areas of Hunan Province. According to the terrain, landform, soil and land use characteristics of each
catchment, we use Shortest Distance, Attribute Similarity, Support Vector Regression, Generative
Adversarial Networks, Classification and Regression Tree and Random Forest methods to create
parameter regionalization schemes. In total, 426 floods of 25 catchments are selected to calibrate the
model parameters, and 136 floods of 8 catchments are used for verification. The results showed that
the average values of the Nash–Sutcliffe coefficients of each scheme were 0.58, 0.64, 0.60, 0.66, 0.61
and 0.68, and the worst values were 0.27, 0.31, 0.25, 0.43, 0.35 and 0.59. The random forest model
is the most stable solution and significantly outperforms other methods. Using the random forest
model to regionalize parameters can improve the accuracy of flood simulation in ungauged areas,
which is of great significance for flash flood forecasting and early warning.

Keywords: mountain torrents; distributed hydrological model; parameters regionalization; machine learning

1. Introduction

Hunan Province is located in the southeast inland of China, with abundant rainfall but
extremely uneven temporal and spatial distribution. Due to frequent and high-intensity
rainfall and short confluence time in hilly areas, the flood rises and falls steeply, which can
very easily cause mountain torrents. The climate, underlying surface and geomorphic types
in hilly areas are diverse, and most of them are areas without data. This is an important
challenge for flood forecasting and early warning in hilly areas.

The hydrological model is an important tool for understanding the laws of hydro-
logical science, analyzing hydrological processes and studying hydrological cycle mech-
anisms [1]. How to identify hydrological parameters in ungauged areas accurately is an
important area of research for PUB (Prediction in Ungauged Basins). The regionalization
method is usually used to determine the parameters of hydrological models for ungauged
basins at present, and the commonly used methods include shortest distance, attribute
similarity, regression, average, machine learning, etc. The main idea of the regionaliza-
tion method is to analyze the relationship between model parameters and characteristic
attributes of basins, and the parameters of the hydrological model for ungauged basins are
deduced from the calibration results of gauged basins [2].

The parameter transplant method includes the shortest distance method and the
attribute similarity method. Among them, the distance approach refers to finding one
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or more basins adjacent to the research object in the geographical location. The attribute
similarity method is used to find a basin that is similar to the research basin in attributes.
Young achieved the ideal result of parameter transplant by computing the spatial distance
between 260 catchments in the UK [3]. Parajka et al. selected indicators such as watershed
area, average slope, watershed latitude, river network density, vegetation coverage, drought
index, etc., to analyze the similarity of watershed attributes and complete parameter
transplantation. The results show that attribute selection plays a decisive role in the
performance of transplantation [4]. Li et al. compared the shortest distance method with
the attribute similarity method and pointed out that the performance of transplantation
results is affected by the density of hydrological stations, and it is easier to achieve better
results in areas with dense hydrological stations [5].

The parameter regression method is mainly used to establish the functional relation-
ship between watershed characteristics and model parameters. Yokoo et al. established a
multiple linear regression equation between the Tank model parameters and soil, geology
and land use data [6]. Cheng et al. established a regression equation between the SCS model
parameter CN, concentration time and soil, land use, average slope and river length [7].
Based on the parameter regionalization method combining spatial proximity and stepwise
regression analysis, Yao et al. found that stepwise regression analysis can effectively deduce
the sensitive parameters [8]. Sun et al. pointed out that the parametric regression method
is prone to the phenomenon of “the same effect of different parameters”, and the basin
properties screening is highly subjective, which is not suitable for small samples [9].

Machine learning research mainly includes SOM classification and the CART decision
tree method. Yi et al. used hierarchical clustering analysis HCA and unsupervised neural
network SOM methods to divide the sub basins of Dianchi Lake basin into 7 groups based
on 16 physical characteristics, and they believed that the basin parameters of the same
group can be transplanted to each other [10]. Ragettli et al. took 35 basins in different
regions of China as the research object, comprehensively considering the physical properties
of watersheds and the spatial distance of watersheds; the CART tree model was used to
optimize the parameter transplantation rules, and the results show that the CART tree has
better parameter adaptability [11]. Liu et al. conducted a parametric zoning study on 19
small catchments in Henan Province; the success rate of parameter transplantation based
on the CART tree is about 20% higher than that of random transplantation [12].

The advantage of the CART tree is that it is easy to interpret and the mapping between
basin characteristics and transplantation rules is intuitive. In recent years, with the advent
of machine learning algorithms, more and more models have been used to create parameter
transplantation schemes. However, many machine learning algorithms usually require
a large number of samples, and data showing that hydrological model modeling can be
used for parameter calibration is often very limited, so it is necessary to reasonably build
a large number of learning samples, or to study intelligent algorithms suitable for small
sample research. In this study, 33 small and medium-sized catchments in Hunan Province
were taken as examples. We constructed distributed hydrological models of these catch-
ments and selected four machine learning models—Support Vector Regression, Generative
Adversarial Networks, Classification and Regression Tree, and Random Forest—to create
different parametric regionalization schemes and compared them with two traditional
methods—Shortest Distance and Attribute Similarity. By analyzing the transplantation
results of different schemes, it can provide a reference for determining the parameters of
the distributed hydrological model in ungauged areas, which is very valuable for flash
flood forecasting and early warning.

2. Materials and Methods
2.1. Study Area

Hunan Province is located on the South Bank of the middle reaches of the Yangtze River.
The general geomorphological characteristics are that it is surrounded by mountains in the
east, south and west, hills in the middle, plains and lakes in the north, and an asymmetric
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horseshoe basin that was high in the southwest and low in the northeast. XueFeng mountain
runs through the central part of the province from southwest to northeast, which divides the
whole province into two parts: mountainous area and hilly area. Due to the comprehensive
influence of monsoon circulation and the geomorphic conditions, the mid subtropical
monsoon humid climate with obvious continental characteristics is formed. Mountain
torrents occur frequently because of the complex topography, developed water system and
abundant rainfall. The average annual precipitation in Hunan Province is 1450 mm, but the
distribution of precipitation is uneven in time and space, and the interannual variation is
large, with an average annual variation of 1200–1800 mm. The province’s annual average
water surface evaporation is 736.5 mm, with a variation range of 600–900 mm.

2.2. Data Collection

Taking 33 hydrological stations with observation data from 1979 to 2020 in Hunan
Province as examples, we collected the ASTER GDEM V2 dataset, land use layer and
soil type layer in Hunan Province. At the same time, a distributed hydrological model
of all hydrological stations was established with 30 min as the simulation step. In this
study, 426 floods in 25 catchments were selected to calibrate the model parameters, and the
regionalization scheme was determined by comparing the simulation results of the other
8 catchments. Figure 1 shows the distribution of hydrological stations.
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Figure 1. Distribution of hydrological stations.

The smallest catchment is HengBanQiao, with a catchment area of 31 km2, and the
largest catchment is FeiXian, with a catchment area of 3659 km2. The hydrological data
collection is shown in Table 1.
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Table 1. Information of study stations.

Station Name Area
(km2) Data Years Number of

Floods
Number of

Rain Stations
Number of
Sub Basins Type

NingXiang 2250 2013–2020 18 65 174 calibration
ShiBaZi 564 2013–2020 18 17 50 calibration
FeiXian 3659 2013–2020 28 157 257 calibration
FenShi 923 2013–2020 24 27 69 calibration

ZhaiQian 392 2015–2020 8 11 31 calibration
JingTouJiang 173 2014–2019 4 9 14 calibration
ShenShanTou 2930 2014–2019 5 71 227 calibration
CaoLongTan 350 2013–2015 6 7 22 calibration

HeTan 445 2014–2020 7 13 34 calibration
HengBanQiao 40 2014–2020 13 5 2 calibration

HuaQiao 81 2013–2020 22 6 5 calibration
MaXiPu 342 2012–2020 24 4 25 calibration

ShanXiQiao 1211 2013–2020 12 24 82 calibration
LianYuan 154 1979–2020 39 17 11 calibration

LouDi 1556 2014–2020 17 58 112 calibration
HongYan 711 2014–2019 8 17 55 calibration

HuangQiao 2689 2012–2019 14 76 211 calibration
SheBu 1434 2013–2020 9 38 109 calibration

MaoPing 2114 2014–2020 9 54 163 calibration
HongYanXi 190 2012–2020 20 4 11 calibration

DaLuPu 635 2013–2020 29 18 47 calibration
HaoFu 440 2013–2020 26 10 35 calibration

LanShan 305 2013–2020 32 25 19 calibration
JiaYi 1475 2013–2020 16 32 96 calibration

LiangShuiKou 865 2012–2020 18 17 65 calibration
LuoLingQiao 340 2012–2020 16 21 30 verification

JiaHe 1501 2012–2020 31 58 103 verification
CaoJiTan 387 2013–2020 13 9 30 verification

ShuangFeng 1552 2014–2020 10 36 115 verification
DongKou 928 2013–2020 13 18 66 verification

JiShou 788 2012–2020 26 30 56 verification
ZhuXiPo 699 2013–2020 15 18 53 verification

ShuangFengTan 444 2013–2020 12 20 35 verification

2.3. Modeling Approaches
2.3.1. Distributed Hydrological Model

Based on the ASTER GDEM V2 dataset, the sub basin and river are extracted by GIS
tools. The resolution of the DEM data grid is 30 m, and the area of the sub basin is controlled
within 10–30 km2. At the same time, the attributes of sub basins and rivers are extracted,
including basin area, slope, longest concentration path, average altitude, average drop
(average elevation minus outlet elevation), river length, river section gradient, geomorphic
unit hydrograph, etc.

The Xinanjiang model is adopted for runoff generation computation [13–15]. A three-
layer evaporation model is used to calculate watershed evaporation. The total runoff
produced by rainfall is computed according to the concept of saturated runoff, and the
influence of the uneven underlying surface on runoff yield area is considered by the water
storage curve of the basin. In the aspect of runoff component division, according to the
runoff production theory of “hillside hydrology”, the total runoff is divided into saturated
surface runoff, soil water runoff and groundwater runoff by a reservoir with limited volume,
a side hole and a bottom hole. The unit hydrograph is used to convert the surface runoff
into the overland flow, and the linear reservoir model is used to calculate the interflow and
groundwater flow, and is finally incorporated into the river network. Figure 2 shows the
structure of the Xinanjiang model.
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Figure 2. Computation flow of the Xinanjiang model.

Table 2 shows the parameters of the Xinanjiang model, all of which need to be deter-
mined through parameter calibration.

Table 2. Physical meanings and units of model parameters.

Parameter Physical Description Unit Param Range

1 K Ratio of potential evapotranspiration to pan evaporation [-] 0.5–1.2
2 Um Averaged soil moisture storage capacity of the upper layer [mm] 10–40
3 Lm Averaged soil moisture storage capacity of the lower layer [mm] 50–90
4 Dm Averaged soil moisture storage capacity of the deep layer [mm] 10–80

5 C Coefficient of the deep layer that depends on the proportion
of the basin area covered by vegetation with deep roots [-] 0.1–0.3

6 B
Exponential parameter with a single parabolic curve, which
represents the non-uniformity of the spatial distribution of
the soil moisture storage capacity over the catchment

[-] 0.1–0.9

7 Im
Percentage of impervious and saturated areas in
the catchment [-] 0.0–1.0

8 Sm

Areal mean free water capacity of the surface soil layer,
which represents the maximum possible deficit of free
water storage

[mm] 10–80

9 Ex
Exponent of the free water capacity curve influencing the
development of the saturated area [-] 0.1–2.0

10 Kg
Outflow coefficients of the free water storage to
groundwater relationships [-] 0.1–0.5

11 Ki
Outflow coefficients of the free water storage to
interflow relationships [-] 0.1–0.5

12 Ci Recession constants of the lower interflow storage [-] 0.1–0.99
13 Cg Recession constants of the groundwater storage [-] 0.5–0.999

The geomorphic unit hydrograph model is adopted for overland flow concentration
computation, which is based on the results of DEM data analysis (Figure 3).
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Figure 3. Flow direction and flow concentration routes.

The flow direction of each grid is analyzed according to the D8 algorithm [16], and the
probability density distribution function of concentration time is determined by computing
the time of each water particle falling on the surface of the basin reaching the outlet, so
as to further determine the geomorphic unit hydrograph [17]. Based on the principle of
energy conversion, this improves the formula of flow velocity and unifies the formula of
slope velocity and river velocity [18], as shown in Formula (1).

v =

√
2µ′g ∑n

k=1 sin θk
2 nk∆hk

n
(1)

where µ′ is the energy residual coefficient and its range is [0,1], θ is the slope angle of the
grid outflow direction, n is the total number of grids in the basin upstream of the target
grid (including the target grid), g is the gravity acceleration, ∆h is the elevation difference
between the target grid and the outflow grid, N is the number of inflow grids of the target
grid, nk and vk are the number of upstream grids and the average flow velocity of the kth
inflow grid, respectively.

The Muskingum model is used for river network flow concentration [19,20]. Continuous
flood routing is realized by segment-by-segment estimation of the model parameters [21].

2.3.2. Evaluation Criteria

To evaluate the suitability of the proposed model for the studied Basin, the Nash–Sutcliffe
Coefficient of Efficiency (NSCE) is chosen to analyze the degree of goodness of fit [22],
which is defined as:

NSCE = 1− ∑N
i=1(Qs(i)−Q0(i))

2

∑N
i=1
(
Q0(i)−Q

)2 (2)

where Qo(i) and Qs(i) are the observed and simulated flow, respectively, N is the number of
data points, and Q is the mean value of the observed flow. According to national criteria
for flood forecasting in China [23], the scheme is excellent when the average NSCE reaches
0.9. When the average NSCE is greater than 0.7 and less than 0.9, the effect of this scheme
is better. This scheme is for reference only; if the average NSCE is greater than 0.5 but less
than 0.7, it may not be accurate. Otherwise, the results of the performances of parameter
calibration are unsatisfactory for online flood forecasting.

2.3.3. Parameter Optimization Method

The shuffled complex evolution (SCE-UA) method is used to optimize the model
parameters. The SCE-UA algorithm is a nonlinear hybrid algorithm which combines the
advantages of the genetic algorithm and the simplex algorithm, and is based on information
exchange and biological evolution laws. It can effectively solve the problems of multi-peak,
multi-noise, discontinuity, high-dimension and non-linearity in parameter optimization.
Figure 4 shows the calculation flow of the SCE-UA algorithm. This method can efficiently
and quickly search for the global optimal solution of model parameters [24,25]. There
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are 14 parameters that need to be optimized in this study, including 13 parameters of the
Xinanjiang model (see Table 1) and 1 parameter of the geomorphic unit hydrograph (µ′). µ′

is the energy residual coefficient and its range is [0,1].
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According to the evaluation criteria, the larger the NSCE, the better the simulation
effect. Therefore, this study aimed to find the highest mean value of NSCE. Since the goal of
the SCE-UA algorithm is to find the minimum, Equation (3) is used as the objective function.

F = 1− ∑t
i=1 NSCEi

t
(3)

where F is the value of objective function, t is the number of floods.

2.3.4. Parameter Regionalization Scheme

The Shortest Distance, Attribute Similarity, Support Vector Regression, Generative
Adversarial Networks, Classification and Regression Tree and Random Forest method
are used to determine the parameter regionalization scheme, and the final scheme is
determined by comparing the simulation results of different methods. For readability,
Table 3 lists the abbreviations representing the different methods.

Table 3. Abbreviation of parameter regionalization methods.

Abbreviation Method Name Abbreviation Method Name

SD shortest distance GAN generative
adversarial networks

AS attribute similarity CART classification and
regression tree

SVR support vector
regression RF random forest
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(1) Shortest Distance (SD)

The nearest basin is determined by computing the spatial distance between the centroid
coordinates of the study basin and other basins, and the model parameters of the nearest
basin are directly applied to the distributed model of the study basin.

D = 2R sin−1

√
sin
(

Lat1− Lat2
2

)2
+ cos(Lat1)cos(Lat2)sin

(
Lon1− Lon2

2

)2
(4)

where D is the distance, R is the radius of the earth, about 6,378,137 m, and Lon1, lat1, lon2
and Lat2 are the centroid coordinates of the two basins.

(2) Attributes Similarity (AS)

The area (A, km2), average slope (P), average elevation (E, m), average elevation drop
(H, m), shape coefficient (L), soil type S = {s1, s2, s3} (s1, s2 and s3 are the percentages of clay,
silt and sand, %) and land use U = {u1, u2, u3, u4} (u1, u2, u3, u4 are the percentages of forest,
grass, cultivated land and other, %) were selected for similarity analysis. The components
of U and S range in value from 0 to 1, so no additional processing is required. However, for
other attributes, the maximum value method is used for normalization, as follows: collect
the maximum values MaxA, MaxP, MaxE, MaxH and MaxL of attribute A, P, E, H and L in
33 catchments, and then let C = {A/MaxA, P/MaxP, E/MaxE, H/MaxH, L/MaxL}, then C is
the normalized result. The similarity index of catchment x and catchment y was defined as
Formula (5):

T =
cos
(
Sx, Sy

)
+ cos

(
Ux, Uy

)
+ 1− D

(
Cx, Cy

)
3

(5)

where D(a,b) and cos(a,b) are Euclidean distances and cosines value of two vectors a and
b, respectively.

D(a, b) =

√
n

∑
i=1

(ai − bi)
2 (6)

cos(a, b) =
∑n

i=1 aibi√
∑n

i=1 ai
2
√

∑n
i=1 bi

2
(7)

where T is the similarity index, and its range is [0,1]. The larger the T value, the greater the
similarity between the two catchments. Select the basin most similar to the study basin and
transplant its parameters.

(3) Support Vector Regression (SVR)

The essence of a support vector machine (SVM) is to map the non-linear function
relationship to the linear problem of high-dimensional space, and then find the optimal
regression hyperplane in this high-dimensional space, so that all samples are the minimum
distance from the optimal hyperplane [26]. Support Vector Regression (SVR) is a method
based on a support vector machine to deal with regression problems. It is used to study the
relationship between input variables and numerical output variables, and to predict the
output value of new variables. It retains the advantages of a support vector machine and is
mainly used in the case of a limited or small number of samples [27].

(4) Generative Adversarial Network (GAN)

The generative adversarial network (GAN) is an unsupervised learning model consist-
ing of a discriminator and a generator [28]. The generator automatically generates data,
learns the distribution of real samples, and generates pseudo samples that are close to real
samples. The discriminator has to distinguish between real samples obtained from the data
and fake samples generated by the generator. The two models are iteratively optimized
through continuous confrontation training, so that the data distribution generated by the
generator is as close as possible to the real data distribution. When the probability of each
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output of the discriminator is basically 1/2, it indicates that the model has reached the
optimal state.

(5) Classification And Regression Tree (CART)

The CART (Classification and Regression Tree) algorithm is a decision tree classifica-
tion method. It uses a dichotomy recursive segmentation technique to divide the current
sample set into two sub sample sets, so that each non leaf node generated has two branches.
The decision tree is a weak learning algorithm [29]. The improvement of classification
accuracy depends on the reasonable construction and pruning of the tree structure. The
CART algorithm generates a decision tree based on the training dataset, and the generated
decision tree should be as large as possible. The validation dataset is used to prune the
generated tree and select the optimal subtree. At this time, the minimum loss function is
used as the pruning standard.

(6) Random Forest (RF)

Random forest model generates multiple different datasets from the original dataset
by sampling with put back [30]. The CART tree is used as a weak classifier, and each
sub-dataset corresponds to a classifier. Each decision tree selects the attribute with the
strongest classification ability for node splitting, without pruning to maximize growth. All
final generated decision trees form a random forest. The model can be used for classification
or regression prediction, the result of which is determined by the classifier voting.

Based on the above, Figure 5 shows the flow of parameter regionalization. When SVR,
GAN, CART and RF are selected for parameter transplantation. The analysis steps are
as follows:

(1) For each calibrated catchment A, use the model parameters of any catchment B to
compute the average Nash–Sutcliffe coefficient NSCEa-b. Collect all catchment A
attributes, catchment B attributes, NSCEa-b as training dataset for model training. In
this study, the sample size of the training set is 25 × 25.

(2) For each verified catchment C and calibrated catchment D, use the trained model to
take the attributes of C and D as input to predict the mean NSCE, and the parameter
group with the highest predictive value is used as the model parameter of C.
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3. Results
3.1. Model Parameter Optimization

The SCE-UA algorithm is used to automatically optimize the model parameters
of 25 hydrological stations, and the objective function is to obtain the highest average
Nash–Sutcliffe coefficient. The results of parameter calibration are shown in Table 4.

Table 4. Simulation results of calibration.

Station NSCE Station NSCE Station NSCE

NingXiang 0.78 HengBanQiao 0.80 MaoPing 0.77
ShiBaZi 0.76 HuaQiao 0.61 SheBu 0.83
FeiXian 0.79 MaXiPu 0.72 HongYanXi 0.83
FenShi 0.84 ShanXiQiao 0.79 DaLuPu 0.82

ZhaiQian 0.77 LianYuan 0.86 HaoFu 0.80
JingTouJiang 0.87 LouDi 0.78 LanShan 0.67
ShenShanTou 0.83 HongYan 0.74 JiaYi 0.86
CaoLongTan 0.85 HuangQiao 0.74 LiangShuiKou 0.87

HeTan 0.79

It can be seen that there are 23 hydrological stations with an average NSCE between
0.7 and 0.9, and 2 between 0.5 and 0.7. According to national criteria for flood forecasting
in China, most calibration parameters meet the requirements of online flood forecasting.
The distributed model based on the Xinanjiang model and geomorphic unit hydrograph is
stable and suitable for most areas of Hunan Province.

The calibration parameters were fed into the distributed model to simulate 426 floods
in 25 catchments. Taking LianYuan Station as an example, the calibration result is shown in
Figure 6.
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3.2. Regionalization Schemes

The shortest distance, attribute similarity, support vector regression, generative adver-
sarial networks, classification and regression tree, and random forest models are selected to
construct and verify the parameter regionalization scheme.

According to the catchment attributes, the results of SD and AS can be directly cal-
culated. The centroid coordinates and basic attributes of the 33 catchments are shown in
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Table 5, including east longitude (lon, ◦), north latitude (lat, ◦), area (A, km2), average slope
(P), average elevation (E, m), average elevation drop (H, m), shape coefficient (L), and the
percentages of forest (u1), grass (u2), cultivated land (u3), other (u3), clay (s1), silt (s2) and
sand (s3). These attributes were extracted during sub-watershed division.

Table 5. Information of typical watershed characteristics.

Station
Name

Centroid
Coordinates Basic Attributes Land Use (%) Soil Type (%)

lon lat A
(km2) P E (m) H (m) L u1 u2 u3 u4 s1 s2 s3

NingXiang 112.2487 28.0972 2250 0.160 167.36 145.36 0.208 49.8 1.9 42.4 5.9 44.3 55.5 0.2
ShiBaZi 112.3625 28.0153 564 0.125 113.57 77.57 0.289 45.2 1.4 49.6 3.8 42.3 57.7 0.0
FeiXian 112.2963 25.6634 3559 0.213 395.16 261.16 0.244 49.8 5.5 38.3 6.4 18.3 74.9 6.8
FenShi 112.5636 25.2776 923 0.241 500.12 287.12 0.380 59.4 5.0 29.0 6.6 31.5 68.2 0.3

ZhaiQian 113.9350 26.0667 392 0.345 1140.59 428.59 0.629 87.8 5.2 2.7 4.3 16.8 83.2 0.0
JingTouJiang 112.0796 26.9399 173 0.181 227.96 118.96 1.113 57.7 1.7 38.9 1.7 64.1 35.9 0.0
ShenShanTou 112.2196 27.0911 2930 0.176 175.06 134.06 0.131 49.0 1.6 45.9 3.5 47.0 53.0 0.0
CaoLongTan 110.4173 28.8383 350 0.457 533.01 434.01 0.093 95.3 0.2 3.6 0.9 31.9 68.1 0.0

HeTan 109.1290 27.1854 445 0.372 616.32 274.32 0.391 84.4 4.0 10.1 1.5 90.1 9.9 0.0
HengBanQiao 110.5267 27.3562 31 0.323 757.67 274.67 0.424 89.5 1.2 8.5 0.8 61.1 38.9 0.0

HuaQiao 110.2038 27.6833 81 0.279 500.44 314.44 2.249 86.6 0.8 11.7 0.9 86.5 13.5 0.0
MaXiPu 110.4492 28.2416 342 0.383 386.66 297.66 0.119 88.6 0.8 9.3 1.3 87.7 12.2 0.1

ShanXiQiao 110.5982 27.5358 1211 0.342 803.06 651.06 0.173 86.6 3.6 8.3 1.5 64.0 36.0 0.0
LianYuan 111.6015 27.6335 154 0.229 248.27 128.27 0.508 54.1 2.7 36.8 6.4 59.0 41.0 0.0

LouDi 111.7627 27.8257 1556 0.236 312.35 239.35 0.220 52.6 4.6 35.3 7.5 61.9 36.0 2.1
HongYan 110.3664 26.8192 711 0.294 634.08 303.08 0.302 78.7 1.1 18.5 1.7 66.4 33.6 0.0

HuangQiao 110.5639 26.7795 2689 0.226 515.43 274.43 0.268 58.3 1.4 37.1 3.2 30.5 69.3 0.2
SheBu 111.6256 27.1677 2114 0.155 322.56 137.56 0.233 38.1 3.9 51.3 6.7 42.9 57.1 0.0

MaoPing 112.5982 27.4498 1434 0.164 154.98 122.98 0.298 58.9 0.8 38.0 2.3 23.1 76.9 0.0
HongYanXi 109.5954 29.3404 190 0.367 689.85 322.85 0.393 84.2 1.4 13.9 0.5 42.8 57.2 0.0

DaLuPu 111.5408 24.8728 635 0.232 487.37 269.37 0.223 54.0 5.3 35.6 5.1 18.8 80.4 0.8
HaoFu 111.4058 25.7095 440 0.328 565.82 365.82 0.528 77.5 1.7 19.1 1.7 58.4 41.6 0.0

LanShan 112.1479 25.2640 305 0.340 675.70 428.70 0.352 82.7 1.2 12.0 4.1 54.8 45.2 0.0
JiaYi 113.9674 28.7773 1475 0.274 316.37 248.37 0.276 77.5 2.5 17.0 3.0 44.6 55.4 0.0

LiangShuiKou 110.0255 29.6915 865 0.471 778.04 496.04 0.338 94.2 0.2 5.4 0.2 32.3 67.7 0.0
LuoLingQiao 113.3727 28.5341 340 0.170 113.07 77.07 0.652 65.2 1.2 29.9 3.7 70.0 30.0 0.0

JiaHe 112.2656 25.3685 1501 0.263 511.87 337.87 0.276 66.2 2.7 26.1 5.0 36.8 54.3 8.9
CaoJiTan 113.1137 26.3820 387 0.197 179.50 90.50 0.352 63.2 1.5 32.5 2.8 50.7 44.6 4.7

ShuangFeng 112.0508 27.4016 1552 0.164 175.11 118.11 0.301 40.4 2.9 51.6 5.1 20.5 79.5 0.0
DongKou 110.4491 27.1576 928 0.362 756.60 458.60 0.454 93.5 0.8 4.9 0.8 56.5 43.5 0.0

JiShou 109.5497 28.3203 788 0.356 621.50 453.50 0.208 81.5 3.0 14.0 1.5 58.3 41.7 0.0
ZhuXiPo 111.6941 28.1490 699 0.353 422.86 310.86 0.450 81.3 2.1 14.4 2.2 90.0 8.3 1.7

ShuangFengTan 110.5954 29.3742 444 0.360 591.95 446.95 0.257 87.0 0.6 11.2 1.2 66.1 32.5 1.4

According to the coordinates of the center of the basin, the centroid distance between
the verification basin and the calibration basin is calculated by Formula (3), and the calibra-
tion basin with the closest distance is selected, and its model parameters are used directly.
Normalize the basin properties, calculate the similarity index between the verification basin
and the calibration basin using Formula (4), and transfer the model parameters with the
highest similarity. Table 6 shows the transplant results of the SD and AS methods.

For SVR, GAN, CART and RF methods, we need to collect samples and train the
model first. This required cross-validation of the model parameters for 25 catchments. We
apply 25 groups of parameters to the flood simulations of 25 catchments and calculate the
mean NSCE.

Figure 7 shows the 25 × 25 cross-validation results for the samples. Among the
625 samples, there are 121 samples with a Nash–Sutcliffe coefficient greater than 0.7,
accounting for 19.4% of the total number of samples; 138 samples with a Nash–Sutcliffe
coefficient between 0.6 and 0.7, accounting for 22.1%; 112 samples with a Nash–Sutcliffe
coefficient between 0.6 and 0.7, accounting for 17.9%; and 254 samples with a Nash–Sutcliffe
coefficient less than 0.5, accounting for 40.1%. These samples are used as input to train
four models of SVR, GAN, CART and RF, and the results of different parameter groups are
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used to predict eight verification basins, and the optimal results are selected for parameter
transplantation. The Nash–Sutcliffe coefficients of the simulation results are shown in
Table 7.

Table 6. Transplant results of SD and AS methods.

Station Name
SD AS

Transplant
Station NSCE Transplant

Station NSCE

LuoLingQiao JiaYi 0.66 LianYuan 0.86
JiaHe LanShan 0.69 JiaYi 0.31

CaoJiTan ZhaiQian 0.27 LianYuan 0.61
ShuangFeng ShenShanTou 0.75 MaoPing 0.74

DongKou HengBanQiao 0.29 HaoFu 0.72
JiShou MaXiPu 0.71 ShanXiQiao 0.46

ZhuXiPo LouDi 0.60 HeTan 0.72
ShuangFengTan CaoLongTan 0.64 HongYan 0.69

Average Value 0.58 0.64
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Table 7. Transplant results of machine learning methods.

Station Name
NSCE

SVR GAN CART RF

LuoLingQiao 0.75 0.71 0.65 0.78
JiaHe 0.55 0.69 0.51 0.65

CaoJiTan 0.42 0.43 0.61 0.64
ShuangFeng 0.25 0.57 0.35 0.64

DongKou 0.80 0.78 0.80 0.65
JiShou 0.75 0.71 0.71 0.75

ZhuXiPo 0.52 0.64 0.57 0.59
ShuangFengTan 0.79 0.78 0.66 0.72

Average Value 0.60 0.66 0.61 0.68

4. Discussion

It can be seen from Table 6 that two groups, CaojiTan-ZhaiQian and DongKou-
HengBanQiao, performed poorly when using the transplantation parameters of the SD
method, with average NSCE of 0.27 and 0.29, respectively. When the AS method was used
for transplant parameters, two groups had poor results, namely JiaHe-JiaYi and JiShou-
ShanXiQiao, with average NSCEs of 0.31 and 0.46, respectively. Table 8 shows the attributes
of these groups of catchments.

Table 8. Information on basin attributes.

Station Name CaoJiTan ZhaiQian DongKou HengBanQiao JiaHe JiaYi JiShou ShanXiQiao

Basin Attributes

Area (km2) 387 392 928 31 1501 1475 788 1211

Average Slope 0.197 0.345 0.362 0.323 0.263 0.274 0.356 0.342

Average Elevation (m) 179.5 1140.59 756.6 757.67 511.87 316.4 621.5 803.1

Average Elevation Drop
(m) 90.5 428.59 458.6 274.67 337.87 248.4 453.5 651.1

Shape Coefficient 0.352 0.629 0.454 0.424 0.276 0.276 0.208 0.173

Land Use (%)

Forest 63.2 87.8 93.5 89.5 66.2 77.5 81.5 86.6

Grass 1.5 5.2 0.8 1.2 2.7 2.5 3 3.6

Cultivated Land 32.5 2.7 4.9 8.5 26.1 17 14 8.3

Other 2.8 4.3 0.8 0.8 5 3 1.5 1.5

Soil (%)

Clay 50.7 16.8 56.5 61.1 36.8 44.6 58.3 64

Silt 44.6 83.2 43.5 38.9 54.3 55.4 41.7 36

Sand 4.7 0 0 0 8.9 0 0 0

It can be seen from Table 8 that DongKou and HengBanQiao are not only close, but also
most of the attributes are similar except for the area and average drop. The area of DongKou
is 931 km2, and the area of HengBanQiao is 31 km2. Their average drops are 458.6 m and
274.67 m, respectively. It is obvious that the different areas will lead to large differences in
concentration time, and the average drop may significantly affect the concentration speed,
which is the most critical factor affecting the geomorphic unit hydrograph [18]. Similarly,
compared with JiaHe and JiaYi, their attributes are very similar, except for average elevation
and drop. Therefore, we can infer that if the attributes of two catchments are very close, but
their average drop difference is significant, this is likely to cause a failed transplantation.
The opposite conclusion cannot be established. Table 6 shows an example with the best
results (LuoLingQiao-LianYuan). The average NSCE of transplantation can reach 0.86,
which is excellent according to the evaluation criteria. However, the attributes of the two
catchments, including the average drop, differed significantly (as shown in Table 5).
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From the above cases, it can be seen that the applicable conditions and scope of
parameter transplantation are relatively complex, and a single factor cannot be considered
in isolation. When multiple attributes are considered for parameter transplantation, the
results may not be satisfactory for catchments with similar attributes sometimes, so precisely
defining the similarity index is a challenge.

In contrast, machine learning methods can discover more hidden rules in data. How-
ever, the methods of machine learning cannot all achieve satisfactory results. Comparing
only the average NSCE, the results of SVR and CART were even worse than the AS method.
In order to better compare the performance of different methods, Table 9 shows the optimal
value, worst value and average value obtained using different methods. Figure 8 shows
the average NSCEs for the different methods.

Table 9. Comparison of parameter regionalization schemes.

Items
NSCE

SD AR SVR GAN CART RF

Best 0.75 0.86 0.80 0.78 0.80 0.78
Worst 0.27 0.31 0.25 0.43 0.35 0.59

Average 0.58 0.64 0.60 0.66 0.61 0.68
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It can be seen from Table 9 that the average and worst Nash–Sutcliffe coefficients of the
simulation results using the random forest model are the highest. Among the best NSCE
results in Table 9, AR > SVR ≥ CART > RF ≥ GAN > SD, with AR performing best and SD
performing worst. The worst result of NSCE is RF > GAN > CART > AR > SD > SVR; RF is
the best and SVR is the worst. According to the NSCE average results, RF > GAN > AR >
CART> SVR > SD; RF performed the best and SD performed the worst.

Table 10 summarizes the validation results of the different methods and shows the
percentage of catchments with an average NSCE greater than 0.9, greater than 0.7 and less
than 0.9, greater than 0.5 and less than 0.7, and less than 0.5.
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Table 10. NSCE statistical results.

NSCE SD AR SVR GAN CART RF

≥0.9 0 0 0 0 0 0
0.7–0.9 25% 50% 50% 50% 25% 37.5%
0.5–0.7 50% 25% 25% 37.5% 62.5% 62.5%

<0.5 25% 25% 25% 12.5% 12.5% 0

It can be seen from Table 10 that all of the NSCE results of RF are greater than 0.5,
which is not achieved by all of the other methods. According to national criteria for
flood forecasting in China, if the average NSCE is less than 0.5, the simulation result is
unsatisfactory for online flood forecasting. Therefore, the RF model has better performance
than the other methods.

Figure 9 lists the importance of each attribute in the RF model. The most important
attribute for prediction using the RF model is the percentage of cultivated land area within
the transplanted catchment, followed by the area and average elevation of the calibration
catchment. It is well known that slope is a significant impact on hydrological models.
However, from the parameter importance of the RF model, the influence of slope is smaller
than that of cultivated land, which may be another issue that needs further research.
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5. Conclusions

In this study, the distribution hydrological models of 33 small and medium-sized
catchments in Hunan Province were constructed. The model parameters of 25 catchments
were calibrated by using the SCE-UA algorithm. The parameter regionalization scheme
including Shortest Distance (SD), Attribute Similarity (AS), Support Vector Regression
(SVR), Generative Adversarial Networks (GAN), Classification and Regression Tree (CART)
and Random Forest (RF) were validated using data from eight catchments. The main
conclusions are as follows:

(1) A total of 426 floods of 25 catchments were selected to calibrate the model parameters.
Among the simulation results of these 25 catchments, there are 23 catchments with an
average NSCE greater than 0.7, and 2 between 0.5 and 0.7. According to national crite-
ria for flood forecasting in China, most calibration parameters meet the requirements
of online flood forecasting. The distributed model based on the Xinanjiang model and
geomorphic unit hydrograph is suitable for most areas of Hunan Province.

(2) Based on the watershed attributes and cross validation results of model parameters,
six parameter regionalization schemes including SD, AR, SVR, GAN, CART and
RF were generated, and 136 floods of 8 catchments were used for verification. The
average values of the Nash–Sutcliffe coefficients of each scheme were 0.58, 0.64, 0.60,
0.66, 0.61 and 0.68, and the worst values were 0.27, 0.31, 0.25, 0.43, 0.35 and 0.59. The



Water 2023, 15, 518 16 of 17

Nash–Sutcliffe coefficients of the RF model are all greater than 0.5, which cannot be
achieved by other methods. The RF model is the most stable solution and significantly
outperforms other methods. Using the random forest model to regionalize parameters
can improve the accuracy of flood simulation in ungauged areas, which is of great
significance for flash flood forecasting and early warning.

(3) The applicable conditions and scope of parameter transplantation are relatively com-
plex, and a single factor cannot be considered in isolation, and the attributes of adjacent
catchments may also vary greatly. The result of the attribute similarity method is not
very stable, and transplantation can fail when most of the attributes of two catchments
are similar, but if the attributes are very different, sometimes good results will be
achieved. According to the parameter importance analyzed by the RF model, the
slope is not so important, while the cultivated land area is the key to decision making.
This result goes against common sense and deserves further research.

There are many factors that affect the accuracy of parameter transplantation. In prac-
tice, continuous data collection is required to improve the quality of the underlying dataset.
With the accumulation of data and the continuous improvement of the regionalization
model, the accuracy of parameter transplantation can be improved.
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