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Abstract: In a hydropower system, inflow is an uncertain stochastic process that depends on the
meteorology of the reservoir’s location. To properly utilize the stored water in reservoirs, it is
necessary to have a good forecast or a historical inflow record. In the absence of these two pieces of
information, which is the case in Ethiopia and most African countries, the derivation of the synthetic
historical inflow series with the appropriate time resolution will be a solution. This paper presents a
method of developing synthetic historical inflow time series and techniques to identify the stochastic
process that mimics the behavior of the time series and generates inflow scenarios. The methodology
was applied to the Ethiopian power system. The time series were analyzed using statistical methods,
and the stochastic process that mimics the inflow patterns in Ethiopia was identified. The Monte
Carlo simulation was used to generate sample realizations of random scenarios from the identified
stochastic process. Then, three cases of inflow scenarios were tested in a deterministic simulation
model of the Ethiopian hydropower system and compared with the actual operation. The results show
that the generated inflow scenarios give a realistic output of generation scheduling and reasonable
reservoir content based on the actual operation.

Keywords: inflow scenarios; synthetic historical inflow series; time series analysis; stochastic process;
scenario generation; hydropower; planning model

1. Introduction

The generation and operation of hydropower plants are highly dependent on weather
conditions in the particular location of the reservoirs. To efficiently utilize hydropower,
it is, therefore, necessary to have an inflow forecast. Prior knowledge about the reservoir
inflow would help manage the water resource properly throughout the year. Otherwise, in
case of a low inflow year, the water in the reservoirs might be used up before the next rainy
season, and the reservoirs will be empty. Consequently, there will be a lot of load shedding
until the reservoirs fill up again, which can also affect the start content of the reservoirs for
the next planning period. On the other hand, in case of an unexpectedly high inflow year,
we may end up spilling much water, and reservoirs could also be flooded.

In Ethiopia and many other countries in East Africa, hydropower is the dominant
source of electric power. According to the international hydropower association (IHA)
2022 hydropower status report, Africa’s energy generation by hydropower is 146 TWh in
2021, 21% of this generation being from Eastern African countries, of which 45% is from
Ethiopia [1]. Most of the inflow is during the rainy season, July to September (Kiremt).

The water in the rainy season is stored in large reservoirs to be distributed over the
remaining part of the year until the next rainy season comes again. Therefore, hydropower
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planners need inflow forecasts for at least one year with a sufficient time resolution. How-
ever, the challenge is the limited availability of necessary data. For example, there are
no accurate water inflow measurements for each reservoir. Therefore, there is a need to
develop a method to randomly generate realistic inflow scenarios from the available data
sets, including hydropower generation data and satellite precipitation measurements.

Hydrologists use watershed models to estimate stream flow, surface run-off, water
quality, flood management, and water management. The review of different watershed
modeling, the use of AI techniques, artificial neural networks (ANNs), fuzzy logic (FL),
genetic algorithms (GAs) to improve upon or replace traditional physically-based water-
shed modeling techniques, and detailed discussions of individual watershed models are
presented in [2]. The precipitation-runoff modeling system (PRMS) is one of the watershed
modeling software used to simulate precipitation and snow melt-driven movement of
water to produce the daily system response and streamflow for a basin [3]. PRMS is applied
to simulate rainfall runoff in the Zamask–Yingluoxia subbasin of the Heihe River Basin
in [4]. The current and future geographic information systems (GIS) trends and remote
sensing technologies in watershed modeling are reviewed in [5]. It is demonstrated in [6]
that the surface water assessment tool (SWAT) provides a better streamflow estimate with
Next Generation Weather Radar (NEXRAD) precipitation input than rain gauge inputs.
The accuracy of the model results suggests that NEXRAD is a good alternative to rain
gauge data and can be extremely valuable in large watersheds without readily available
rain gauge data. In order to utilize the watershed modeling tools, for example, SWAT, we
need to have input about soil, land use and management, elevation, and daily rainfall to
predict daily stream flow. In addition, we need expert knowledge of hydrology and the use
of watershed models, which is beyond the scope of this research work.

There are other methods proposed in the literature that generate random time se-
ries, for example, stochastic processes. In [7], a stochastic process estimation based on
the concept of aggregation is presented, and the aggregation of periodic autoregressive
(PAR) and periodic autoregressive-moving average (PARMA) models for the seasonal
and annual flows of the Niger river are used to illustrate the concept. Inflow is modeled
as a stochastic variable by first-order autoregressive model AR(1) in [8] for a stochastic
dual dynamic programming (SDDP) to solve optimal medium-term scheduling in the
Norwegian hydropower system. In [9], a non-parametric simulation model is applied to
generate synthetic monthly flows from the Beaver River, Australia. A maximum likelihood
procedure for estimating the PARMA model of a monthly average river flows time series
is presented in [10]; the Kalman filtering algorithm is used to estimate the parameters. A
non-linear periodic autoregressive model (PAR(p))scenario generation method based on
the vine copula model is presented in [11]; the method incorporates a time dependence
more than lag-one, unlike the copula-based models. A monthly stream flow simulation
method based on the vine copula model is proposed in [12] for a catchment of the Yellow
River basin upstream of the Tangnaihai hydrological station in the north of China. The
ARFIMA model, an extension of the Box–Jenkins family, where the differentiation can take
fractional values to capture the long-memory effect present in the time series, is used in [13]
for generating synthetic hydrological scenarios for the Brazilian hydropower system.

However, almost all of the methods described in the literature are based on well-
recorded and organized historical data. In the case of the Ethiopian hydropower system,
and most African hydropower systems, where there is a significant gap in the availability
of organized data, it is necessary to derive a method to generate synthetic historical series.

Therefore, the first contribution of this paper is to derive a method for generating
a synthetic historical time series by combining the available data in hand. The second
contribution is to generate realistic inflow scenarios by applying existing methods to
identify the stochastic process that mimics the synthetic historical time series. The method is
applied to the Ethiopian power system. Finally, the paper demonstrates how the generated
scenarios can be applied in Ethiopia’s long-term deterministic hydropower planning model.
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This paper is organized as follows. Section 2 presents the materials and methods for
deriving the historical time series, the time series analysis, and stochastic model estimation.
Then, the study results, synthetic historical time series, scenario generation, and evaluation
of the generated inflow scenarios using the deterministic model are presented and discussed
in Section 3. Finally, Section 4 concludes the work.

2. Materials and Methods

This section presents the materials and methods used to derive the synthetic historical
series and generate the inflow scenarios.

2.1. Study Area, Data, and Materials

The methodology is applied to the Ethiopian power system. Ethiopia is located in the
horn of Africa with a 90% hydro-dominated power system. The Ethiopian power system
has around thirteen larger hydropower plants. Additionally, three wind power plants and
one waste-to-energy plant. These are connected to the national grid [14]. Figure 1 shows
the GIS map of the Ethiopian hydropower stations.
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Figure 1. Map of Ethiopian Hydropower stations.

Most of the reservoirs are in a different river system. Cascaded systems are Gibe I and
II, with Gibe I at the upper stream, and Koka, Awash II and III, with Koka at the upper
stream. Beles, sometimes called Tana Beles, Tis Abay I, and Tis Abay II are power plants
that source Lake Tana. Lake Tana is the largest lake in Ethiopia, the source of the Blue Nile
River located in the northwestern highlands of the country with a surface area of 3200 km2

and an elevation of 1787 m. The lake serves as the reservoir of the Beles hydropower plant
with seven spillway gates called Charachara Gates. The spilled water at Charachara is used
partly for the Tis Abay fall(Tis Esat, tourist attraction) and partly for power generation at
Tis Abay I and II. However, there is yet to be available data about the percentage of water
that will be used for power production. Therefore, we treat the Tis Abay I and II power
plants as run-of-the-river throughout this study. As a result, we have eight reservoirs, and
the generation largely depends on the maximum reservoir level attained during the rainy
season (July to September).
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The hydropower generation data and the general information about the reservoirs
understudy are collected from Ethiopian Electric Power (EEP). Table 1 shows the geo-
graphical location and general information about the thirteen Ethiopian hydropower plants
connected to the national grid. This study excludes reservoirs that were out of operation
during the study, small reservoirs with incomplete information, insignificant effects in
operation, and reservoirs under construction during the study time 2018–2019, which are
our base years for the actual operation data.

Table 1. Reservoir generation information and geographical location.

Power
Plant

Coordinates
◦N , ◦E

Dam
Height

(m)

Maximum
Level

(m a.s.l)

Storage
(Mm3)

at Max. Level

Installed
Capacity

(MW)

Maximum
Discharge

(m3/s)

Average
Energy
(GWH)

Beles 11.82, 36.92 35.00 1787.00 37,307.00 460.00 160.00 1867.00
M.Wakena 7.225, 39.462 42.00 2522.90 875.00 153.00 60.00 543.00
Fincha 9.789, 37.269 22.20 2219.00 964.00 134.00 29.68 760.00
Gibe I 7.831, 37.322 41.00 1,671.55 863.00 210.00 100.00 722.00
Gibe II 7.757, 37.562 46.50 Diversion Weir - 420.00 98.12 1635.00
Gibe III 6.844, 37.301 243.00 892.00 15,500.00 1870.00 2200.00 6500.00
Koka 8.468, 39.156 23.80 1599.00 4250.00 42.00 144.00 110.00
Awash II 8.468, 39.156 river run-of-river - 32.00 65.60 182.00
Awash III 8.468, 39.156 river run-of-river - 32.00 66.20 182.00
Tekezé 13.348, 38.742 188.00 1140.10 9310.00 300.00 184.00 1393.00
Am. Neshe 9.789, 37.269 38.00 2232.50 526.10 97.00 18.70 35.00
Tis Abay I 11.486, 37.587 river run-of-river - 12.00 114.00 33.70
Tis Abay II 11.486, 37.587 river run-of-river - 72.00 114.00 359.00

Source: EEP.

In the actual operation of the Ethiopian power system, the generation planning de-
pends on the historical level of reservoirs and the corresponding energy generated. As
an example, Figure 2 shows the five-year history of the reservoir levels for Gibe 1, Gibe 3,
Koka, and Tekezé reservoirs.
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Figure 2. Historical pattern of water levels for Gibe 1, Gibe 3, Koka, and Tekezé reservoirs;
source: EEP.

The water management planning for the dry season starts in October when the reser-
voir levels start to decrease. The generation schedule considers the three conditions for
each generating station.

• Plant’s unique characteristics in relation to the water level (Gibe 1, Gibe 2, and Gibe 3)
• Load forecast and history of generation.
• Downstream facilities (Beles, Fincha, and Koka)
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Based on these three conditions, the generation is scheduled following the historical
relationship between the reservoir’s water level and power generation. The information in
the water level recording can tell us when the reservoir is full and when it starts to drop,
which is a precaution to begin water management of the reservoirs. However, it could not
tell us the inflows to the reservoir or how much is expected in the future.

The NASA POWER data access viewer (DAV) [15] is used to access the satellite
precipitation measurement data based on the latitude and longitude of each reservoir. Ten
years of historical precipitation time series from July 2010 to July 2020 are extracted from
the DAV for each reservoir in the daily time resolutions. The Matlab Econometric Modeler
Application, Version 5.1 (R2018b) [16] is used to perform time series analysis and statistical
model identification tests.

2.2. Methods

We have developed two steps of processes to generate the inflow scenarios. The
first step is to combine the available historical data about hydropower generation and
precipitation to estimate synthetic historical inflow time series. As a straightforward
solution, we could have used the estimated synthetic historical inflows as scenarios for
the future. However, the limited data to estimate the historical series may lead to a series
that misses significant variations, and the data might not be sufficient for planning models.
Therefore, the second step is to identify a stochastic process that can generate random
inflow scenarios, which follow the same pattern as the synthetic historical inflow series.
The second step allows us to generate as many scenarios as needed that are not limited by
historical data. Figure 3 shows the methodology framework to illustrate the workflow of
this paper.

Figure 3. Methodology framework.

2.2.1. Estimation of Historical Inflow Time Series

In this paper, a method to generate synthetic inflow series from the data available for
all the reservoirs is derived. The method used to derive synthetic historical inflow series to
the reservoirs is scaling down the mean annual inflow (MAI) of each reservoir based on
the percentage precipitation of each reservoir. First, the data for the individual reservoir
precipitation measurement is extracted from the NASA DAV based on the geographical
location of the power plants in a daily time resolution. Then, the percentage of precipitation
over a year is used to distribute the MAI in the same proportion as the precipitation,
neglecting delays, topology, and such factors.

Vi =
Pi

Pannuali
MAIi (1)

where:
Vi = Volume inflow of reservoir i in (HE),
Pi = Daily precipitation per location of reservoir i in (mm),
Pannuali = Annual precipitation per location of reservoir i.
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However, there are no statistics for the MAI of each reservoir. Therefore, we need
to estimate the MAI using the available information at hand. The mean annual energy
(MAE) generation and the production equivalent are used to approximate the mean annual
inflow (MAI) to the reservoirs. The approximation considers electricity generation at the
best efficiency and generation approximated as a linear function of discharge. Therefore,

Hi,t = γiQi,t (2)

MAIi =
MAEi

γi
(3)

where:
Hi = Generation of hydropower plant i in (MW),
γi = (Himax)/(Qimax) Production equivalent of power plant i, (MW/HE).
Qi = Discharge from power plant i in (HE).
MAEi = Mean annual energy generation of power plant i in (MWh).
MAIi = Mean annual inflow to power plant i in (HE).
HE = Hour equivalent, m3/s of water released during one hour.
Ten years of synthetic historical inflow time series are estimated using Equation (1) for

each reservoir in a daily and weekly time resolution.

2.2.2. Time Series Analysis and Stochastic Model Estimation

The most prominent and frequently used method for time series analysis for all ap-
plications, such as finance, business, and engineering research, is the Box-Jenkins method-
ology [17]. We follow this methodology to identify the stochastic process that mimics the
inflow time series. The seasonal autoregressive integrated moving average (SARIMA)
model from the Econometric modeler Matlab tool is used to estimate the stochastic model.

The time series analysis is performed for the individual reservoir in two sets of inflow
time series; one with daily time resolution and the other with weekly time resolution. The
objective is to see which resolution best captures the behaviors of the synthetic series and
transforms it into the future.

In the selected methodology, the time series are checked for stationarity. Moreover, for
a non-stationary series, there is a need for differencing the original series (yt) to reduce the
process to a mixed autoregressive-moving average process of the form,

φ(B)ωt = θ0 + θ(B)εt (4)

as stated in [17], where:
ωt = (1− B)dyt = ∆dyt

B = backward shift operator defined by Bmyt = yt−m.
φ(B) = Autoregressive operator.
θ0 = Constant term.
θ(B) = Moving average operator.
∆d = Backward difference operator of order d.
εt = White noise process.
Then the analysis will be performed in the ’differenced’ series (ωt).

Daily Time Resolution

The time series in a daily time resolution is the first set of time series approximated
from the available information. The analysis indicates that the reservoirs’ inflow time series
in the daily time resolution are non-stationary processes. The analysis of the differenced
time series shows that the stochastic processes are seasonal autoregressive integrated
moving average processes of various orders.
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For example, the differenced time series for Gibe 3 shows that the stochastic process is
an autoregressive integrated moving average process (ARIMA) (0,1,3) seasonally integrated
with MA(730)(SARIMA(0,1,3)(0,1,2)[365]) with Equation (5).

(1− B)(1− B365)yt = (1 + θ1B + θ2B2 + θ3B3)(1 + Θ365B365 + Θ730B730)εt (5)

and for the rest of the reservoirs the process is SARIMA(0,1,2)(0,1,2)[365] with Equation (6)

(1− B)(1− B365)yt = (1 + θ1B + θ2B2)(1 + Θ365B365 + Θ730B730)εt (6)

where:
Θ = Seasonal moving average operator.

Weekly Time Resolution

The second set of time series analyzed is the same series reduced to weekly time
resolution. The analysis shows that the time series for all the reservoirs are stationary
autoregressive models of various orders, AR(1), AR(2), and AR(3) process with the consid-
eration of seasonality equal to the number of weeks in a year (52). For example, the model
for Gibe 3 is estimated as SARIMA(2,0,0)(2,0,0)[52] (an ARIMA(2,0,0) model seasonally
integrated with Seasonal AR(104)(Gaussian distribution)) with Equation (7), and the model
for Gibe 1, Koka, and Tekezé are estimated as SARIMA(3,0,0)(3,0,0)[52] with Equation (8)

(1− φ1B− φ2B2)(1−Φ52B52 −Φ104B104)(1− B52)yt = εt (7)

(1− φ1B− φ2B2 − φ3B3)(1−Φ52B52 −Φ104B104 −Φ156B156)(1− B52)yt = εt (8)

where
Φ = Seasonal autoregressive operator.
Figure 4 shows the model fit for Gibe 1 and Gibe 3 time series in a weekly time

resolution. From visual inspection, the models follow the patterns of the synthetic time
series and capture the information in the time series for both Gibe 1 and Gibe 3.

Model FitModel Fit

––

Figure 4. Model −1 fit for the Gibe 1 and Gibe 3 time series in the weekly time resolution.

2.2.3. Residual Diagnosis

After the time series analysis and estimation of the stochastic model, there is a need
to perform a residual diagnosis to make sure that the model fits the synthetic series. The
property expected from a good fit is to have uncorrelated residuals with zero means [18].
In addition to these properties, having residuals with zero variance and normal distribu-
tion indicates a good model fit. We can test those properties by visually inspecting the
autocorrelation function (ACF) and histogram plots of the residuals or applying various
test methods. The test method proposed by [17,18] is the portmanteau test, which tests
whether the first K autocorrelation is significantly different from what would be expected
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from a white noise process. The most used test method and the modified version of the
portmanteau test is the Ljung–Box Q-test, which is incorporated in the Matlab Econometric
Modeler tool based on the equitation,

Q̃ = n(n + 2)
K

∑
k=1

(n− k)−1r2
k(â) (9)

The modified statistic has, approximately, the mean E[Q̃] of the χ2(K− p− q) distri-
bution [17]. This modified form of the portmanteau test statistic has been recommended
for use because it has a null distribution much closer to the χ2(K− p− q) distribution for
typical sample sizes n.

Daily Time Resolution

A residual diagnosis is performed first using a visual inspection of the ACF and
Histogram plots are shown in Figure 5, which shows normally distributed and uncorrelated
residuals. In addition to the visual inspection of the ACF plot, we run the Ljung–Box Q-test
(LBQ) for autocorrelation of the Gibe 3 SARIMA model using the Matlab econometric
modeler tool Version 5.1 (R2018b) with the test parameters of Lags = 20, degree of freedom
(DOF) = 10, and significance level = 0.05.

The null hypothesis is that the first m autocorrelation of the residuals of the SARIMA
model are jointly zero.

H0 : ρ1 = ρ2 = ... = ρm = 0

Ha : ρj 6= 0, j ∈ 1, ..., m

      Residual Sample
Autocorrelation Function Residual Histogram

– – –
–

Figure 5. Residual diagnosis of the differenced Gibe 3 time series.

The test result in Table 2 shows that the null hypothesis is not rejected, indicating a
good fit for the model. The estimation result for the SARIMA model of the Gibe 3 reservoir
is presented in Table 3.

Table 2. Test results.

Null Rejected p-Value Test Statistic Critical Value

1 false 0.27408 23.3047 31.4104
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Table 3. Model estimation results for SARIMA(0,1,3)(0,1,2)[365] Model.

Parameter Value Standard Error T Statistic p Value

Constant 0 0
MA{1} = θ1 −1.403 0.045174 −31.0574 9.0611×10−212

MA{2} = θ2 0.28348 0.085036 3.3336 0.00085725
MA{3} = θ3 0.1482 0.058094 2.551 0.010741
SMA{1} = Θ365 −0.77234 0.064318 −12.0081 3.2218 ×10−33

SMA{2} = Θ730 0.014517 0.070344 0.20637 0.8365
Variance 3.0546×109 3.1855×10−12 9.5891 ×1021 0

Weekly Time Resolution

The residuals are diagnosed visually using ACF and histogram plots and the LBQ test.
The results from the visual inspection of the ACF and histogram plots of the residuals in
Figure 6 indicate almost normally distributed residuals without correlation. Furthermore,
the results of the null hypothesis in the LBQ test with the test parameter of Lags = 20,
the degree of freedom (DOF) = 10, and significance level = 0.05 show that the first m
autocorrelations of the residuals of the SARIMA model are jointly zero, and the hypothesis
is not rejected for both Gibe 1 and Gibe 3; the same holds for the rest of the reservoirs.
That means the model passes all of the diagnosis checks, which indicates a good fit for
the model.

       Residual Sample
Autocorrelation Function Residual Histogram

    Residual Sample
Autocorrelation Function

− 0.2

− −

−
− −

Figure 6. Residual diagnosis of the weekly time resolution.

3. Result and Discussion

This section discusses the results of the study based on the steps followed in the
methodology. The objectives of this study are to derive the synthetic historical inflow time
series, perform time series analysis, and estimate the stochastic model that best fits the
synthetic series and generate realistic inflow scenarios that can be used in hydropower
planning models.
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3.1. Synthetic Historical Inflow Time Series

The synthetic historical inflow time series for the past ten years, from 1 July 2010 to
30 June 2020, is derived in a daily time resolution for each reservoir. Figure 7 shows the
aggregate inflow time series of all the reservoirs per year in a daily time resolution.

As can be seen from the figure, there are seasonal variations in the inflows. Most
of the reservoirs obtain a considerable inflow during the same season. The reservoirs’
geographical location variations create slightly different precipitation patterns.

In general, all reservoirs obtain considerable rain in the rainy season, July–September,
and attain their maximum levels around September and October. When we compare
the actual water level, and the synthetic inflows for Gibe 1 and Tekezé reservoirs using
historical water levels and synthetic inflows for 2015–2016 and 2018–2019, as shown in
Figure 8, the water levels of Gibe 1 in 2015–2016 and 2018–2019 have almost similar patterns.
The maximum level is at the beginning of September for both years, and it starts dropping
from October throughout the dry season; the water level reaches its lowest point around
April for 2015–2016 and around mid-may for 2018–2019. After that, the level starts rising
relatively fast, starting from the end of April on the blue curve and rising relatively slowly
from June on the red curve. It can be seen from the same figure that there is a high inflow
from July to October in both years, and the inflow starts to lower from November, with
very little inflow in the dry seasons in both years. In the dry season, the inflow was better
in 2018–2019 than in 2015–2016. However, at the end of the planning year, i.e., from May to
June, we saw a higher inflow in 2015–2016 than in 2018–2019, which corresponds to the
water level pattern of each year.
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Synthetic Historical Inflow Series
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2016–2017
2017–2018
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2019–2020

Figure 7. Synthetic historical inflow time series plot for the Ethiopian power system.

The Tekezé reservoir water level for 2015–2016 and 2018–2019 in Figure 8 have similar
patterns but there are big differences in water levels between the two years. When we
compare the increase in the water level from July to September and the inflow for the
same time, we can see that In 2015–2016 (blue curve), the level increase is only around 6
m.a.s.l, which corresponds to the lower inflow. On the other hand, in 2018–2019 (the red
curve), the level increase is around 15 m.a.s.l during the same time, which corresponds
to the higher inflow. Therefore, the inflow can justify the variation of the water levels
for the two different years; in 2018–2019, the Tekezé reservoir had the highest rainfall in
August and September and a small inflow throughout the dry season. On the other hand,
in 2015–2016, the year started with a low water level, and it had lower inflow during the
wet and dry seasons.

Water levels and inflows varied in a logical pattern in the two reservoirs, which held
for the rest of the reservoirs, implying that the generated time series are realistic. Therefore,
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we can further analyze the developed inflow time series to estimate the stochastic process
and generate a random but realistic inflow scenario.
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Figure 8. Actual water level versus synthetic inflow in 2015–2016 and 2018–2019 for Gibe 1 and
Tekezé reservoirs.

3.2. Scenario Generation

We simulate sample realizations of random scenarios from the estimated SARIMA
models, applying the Monte Carlo simulation using the synthetic time series and the
inferred residuals as pre-sample data. Fifty different paths for two years of observation
were generated for both time resolutions.

3.2.1. Daily Time Resolution

The simulation results in Figure 6 on the left-hand side show that the model captures
the seasonal variation of the inflow series and follows the same pattern as the synthetic
time series. It can be noted that the simulation does not have the large peaks seen in the
synthetic time series. Moreover, the simulation mean goes down to the negative value
when the synthetic inflow is at its minimum; this means there are negative inflows during
specific periods, even if there is no negative inflow in the synthetic series. It is not realistic
to have negative values for the inflow scenario. These unrealistic results are mainly due to
the assumption of a Gaussian distribution in the ARIMA model estimation and the Monte
Carlo sample values in the range of (−∞ to ∞). Therefore, we removed the negative values
from the generated scenarios by truncating the negative values to zero. The right-hand
side of Figure 9 shows the synthetic time series and the mean of truncated inflow scenarios;
when we compare the two curves, the simulation mean tends to the positive trough out the
time of simulation because the truncation process significantly affects the simulation mean.

We can conclude that the sample realizations of the random series generated from the
daily time resolution are not realistic scenarios and would not transform the features in the
synthetic series to a random, future scenario.
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Synthetic series & Synthetic series &
Truncated simulation meanSimulation mean

− −

Figure 9. Simulation mean and synthetic historical series for Gibe 3 in the daily time resolution.

3.2.2. Weekly Time Resolution

The simulation result in Figure 10 on the left-hand side shows that the simulation
mean has an almost similar pattern to the synthetic series. There are two points where the
mean becomes negative, indicating the presence of a negative inflow in the generated series.
The figure on the right-hand side shows the synthetic series with the mean of the truncated
inflow series; the result shows a slight upward shift in the simulation mean. However, the
approximation effect is much less for the series in the weekly time resolution.

Synthetic series &
Simulation mean

Synthetic series &
Truncated simulation mean

Figure 10. Simulation mean and synthetic historical series in the weekly resolution.

When we compare the simulation mean of the two data sets, in Figures 9 and 10, we
can see that the model in the weekly time series best captures the behavior of the synthetic
time series; moreover, the effect of the truncation is less visible in the weekly resolution.
Therefore we can conclude that the scenarios generated from the weekly resolution time
series best capture the features in the synthetic historical series.

3.3. Evaluation of the Generated Inflow Scenarios

Random inflow scenarios could be used for long-term hydropower planning using
stochastic models; however, this is beyond the scope of this paper. To verify that the
scenarios are useful as inputs for hydropower planning problems, they will be tested in a
deterministic model presented in [14]. The deterministic simulation model is a model used
to maximize the value of stored water and minimize load shedding by utilizing the water
stored in the rainy season throughout the dry season with optimized water management.
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The objective here is to simulate the model with the random inflow realizations and see
if we can obtain a reasonable generation scheduling, acceptable load shedding, realistic
reservoir level patterns, and realistic spillage compared to the actual operation in the
Ethiopian power system.

Fifty scenarios have been created using the model with weekly time resolution. In
case 1, the inflow is equal to the mean of all these scenarios; case 2 uses the scenario with
the highest total inflow, and case 3 uses the scenario with the lowest total inflow. A load
demand equal to the actual demand in 2018–2019 is considered for all of the simulations.
The simulation results from the three cases are compared to the actual planning of the
Ethiopian power system in 2018–2019.

The three cases of inflow scenarios and the synthetic inflow in the 2018–2019 planning
year in the weekly time resolution are shown in Figure 11.
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Figure 11. The three cases of inflow scenarios and synthetic inflow of 2018–2019.

The deterministic hydropower model uses a time resolution of one hour. Therefore the
inflows in weekly time resolution shown in Figure 11 are converted to hourly resolution so
that any hour is assumed to be 1/168 of the corresponding weekly inflow. Figure 12 shows
the comparison between the simulation results of generation and load shedding for case 1
and the actual operation in the 2018–2019 planning year, respectively.
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Figure 12. Simulation results for case 1 and actual operation 2018–2019 planning year.

The simulation result for the generation and load shedding shows that the model
supplies the demanded load with zero load shedding. However, load shedding is observed
when there is higher load demand around October and toward the end of the year in the
actual operation.
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The actual hydropower operation in the Ethiopian power system depends on each
reservoir’s historical generation and historical water level trends. In contrast, the model
will distribute generation arbitrarily between hydropower plants as long as no reservoir
limits are exceeded.

Figure 13 shows the generation scheduling in the actual and simulated operation for
ten days in April, when we can see a load shedding in the actual operation and zero load
shedding in the simulation.
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Figure 13. Actual and simulated load shedding and generation schedule for sample reservoirs
in April.

The figure shows that the actual operation follows the same generation pattern each
day, the Gibe 3 reservoir supplies the variation in the load, and the smaller reservoirs
have the same generation level; consequently, we see a lot of load shedding during this
time of the planning year. However, the model is expected to perform better than the
actual operation since it has the perfect information. Therefore, the model schedules the
generation arbitrarily between the reservoirs in the simulation to minimize load shedding
and maximize stored water.

In Figure 14, we can see sample reservoirs’ start and final content for actual and
simulated operations, which are at the same levels for most reservoirs except the Gibe 3
reservoir. Let us compare the synthetic historical inflow and the inflow scenario. The inflow
is slightly higher in the average scenario (12.17 million HE compared to 11.15 million HE in
the synthetic scenario for 2018–2019). However, on the other hand, the amount of stored
water is around 1.1 million HE higher in the simulated operation of the average scenario
compared to the actual operation in 2018–2019. This indicates that the load shedding in
2018–2019 was not because there was insufficient water but because the water was not
used efficiently. In practice, water must have been spilled during the earlier rainy seasons.
Unfortunately, there are no records of spillage from Ethiopian hydropower plants which
can confirm this conclusion.
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Figure 14. Start and final reservoir contents for the actual operation and simulation of case 1.

If the inflow scenarios were unrealistic, we could, for example, have periods with
full reservoirs (due to inflow peaks) and spillage, or we could have periods with empty
reservoirs and plenty of load shedding. However, no such problems are experienced in
the simulation of all three cases, as presented in Figure 15. The figure shows the aggregate
reservoir contents in the actual and simulation of the three cases and the corresponding
simulated spillage trough out the year. However, we could not compare the actual spillage
in reality with the simulation result because there is no data available to compare.

Therefore, we can conclude that the random inflow scenarios generated are good
enough to obtain realistic results. From a long-term perspective, it would be more efficient
to use planning tools taking into account forecasts rather than the existing rules of thumb
or following historical generation trends.
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4. Conclusions and Recommendations

This paper presents a method to develop a synthetic historical inflow time series
by combining hydropower generation data and satellite precipitation measurement. The
identification of the stochastic process and inflow scenario generation is also presented.
With the proposed methods, we can generate two sets of synthetic historical time series
with daily and weekly time resolutions from the limited available data. We have shown
that existing methods can be applied to identify the stochastic process and generate realistic
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inflow scenarios for the Ethiopian power system considering the limited data available. We
use the Box–Jenkins family of stochastic process estimation models to perform the time
series analysis and estimate the stochastic process of each reservoir. In addition, we used
the seasonal ARIMA model to estimate the stochastic process and consider the seasonality
of 365 for the daily resolution and 52 for the weekly resolution. We observed that, even if
these data sets are extracted from the same synthetic historical time series, the time series
in the daily time resolution are all non-stationary, seasonal integrated moving average
stochastic processes, for example, SARIMA(0,1,2)(0,1,2)[730] for Gibe 1. On the contrary,
the time series with weekly time resolutions are all stationary seasonal autoregressive
processes of various orders. SARIMA(3,0,0)(3,0,0)[104] for Gibe 1.

The Monte Carlo simulation is used to generate the scenarios from the fitted stochastic
models for both data sets. The simulation means from both data sets follow the synthetic
historical time series pattern. However, the Gaussian assumption in the ARIMA models and
the Monte Carlo sample values in the range (−∞ to ∞) create a sample with negative inflow
values. The problem is mitigated by truncating the negative values to zero. However, this
affects the value of the simulation mean, which was significant in the daily time resolution
and less significant in the weekly time resolution. Consequently, the time series with
daily time resolution overestimates the inflows and misses some peak points from the
synthetic series. In contrast, the time series with the weekly resolution best captures the
characteristics of the synthetic historical time series and can generate realistic random
scenarios. The evaluation of the inflow scenarios indicates that they are good enough to
generate reasonable results.

These random inflow scenarios can be used in future works to apply stochastic
planning models for hydropower in Ethiopia and other countries. Better planning tools
can improve the utilization of hydropower in order to minimize generation costs and
load shedding.

If Ethiopia is going to have a modern power system, a detailed hydrological model
is necessary; it is not currently in place. A long-term objective to develop such a model is
recommended. It could be part of future research work to compare the simplified model
with what we could do if we had a detailed hydrological model. We also recommend
temporal and spatial correlations in inflows for reservoirs in related locations, considering
the correlation between inflow and wind speed, as there might be an expansion of wind
power generation in the Ethiopian power system in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF autocorrelation function
AR autoregressive
ARFIMA autoregressive fraction integrated moving average model
ARIMA autoregressive integrated moving average
DAV data access viewer
DOF degree of freedom
EEP Ethiopian Electric power
GIS geographic information systems
MA moving average
MAE mean annual energy
MAI mean annual inflow
NEXRA Next Generation Weather Radar
PAR periodic autoregressive
PARMA periodic autoregressive-moving average
PRMS precipitation-runoff modeling system
SARIM seasonal autoregressive integrated moving average model
SDDP stochastic dual dynamic programming
SWAT surface water assessment tool
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