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Abstract: In this study, the Bragg resonance of water waves scattered by multiple permeable thin
barriers over a series of periodic breakwaters was solved by employing the eigenfunction matching
method (EMM). The geometrical configuration was divided into multiple shelves separated by
steps, on which thin permeable barriers were implemented. The solution was approximated using
eigenfunctions with unknown coefficients that were considered as the amplitudes of the water waves
for each shelf. The conservations of mass and momentum were then applied to form a system of
linear equations, which was sequentially solved by a sparse-matrix solver. The proposed method
degenerates to traditional EMM formulations if thin barriers, the permeability of the barrier, or
bottom undulations are not considered. The validity of the suggested method was examined based
on the results in the literature. Bragg resonances by bottom-standing, surface-piecing, and fully
submerged permeable barriers over a series of periodic trapezoidal or half-cosine breakwaters were
studied. In addition, the breakwater amplitudes, permeable parameters of the barriers, and incident
angles of water wave scattering by different types of periodic breakwaters were discussed.

Keywords: Bragg resonance; periodic breakwaters; water wave scattering; eigenfunction matching
method; permeable barrier

1. Introduction

Water waves undergo many phenomena, principally from the assembled influences
of undulation bottom topographies, interference with artificial coastal foundations, and
nonlinear interactions between different harmonic components of waves traveling land-
ward. Coastal structures such as bulkheads, breakwaters, groins, and seawalls are used
to diminish wave impact and protect the shoreline. Along with coastal protection, these
coastal structures are used as artificial breeding grounds for sea animals and play an
essential role in the sustainable development of a healthy ecosystem in harbors. There-
fore, material involvement and thin permeable barriers could be valuable structures for
reducing construction costs. Moreover, this is preferred in many circumstances. For exam-
ple, a bottom-standing barrier can be used in long-wave environments. Alternatively, a
surface-piercing barrier can be used under special conditions, such as poor soil foundations.

The issue of water wave scattering by an impermeable barrier over a flat bottom
was examined in the previous studies [1–5]. Ursell [6] researched oblique water waves
passing through a thin barrier in deep water. Das et al. [7] studied the impact of multiple
impermeable thin barriers on the scattering of water waves. To further dissipate wave
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energy, the issues of permeable structures that are thin barriers have been studied [8–11]. By
solving integral equations, Macaskill [12] considered waves scattered by a single permeable
barrier at a finite water depth.

Numerical solutions have been widely used to investigate the interaction of water
waves with structures. The eigenfunction matching method (EMM) was examined by
Takano [13] to evaluate scattered water waves with an upraised rectangular sill. Following
this approach, Newman [14] considered the problem of propagating waves past long
symmetrical obstacles. Subsequently, Mei and Black [15] applied the EMM to solve surface
waves typically incident on a rectangular obstacle in a channel of finite depth. EMM was
then used to study the problems of oblique wave scattering by rectangular trenches [16,17].
In the case of waves propagated by undulating topography, Devillard et al. [18], O’Hare
and Davies [19], and Tsai et al. [20–22] almost exclusively focused on decomposed bottom
profiles in the concept that contain a series of flat shelves divided into multiple steps and
solved it using the EMM. Losada et al. [2] and Abul-Azm [5] employed methods of matched
eigenfunction expansion to investigate analytical solutions for the diffractions of oblique
waves with different configurations of thin vertical barriers. The matched eigenfunction
expansion method was used to study the context of wave interactions with vertical slotted
barriers [23,24] and impermeable barriers [25].

A specific configuration by a series of periodic breakwaters is known to reflect oblique
incident water waves resonantly. Bragg and Bragg [26] first discussed the occurrence of
Bragg resonance phenomena, and this mechanism inspired several studies on the concept of
submerged artificial bars [27–30] or natural bars [31–35]. Bragg resonance occurs when the
length of the surface water wave is approximately double the ratio of adjacent breakwaters,
and incident waves may be reflected in the sea. Kar, et al. [36–39] also applied the boundary
element method to study the Bragg scattering of surface gravity waves by an array of
trenches over undulation bottom topographies to enhance the width of the existing channels.
Ting, et al. [40] examined the Bragg resonance of water waves over the permeable rippled
seabed in the nearshore region. Xie [41] investigated the Bragg reflections of linear long
waves over an array of trapezoidal breakwaters on a sloping seabed.

In this study, we considered the Bragg resonant reflections of water waves created
by multiple thin permeable barriers over periodic breakwaters. Three configurations of
permeable thin barriers were employed: bottom-standing, surface-piercing, and fully
submerged barriers. In addition, we investigated the effects of two types of periodic
breakwaters, that is, the trapezoidal and half-cosine breakwaters, on the resonance of Bragg
scattering.

The rest of the paper is structured as follows. In Section 2, the water waves are
mathematically modeled. Subsequently, an EMM solution is formulated. To validate the
efficiency of the proposed EMM solution, several issues are discussed in Section 3. In
Section 4, further discussions on the Bragg resonances of water wave reflections and energy
loss by multiple permeable barriers over two types of periodic breakwaters are presented
in detail. Finally, Section 5 provides generalized conclusions for the entire study.

2. Methodology
2.1. The Mathematical Model

The scattering of sinusoidal surface waves towards an array of periodic breakwaters
with thin permeable barriers was investigated in two-dimensional coordination. The
waves had amplitude a, incidence angle γ, angular frequency σ = 2π/T, where T denotes
the period of the wave, and wavelength λ. Here, the z- axis was measured vertically
upward, and the x-axis was along the horizontal direction. A schematic of a series of
periodic breakwaters with multiple permeable thin barriers associated with water waves
is presented in Figure 1. The wave amplitude was sufficiently reduced to satisfy the
theory of linear waves. The wave motion is supposed to be time-harmonic e−iσt, where i
represents the imaginary unit of complex numbers, and t denotes the time. To facilitate
the approximation of the bottom topography and thin barriers, they were discretized into
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a sequence of M shelves in the interval xm−1 ≤ x ≤ xm for m = 1, 2, . . . , M with a water
depth hm. In addition, we assumed that x0 = −∞ and xM = ∞. The i-th surface-piercing
barrier was placed at a location x = vi with a submerged length equal to ai. In addition,
the i-th bottom-standing barrier was placed at a location x = wi with length bi. In the
following section, a = ai, v = vi, b = bi, or w = wi if there is only one surface-piercing or
bottom-standing barrier.
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Figure 1. Schematic of water wave reflection by multiple permeable barriers over periodic breakwaters.

Let us consider a single-step separation of abrupt shelves, as depicted in Figure 2.
Here, Lg and Lb are the vertical intervals of the gap and the barrier, respectively. If a
barrier is absent, Lb is equal to zero. The m-th shelf in the interspace xm−1 ≤ x ≤ xm, for
m = 1, 2, . . . , M, um represents the fluid velocity and is calculated as:

um = ∇φm, (1)

where the three-dimensional operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z), which concerns the Carte-
sian coordinate systems (x, y, z) and φm, denotes the velocity potential.

Thus, to satisfy the Laplace equation in the fluid domain:

∇2φm = 0, (2)

which respectively dominated the free-surface boundary conditions of kinematic and
dynamic as

− iσηm −
∂φm

∂z
= 0 (3)

and at z = 0,
− iσφm + gηm = 0 (4)

where ηm denotes the surface elevation. Combining Equations (3) and (4), we obtain

∂φm

∂z
− σ2

g
φm = 0 on z = 0. (5)

In addition, the condition for the bottom boundary can be written as
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∂φm

∂z
= 0 on z = −hm. (6)
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Between two continuous shelves, connection conditions are required for the velocity
potentials φm and φm+1

φm = φm+1 for x ∈ Lg, (7)

∂φm

∂x
=

∂φm+1

∂x
for x ∈ Lg, (8)

and
∂φm

∂x
=

∂φm+1

∂x
= iG(φm − φm+1) for x ∈ Lb, (9)

where G is the permeability parameter defined by Isaacson et al. [23]. Moreover, for a
vertical wall, the condition is calculated using the following equation:

∂φ

∂x
= 0 for x ∈ Lw (10)

In Equation (10), φ consent to either φm or φm+1, for the waterside of the barrier, and
Lw is the vertical intervals of the wall.

To make the solution uniquely solvable, the following far-field conditions must
be satisfied:

η = a
(

eik̂1.0x + KReiθR e−ik̂1.0x
)

eikyy as x → −∞ (11)

and
η = aKTeiθT eik̂M.0xeikyy as x → ∞, (12)

where KR, KT , θR and θT take the values of real numbers as the reflection and transmission
coefficients conceivably further specified by KReiθR and KTeiθT , respectively.

In Equations (11) and (12), k̂M,0, ky, and k̂1,0 represent the positive real wavenumbers
indicated by

k̂m,n =
√

k2
m,n − k2

y (13)

and
ky = k1,0 sin γ, (14)
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where k1,0 = 2π/λ > 0 and kM,0 > 0 are the continuing wavenumbers, which can be
established from the following dispersion relation

σ2

g
= km,0tanhkm,0hm. (15)

In Equation (13), the indices vary between m = 1, 2, . . . , M and n = 0, 1, . . . Further-
more, in Equation (13), the evanescent wavenumbers km,n with n > 0 are expressed as

km,n = iκm,n, (16)

where κm,n represents the n-th smallest positive root of the dispersion relation

σ2

g
= −κm,n tan κm,nhm. (17)

2.2. Method of Solution

In accordance with the linear wave theory, for the m-th shelf, the solution of the
velocity potential can be expressed as

φm(x, y, z) =
N

∑
n=0

(
Am,nξ

(1)
m,n(x) + Bm,nξ

(2)
m,n(x)

)
ζm,n(z)eikyy (18)

where the unknown coefficients Am,n and Bm,n need to be resolved for m = 1, 2, . . . , M. The
factor N in Equation (18) is assumed to be the evanescent mode number. By isolating the
variables, the eigenfunctions in Equation (18) can be defined as

ζm,n(z) = cosh km,n(hm + z), (19)

ξ
(1)
m,n(x) = eik̂m,n(x−xm−1), (20)

and
ξ
(2)
m,n(x) = e−ik̂m,n(x−xm) (21)

with {
xm = xm
x0 = xM = 0

for m = 1, 2, . . . , M− 1. (22)

It can be observed that the solutions defined in Equations (13)–(22) satisfy
Equations (2), (5), and (6): By applying Equations (7)–(12), the unknown coefficients, Am,n
and Bm,n, can be obtained.

Hence, the EMM is applied to define the conservation of mass in Equations (8)–(10)
as follows: 〈

∂φm

∂x

∣∣∣∣ζlarger
m,l

〉
=

〈
∂φm+1

∂x

∣∣∣∣ζlarger
m,l

〉
for l = 0, 1, 2, . . . , N, (23)

where the two-depth eigenfunctions inner product can be formulated as

〈P1|P2〉 =
∫ 0

−h̃
P1(z)P2(x)dz (24)

where P1 and P2 represent the depth eigenfunction of ζm,n with arbitrary integers m and n,
respectively. In addition, h̃ indicates the water depth of the eigenfunction P1. Moreover, in
Equation (23), ζ

larger
m,l is derived as

ζ
larger
m,l =

{
ζm,l for hm > hm+1

ζm+1,l for hm+1 > hm.
(25)
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In Equations (7) and (9), the conservation of momentum and the barrier condition can
be expressed as:〈

ζsmaller
m,l

∣∣∣φm(xm)
〉
=
〈

ζsmaller
m,l

∣∣∣φm+1(xm)
〉
+
〈

F
∣∣∣ζsmaller

m,l

〉
for l = 0, 1, . . . , N, (26)

where
F(z) =

∂φm

∂x
− (iG− 1)(φm(xm)− φm+1(xm)) for x ∈ Lb, (27)

and

ζsmaller
m,l =

{
ζm,l for hm < hm+1

ζm+1,l for hm+1 < hm.
(28)

Depending on condition (4) and the far-field conditions defined in Equations (11) and (12),
we can define the far-field solutions of the velocity potential as:

φ1 = − iag
σ

cosh k1,0(h1 + z)
cosh k1,0h1

(
eik̂1.0x + KReiθR e−ik̂1,0x

)
eikyy as x → −∞ (29)

and

φM = − iag
σ

cosh kM,0(hM + z)
cosh kM,0hM

(
KTeiθT eik̂M,0x

)
eikyy as x → ∞. (30)

Combining Equations (29) and (30) into Equation (18), the following equations
are obtained:

B1,0eik̂m,nx = − iaKReiθR g
σ

1
cosh k1,0h1

, (31)

AM,0e−ik̂M,0xM−1 = − iaKTeiθT g
σ

1
cosh kM,0hM

, (32)

A1,0 = − iag
σ

1
cosh k1,0h1

, (33)

A1,n = 0 for n = 1, 2, 3, . . . , N, (34)

and
BM,n = 0 for n = 0, 1, 2, . . . , N. (35)

Using Equation (18), Equations (23) and (26) can be rewritten as follows:

N
∑

n=0

(
ik̂m,n Am,nξ

(1)
m,n(xm)− ik̂m,nBm,nξ

(2)
m,n(xm)

)〈
ζm,n|ζlarger

m,l

〉
=

N
∑

n=0

(
ik̂m+1,n Am+1,nξ

(1)
m+1,n(xm)− ik̂m+1,nBm+1,nξ

(2)
m,n(xm)

)〈
ζm+1,n|ζ

larger
m,l

〉 (36)

and

N
∑

n=0

(
Am,nξ

(1)
m,n(xm) + Bm,nξ

(2)
m,n(xm)

)〈
ζsmaller

m,l

∣∣∣ζm,n

〉
=

N
∑

n=0

(
Am+1,nξ

(1)
m,n(xm) + Bm+1,nξ

(2)
m,n(xm)

)〈
ζsmaller

m,l

∣∣∣ζm+1,n

〉
+
〈

F
∣∣∣ζsmaller

m,l

〉
,

(37)

for the region of l = 0, 1, 2, . . . , N and m = 1, 2, 3, . . . , M − 1. Subsequently, the EMM
can be established using Equations (33)–(37), which compose 2M(N + 1) linear equations
and are subsequently employed to determine the 2M(N + 1) unknown coefficients Am,n
and Bm,n. The detailed coefficients of reflection and transmission, KReiθR and KTeiθT , are
later determined by applying Equations (31) and (32). It must be noted that the proposed
EMM formulation degenerates into the formulation to deal with the problem of water wave
interactions with impermeable barriers [25] over uneven bottoms during G = 0. In addition,
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it degenerates into the formulation of water wave scattering by breakwaters [13,20,42] if
the Lb is null.

3. Results

A concise and precise description of the experimental results, their interpretation, and
the experimental conclusions that can be drawn from the results have been provided in
this section.

In this section, the proposed EMM is adjusted to investigate simplified problems of
water wave interaction with permeable barriers over a flat bottom, periodic breakwaters,
and fully submerged barriers over a flat bottom behind an otherwise undulated bottom.
These results were compared with the results available in the literature.

3.1. Water Wave Interactions with a Single Permeable Barrier over Flat Bottom Topography

Initially, the suggested model was applied to solve the diffractions of water waves
by a single barrier with a flat bottom, where h1 = h2 = 1.0 m. First, the interactions of
water waves with a surface-piercing barrier were investigated, and the submerged length
of the barrier from the free surface was a/h1 = 0.5. For the case of a single permeable
bottom-standing barrier, the physical dimension of the barrier lengths was b/h1 = 0.5. In
addition, the number of evanescent modes was set to N = 50 for both cases.

Figure 3a,b depict the variations in |R| and |T| as a function of dimensionless wavenum-
ber k1,0h1 with several values of the permeable parameter G for the water wave scattered
by a single permeable surface-piercing barrier and bottom-standing barrier, respectively.
The general curves of |R| and |T| for different values of G were in good agreement with the
results of Lee and Chwang [9] and Li et al. [10], respectively.
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Figure 3. |R| and |T| with respect to k1,0h1 for a single permeable (a) surface-piercing and (b) bottom-
standing barrier over a flat bottom with different values of G.

EMM was also employed to study the effect of the evanescent mode number N. For
the case of a single surface-piercing barrier, the permeability parameter was set to G = 2.
For the case of a single bottom-standing barrier, the permeability parameter was set to
G = 0.5.
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Figure 4 shows the variations in wave reflection |R| and transmission |T| coefficients as
a function of the dimensionless wavenumber k1,0h1 for the cases of an individual permeable
surface-piercing and bottom-standing barrier with different values of N. It can be observed
from the figure that the curves of |R| and |T| are more similar, corresponding to the
literature [10]. The convergence can be observed to be significant, as the results are visually
indistinguishable at N = 50.
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Subsequently, the proposed EMM was validated for different incident angles. In
addition, the number of evanescent modes was set to N = 50 in conjunction with the
lengths of the surface-piercing and bottom-standing barriers, which were set to a/h1 = 0.5
and b/h1 = 0.5, respectively. Figure 5 shows the variation in the reflection coefficient |R|
with respect to the incident angle γ. As shown in the figures, the numerical results are in
good agreement with those reported by Sahoo, et al. [43].

Overall, these results validated the applications of the present EMM for the normal or
oblique scattering of water waves by a single thin barrier over a flat bottom, which also
counts for permeability.

3.2. Water Wave Scattering by Dual Permeable Barriers over Uniform Bottom

Following Gupta and Gayen [11], the proposed EMM was utilized to estimate the
scattering of water waves by dual permeable barriers over a uniform bottom where
h1 = h2 = h3 = 1.0 m. First, for the case of dual surface-piercing barriers, the permeable
parameter was equal to 0.5 and the barrier lengths were set to a1/h1 = 0.4 and a2/h1 = 0.5
located at v1/h1 = 0 and v2/h1 = 0.4, respectively. For the case of dual bottom-standing
barriers, the permeability parameter was set to 1.0, and the barrier lengths were b1/h1 = 0.7
and b2/h1 = 0.6 located at w1/h1 = 0 and w2/h1 = 0.4, respectively. In addition, the num-
bers of evanescent modes were set to N = 50 and N = 100 for dual surface-piercing and
bottom-standing barriers, respectively.
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Figure 6a,b shows the variations in the reflection coefficients with respect to the
dimensionless wavenumber k1,0h1 with different values of incidence angles γ for the two
circumstances. The results of this figure are in good agreement with the analyses in
the literature.
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Sequentially, the effect of the evanescent mode number N was additionally examined.
Figure 7a,b illustrates the variation in the reflection coefficients |R| with respect to the
dimensionless wavenumber k1,0h1 for various values of the permeable parameter G. The
barrier lengths and locations were the same as in the previous cases, and γ = 0◦. The
values of the permeable parameters G were assumed to be equal to 0.5, 1.0, and 1 + i. The
numerical results were in good agreement with those of Gupta and Gayen [11]. In addition,
it was observed that the reflections decrease corresponding to the cases of 0.5, 1.0, and 1 + i.
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Figure 7. Varying |R| with respect to k1,0h1 for dual permeable (a) surface-piercing and (b) bottom-
standing barriers over the flat bottom with different values of permeable parameters G.

From these results, the proposed EMM has been validated for solving problems of
normal or oblique water wave diffraction by multiple permeable barriers with complex-
valued permeable parameters over a uniform bottom.

3.3. Water Wave Scattering over Periodic Breakwaters

To substantiate the application of EMM against variable bottoms, we studied wave
scattering by a series of periodic trapezoidal or half-cosine breakwaters. The definitions of
these breakwaters are presented in Figure 8.
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Following Cho, et al. [44], we investigated the scattered water wave by J trapezoidal
breakwaters. Parameters of the problem were set as h1 = 1.0 m, hs = 0.5h1, wb = h1,
wt = 0.5h1, and s = 2π/K = 2h1, as shown in Figure 8a. Following Tsai, et al. [45], the
numbers of shelves and evanescent modes were set to M = 100 and N = 4, respectively.
Figure 9a depicts the variation of reflection coefficients |R| against 2k1,0/K with the number
of breakwaters J equal to 1, 2, and 3, respectively. As expected, the computed results
were in good agreement with the literature [44]. In addition, the Bragg resonance could be
observed to be significant with 2k1,0/K = 1 for the cases of J = 2 and J = 3.
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Sequentially, the issue of scattered water waves by J half-cosine breakwaters was
considered. The bottom profile of the breakwaters is given by:

h(x) = h1 + hs cos
π

wb
[x− (j− 1)λ], (j− 1)s− wb

2
≤ x ≤ (j− 1)s +

wb
2

, with j = 1, 2, . . . , J, (38)

where the parameters were set to h1 = 0.15 m, s = 2π/K = 0.8 m, wb = 0.5 m, and
hs = 0.05 m, as shown in Figure 8b. The number of shelves and evanescent modes were
set to be the same as those in the previous cases. The numerical results are presented in
Figure 9b. In the figure, the variations in the reflection coefficients |R| are given against
the dimensionless parameters 2k1,0/K with J equal to 2, 3, and 4. The results of J = 4 were
in good agreement with those obtained by Kirby and Anton [46]. In addition, the Bragg
resonance was found to be significant with 2k1,0/K = 1.

3.4. Water Scattering by Fully Submerged Barriers behind an Undulated Bottom

Scattered water waves under the combined effects of permeable barriers and un-
dulation bottoms were investigated. Following Kaligatla, et al. [47], the wave period of
the incident wave was arranged as T = 8 sec, and the permeable parameter was set to
G = (1 + i)k1,0. Therefore, the jth fully submerged barrier is located at x = vj = jv1,
as shown in Figure 10. In addition, the horizontal length of the undulated bottom was
denoted as v. In the application of EMM, the number of shelves was set to M = 100, and
no evanescent mode was considered, similar to Kaligatla, et al. [47].
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Figure 10. Water waves are scattered by undulation bottom and multiple fully submerged perme-
able barriers.

Figure 11 shows the variations in the reflection coefficient |R| with respect to v/λ for
a different number of permeable thin barriers with water waves with normal approach
incidence. It can be observed from the figure that |R| degenerates from medium values
for greater relative wave depth hM/h1 = 0.5 at smaller bottom lengths, and it becomes
approximately constant as the length of the bottom increases. These results are in good
agreement with those reported in the literature [47].
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In summary, the results in this subsection imply that the proposed EMM can be
implemented to deal with the diffraction of water waves by multiple fully submerged
permeable barriers behind an undulated bottom.

4. Discussion
4.1. Permeable Thin Barriers with Trapezoidal Breakwaters

The present EMM model was implemented to analyze the Bragg resonance of water
waves by the combined effects of thin permeable barriers and a series of trapezoidal
breakwaters. Here, the numbers of shelves, evanescent modes, and trapezoidal breakwaters
were set to M = 100, N = 50, and J = 3, respectively.

4.1.1. Bottom-Standing Barriers
Influence of Breakwater Amplitudes

The effect of the breakwater amplitudes was examined by fixing the water depth at
h1 = 1.0 m and changing the amplitudes of the trapezoidal breakwater to hs/h1 = 0, 0.1,
0.3, and 0.5. The three permeable bottom-standing barriers were located at w1 = 0.5wb,
w2 = w1 + s, and w3 = w2 + s, with equal barrier lengths b1/h1 = b2/h1 = b3/h1 = 0.3.
The permeability parameters of the permeable barriers were set to G = 0.5. The other
parameters were the same as those in Section 3.3.

The diffractions of water waves, including reflection |R| and transmission |T| co-
efficients, were calculated against 2k1,0/K, and the computational results are plotted in
Figure 12. The data in the figure indicate that when the amplitudes of the trapezoidal
bottom increased, |R| and |T| increased and decreased, respectively. In addition, it can
be observed from the figure that the magnitude of the Bragg resonance increased with an
increase in the breakwater amplitudes.
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Influence of Permeable Parameters

Sequentially, we studied the consequences of the permeable parameters on the Bragg
resonance of the water wave by periodic permeable bottom-standing barriers and trape-
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zoidal breakwaters. The amplitude of the trapezoidal breakwaters was set to hs/h1 = 0.3. In
addition, different values of permeable parameters are considered: G + 0, G = 0.5, G = 1.0,
and G = 1 + i. All other parameters were set the same as those in the previous case.

Before discussing the results, the physical meaning of the permeable parameter G
was introduced in accordance with Chwang [48] and Kaligatla, et al. [47]. The real part
of the parameter G is associated with the flow resistibility of permeable structures, while
the imaginary part is associated with the inertia of the fluid inside the structures. The thin
barrier becomes rigid and transparent with |G|→ 0 and |G|→ ∞ , respectively.

The reflection coefficients |R| of the water waves were calculated with respect to the
dimensionless parameters 2k1,0/K, as illustrated in Figure 13. As the permeable parameters
|G| increase, the Bragg reflections tend to become weaker. Bragg resonance is expected
to disappear when the value of |G| becomes sufficiently large such that the permeable
bottom-standing barriers are transparent.
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4.1.2. Surface-Piercing Barriers
Influence of Breakwater Amplitudes

Subsequently, the amplitudes of water wave scattering by the trapezoidal breakwaters
were studied using three pairs of permeable surface-piercing barriers over a breakwater.
The water depth was set to h1 = 1.0 m. The breakwater amplitudes had four values:
hs/h1 = 0, 0.1, 0.3, and 0.5. The three permeable surface-piercing barriers were located
at v1 = 0.5wb, v2 = v1 + s, and v3 = v2 + s with equal barrier lengths a1/h1 = a2/h1 =
a3/h1 = 0.1. The permeability parameter was set to G = 0.5.

The reflection |R| and transmission |T| coefficients were studied with respect to dif-
ferent values of hs/h1, and the numerical results are plotted in Figure 14. The primary
Bragg resonance was found to be significant when the value of 2k1,0/K was approximately
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1. In addition, the secondary resonance was observed to be 2k1,0/K → 2 . The increase of
breakwater amplitudes enhances the magnitudes of the primary Bragg resonance. How-
ever, when the periodic bottom becomes flatter (hs/h1 smaller), the reflection coefficient
|R| becomes stronger for higher-order resonances. This is because the higher-order Bragg
resonance by surface-piercing barriers is more magnified for flatter bottoms since the
corresponding wavelengths become shorter, and get concentrated on the free surface.
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Influence of Permeable Parameters

Subsequently, the effect of the permeable parameters on the Bragg resonance of
scattered water waves by periodic permeable surface-piercing barriers in the presence
of trapezoidal breakwaters was studied. The amplitude of the trapezoidal breakwaters
was set to hs/h1 = 0.3. In addition, different values of permeability parameters were
investigated, such as G = 0, G = 0.5, G = 1.0, and G = 1 + i. All other parameters of the
trapezoidal breakwaters were set to be exactly similar to those of the previous case.

Figure 15 presents the reflection coefficient |R| with respect to the dimensionless
parameter 2k1,0/K. In the figure, the Bragg reflections significantly decrease as the per-
meable parameter |G| increases. This result is similar to that of the previous cases with
bottom-standing barriers.

4.1.3. Fully Submerged Permeable Barriers

Subsequently, we study the effect of full submergence by replacing the permeable
surface-standing barriers of the previous case with fully submerged ones.

Figure 16 presents the reflection coefficient |R| with respect to the dimensionless
parameter 2k1,0/K with three different values of permeable parameters: G = 0.5, G = 1.0,
and G = 1 + i. In the figure, it can be observed that the reflections become weaker as
the permeable parameter |G| increases, and the Bragg resonance is significant when the
value of the dimensionless parameter 2k1,0/K is approximately an integer. However, when
compared with the results in Figure 15, the effect of the fully submerged permeable barriers
is to further magnify the reflection even when the dimensionless parameter 2k1,0/K is not
close to integers, especially for cases with smaller |G|.
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The effects of the incident angles were subsequently studied using the case shown
in Figure 16 with G = 0.5. Figure 17 shows the variations in |R| with respect to the
dimensionless parameter 2k1,0 cos γ/K with four incident angle values: γ = 0◦, 30◦, 45◦,
and 60◦. In the figure, significant Bragg resonance can be observed when the dimensionless
parameter 2k1,0 cos γ/K is approximately an integer. These results validate Bragg’s law for
oblique incidence.
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4.2. Permeable Thin Barriers with Half-Cosine Breakwaters

Subsequently, the effects of bottom-standing, surface-piecing, and fully submerged
barriers on the periodic breakwaters, demonstrated in Section 4.1, were enforced by consid-
ering an array of four half-cosine breakwaters (J = 4).

4.2.1. Bottom-Standing Barriers
Influence of Breakwater Amplitudes

In this case, there were four bottom-standing barriers: w1 = 0.5wb, w2 = w1 + s,
w3 = w2 + s, and w4 = w3 + s. The water depth was set to h1 = 0.15 m. Therefore, the
barrier heights and permeable parameters of the four barriers were set to b1/h1 = b2/h1 =
b3/h1 = b4/h1 = 0.333 and G = 0.5, respectively. The other parameters were set similarly
to those in Figure 9b in Section 3.3.

As demonstrated in Figure 18, the variations in |R| and |T| with respect to 2k1,0/K
were examined for different values of the breakwater amplitudes: hs/h1 = 0, 0.1, 0.2, and
0.3. In the figure, it can be observed that when the amplitudes of the half-cosine bottom
increased, the reflection |R| and transmission |T| coefficients increased and decreased,
respectively. In addition, the Bragg resonance was significant when the dimensionless
parameter 2k1,0/K was close to integers, and it increased with the increase in breakwater
amplitudes. These results were similar to those shown in Figure 12.
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Figure 18. Variations in (a) reflection |R| and (b) transmisstion |T| coefficient with respect to 2k1,0/K
for permeable bottom-standing barriers over half-cosine breakwaters with different values of hs/h1.

Influence of Permeable Parameters

The effect of the permeable parameters was investigated in the previous case using
hs/h1 = 0.2 with h1 = 0.15 m. Four values of permeable parameters were used: G = 0,
G = 0.5, G = 1.0, and G = 1 + i. All other parameters of the half-cosine breakwaters were
set to be exactly those of the previous section.

As illustrated in Figure 19, |R| was plotted against the dimensionless parameter
2k1,0/K. It can be observed from the figure that when the permeable parameter |G| increases,
the reflection coefficient |R| decreases slightly, and the Bragg reflections become weaker.
These results were similar to those shown in Figure 13.
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4.2.2. Surface-Piercing Barriers
Influence of Breakwater Amplitudes

In this case, four surface-piercing barriers were located at v1 = 0.5wb, v2 = v1 + s,
v3 = v2 + s, and v4 = v3 + s, sequentially. In addition, the values of the barrier heights
and permeable parameters were configured as a1/h1 = a2/h1 = a3/h1 = a4/h1 = 0.2 and
G = 0.5. The breakwater amplitudes had four values: hs/h1 = 0, 0.1, 0.2, and 0.3.

|R| and |T| were calculated with different values of the dimensionless parameter
2k1,0/K, and the numerical results are presented in Figure 20. The Bragg resonance was
found to be significant when the values of 2k1,0/K were close to integers. The increase in
breakwater amplitudes increases the magnitudes of the primary Bragg resonance. However,
when the periodic bottom becomes flatter (hs/h1 smaller), the reflection coefficient |R|
becomes stronger for higher-order resonances. These results are similar to those obtained
in Figure 14.

Water 2023, 15, 495 24 of 31 
 

 

  
(a) Reflection coefficients (b) Transmission coefficients 

Figure 20. Variations in (a) reflection | |R  and (b) transmision | |T  coefficient with respect to 

1,02 /k K  in the permeable surface-piercing barriers over half-cosine breakwaters with different val-

ues of 1/sh h . 

Influence of Permeable Parameters  
Subsequently, the present EMM was applied to study the effect of permeable param-

eters on the Bragg resonance by multiple permeable surface-piercing barriers over half-
cosine breakwaters. The amplitude of the half-cosine breakwaters was set to 1/ 0.2sh h = . In 
addition, different values of permeability parameters were investigated, such as 0G = , 

0.5G = , 1.0G = , and 1 iG = + . All other parameters of the half-cosine breakwaters were 
set to be the same as those of the previous section. 

Figure 21 presents the reflection coefficient | |R  with respect to the dimensionless pa-
rameter 1,02 /k K . In the figure, the Bragg reflections decrease slightly as the permeable 
parameter | |G  increases. Similar results have been previously reported.  

Figure 20. Variations in (a) reflection |R| and (b) transmision |T| coefficient with respect to 2k1,0/K in
the permeable surface-piercing barriers over half-cosine breakwaters with different values of hs/h1.

Influence of Permeable Parameters

Subsequently, the present EMM was applied to study the effect of permeable parame-
ters on the Bragg resonance by multiple permeable surface-piercing barriers over half-cosine
breakwaters. The amplitude of the half-cosine breakwaters was set to hs/h1 = 0.2. In
addition, different values of permeability parameters were investigated, such as G = 0,
G = 0.5, G = 1.0, and G = 1 + i. All other parameters of the half-cosine breakwaters were
set to be the same as those of the previous section.

Figure 21 presents the reflection coefficient |R| with respect to the dimensionless
parameter 2k1,0/K. In the figure, the Bragg reflections decrease slightly as the permeable
parameter |G| increases. Similar results have been previously reported.

4.2.3. Fully Submerged Permeable Barriers

The permeable surface-standing barriers were replaced in the previous case with
fully submerged ones. Figure 22 presents the reflection coefficient |R| with respect to the
dimensionless parameter 2k1,0/K with three different values of permeable parameters:
G = 0.5, G = 1.0, and G = 1 + i. It can be observed from the figure that the reflections
become weaker as the permeable parameter |G| increases, and the Bragg resonance is
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obvious when the dimensionless parameter 2k1,0/K is approximately an integer. However,
compared with the results obtained in Figure 21, the effect of the fully submerged permeable
barriers is to further strengthen the reflection, especially for cases with more minor |G|.Water 2023, 15, 495 25 of 31 
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Figure 22. Variations in |R| with respect to 2k1,0/K for fully submerged permeable barriers over
half-cosine breakwaters with different values of G.

The effects of the incident angles were sequentially studied using the case shown
in Figure 22 with G = 0.5. Figure 23 presents the computational results of the reflection
coefficient |R| with respect to the dimensionless parameter 2k1,0 cos γ/K with four values
of incident angles: γ = 0◦, 30◦, 45◦, and 60◦. In the figure, significant Bragg resonance can
be observed when the dimensionless parameter 2k1,0 cos γ/K is close to integers.
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4.3. Energy Loss

In the present investigation, energy dissipation was introduced by permeable thin
barriers. The water wave energy loss coefficient Eloss is formulated as follows:

Eloss = 1−
(
|R|2+|T|2

)
, (39)

where equal upstream and downstream water depths were assumed.
Figure 24a,b illustrate the variation in energy loss Eloss against dimensionless 2k1,0/K

with different values of the permeable parameter G for Bragg scattering of water waves
by multiple periodic fully submerged permeable barriers over periodic trapezoidal and
half-cosine breakwaters, for which the configurations are exactly the same as those in
Figures 16 and 22, respectively. As demonstrated in the figure, it is obvious that the energy
losses are smaller for cases with smaller permeable parameters |G| or shorter wavelengths.
In addition, the energy losses are minimized when Bragg resonance occurs.
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5. Conclusions

In this study, an EMM solution was developed to investigate the Bragg resonance
of water waves by multiple thin permeable barriers owing to periodic breakwaters. The
bottom topography was discretized into multiple shelves and sequentially determined.
The proposed method consisted of eigenfunctions, and was solved using the conservations
of mass and momentum. The SuperLU sparse matrix solver was applied to solve the
resulting system of linear equations. The proposed method degenerates to traditional EMM
formulations if thin barriers, barrier permeability, or bottom undulations are not considered.
Sequentially, the EMM was validated by the diffraction of surface water waves by three
types of permeable barriers: surface-piercing, bottom-standing, and fully submerged
barriers. Furthermore, the effects of periodic breakwaters on the Bragg resonance were
discussed. Finally, EMM was applied to study the impact of multiple barriers on Bragg
resonance by a series of periodic trapezoidal or half-cosine breakwaters. In the cases of
multiple bottom-standing barriers, the magnitude of the Bragg resonance increases with
an increase in the breakwater amplitude. However, for surface-piecing barriers, when
the periodic bottom becomes flatter, the reflection coefficient becomes stronger for higher-
order resonances because the motions of shorter waves are concentrated near the free
surface. Overall, barriers with higher permeability parameters exhibited weaker water
wave reflections. In the case of fully submerged barriers, the reflection effects become even
more significant. In addition, loss of wave energy was observed with different values of
the barrier permeability parameter. As the permeability parameters decreased, the wave
energy dissipated less. The energy losses were the least when Bragg resonance occurred.
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