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Abstract: Securing water resources is a complicated issue in Kazakhstan. Only 36% of Kazakhstan’s
rural population has access to a centralized water supply and 57.3% use groundwater accessed by
wells and boreholes. The groundwater quality must be monitored to minimize health risks. The
aim of this project is to investigate the groundwater quality in the Zhambyl region of Kazakhstan.
Groundwater depletion, pollution, waterlogging, and salinization are all widespread in Kazakhstan.
Previously, 500 self-flowing and, within this project, 204 wells were investigated in southern Kaza-
khstan, the Zhambyl region. The field works and data processing was carried out in three phases:
first, a fieldwork survey of existing water wells; the second phase, field work with more detailed
hydrogeological investigations, including measurements of flow rates, pH, temperature, and elec-
trical conductivity of water samples; the third phase, processing, and analysis of field data samples
in chemical laboratories. Kazakhstan’s requirements for drinking water are much lower than the
requirements in the EU. Less than 30% of Kazakhstan’s population has access to safe water and about
50% of the population consumes drinking water that does not meet international standards of salinity,
hardness, or bacteriological levels.

Keywords: groundwater; artesian well; Zhambyl region; Kazakhstan; Central Asia; health risk;
water standards

1. Introduction

Water is one of the most essential components in the existence of the biosphere and
is an indispensable element in the productive and economic activities of human society.
Among the world’s most pressing problems at present are the protection, conservation,
and rational use of water resources [1]. More than 2.2 billion people suffer from the lack
of clean drinking water according to the UN [2]. The sustainability of water resources
and water availability are complicated issues in Kazakhstan [3]. The country depends
upon its neighboring Central Asian (CA) countries for transboundary waters carried by
rivers. Kazakhstan is situated downstream of most CA river basins [4–9]. Negotiating and
regulating transboundary waters is complicated and contentious in CA, similar to many
regions in the world. Hydropolitics affects around 40% of the world’s population [10]
and requires systematic studies of conflict and cooperation in transboundary water basins,
which are difficult issues in CA. Water sustainability and water security are vital priorities
for Kazakhstan [11–13]. Due to the complexities of surface water resources, groundwater
is becoming the main source for personal, agricultural, and industrial use. Intensive
extraction of groundwater and minerals is leading to many anthropogenic distortions to
the environment. The continued shrinking of the Aral and Balkhash Lakes is accompanied
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by drying, salinization, and desertification of the deltas of the Syr Darya and Ili Rivers.
Deep degradation of the ecosystem and the deterioration of surface and groundwater
resources are widespread in Kazakhstan. The human health risks induced by using polluted
groundwater, especially with heavy metals in Kazakhstan, are becoming a big issue similar
to many developing countries [14]. A non-threshold model to estimate the carcinogenic risk
of nitrate-nitrite in drinking water was applied in the neighboring countries, in Iran, on a
regional scale [15]. Human distraction from nature, with the construction of different dams,
results in sedimentation and pollutant increases, as was investigated in the man-made lake:
Sabalan Dam Reservoir, Iran [16]. The alarming carcinogenic and non-carcinogenic risk of
heavy metals has been shown in the Sabalan dam reservoir, Northwest of Iran [17].

The aim of this project is to investigate the current status of groundwater wells and
to examine the quality of water for future use and water sustainability in the Zhambyl
region. Combinations of fieldwork surveys and water sampling with geographic informa-
tion system (GIS) mapping were applied. GIS-based tools are widely employed to create a
digital geographic database for investigation and visualization mapping, and prediction
analysis for groundwater–surface water interactions, to support decision-makers [18,19].
Anthropogenic activities and man-made impacts on the environment require proper inves-
tigations. For sustainable solutions recommendations, proper fieldwork with easy tracking
and understandable GIS mappings are very important project work activities [20–22]. The
results of this case study will be used for further investigations, modeling with predic-
tion analysis to support local decision-makers in developing sustainable groundwater
resource programs.

2. Materials and Methods
2.1. Study Area Description

The Zhambyl region is located in southern Kazakhstan with a central point of 44◦ N
72◦ E (Figures 1–3). The region is characterized by a warm continental climate and has an
average annual precipitation of 200 to 3500 mm [23]. Until 2021, the surface water from
the Chu-Talas River basins was the main water source for the Zhambyl region. However,
after a devastating drought in 2021 caused a severe shortage of surface water, groundwater
must be utilized more extensively. This groundwater is used for local human consumption
and for agricultural and industrial purposes in the Zhambyl region [24,25].
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Expedition surveys of hydrogeological (self-flowing and non-self-flowing) wells
with an assessment of the sanitary-ecological and technical condition of water points
covered the territories of the Merke, Shu, and Korday districts of the Zhambyl region
(Figures 2 and 3). In the process of route research for each water point, groundwater levels
were measured in the absence of self-spill, flow rates were estimated using a 10 L bucket
and a stopwatch, geographic coordinates were determined using a GPS navigator, and, as
a result, a table was created for a general description of hydrogeological wells according to
Merke, Shu, and Korday districts (Table 1).

Table 1. Summary of field survey in Merke, Shu, and Korday districts in the Zhambyl region (2021).

No. Administrative
Region

Total Inspected
Well

With Well-
Spring

Without
Well-Spring

With
Pump

Clogged
by Stones

1 Merke 182 132 22 5 23
2 Shu 5 5 - - -
3 Korday 17 - 1 14 2

Total 204 137 23 19 25

The survey was carried out in spring and autumn in two stages. At each survey of
hydrogeological wells, the flow rates, temperatures, and pH of the water were measured.
The pH was measured with a temperature meter and the pH of the water. Next, water
samples were taken for laboratory research. Water sampling was carried out on our own
and in clean new plastic bottles of 5 L and 1 L. Five-liter samples were taken for sanitary
and epidemiological rules and norms, and liter samples were for reduced chemical analysis
of water and radiological analysis of water.

In previous studies, archival data were processed before the fieldwork survey to in-
vestigate the groundwater wells and shallow and deep aquifers. The shallow aquifers are
within the alluvial and alluvial–proluvial Quaternary deposits (Figure 2). The thickness of
the shallow aquifers can be up to 100 m. The flow rates of wells, which have been drilled
in shallow aquifers, range from 5 to 60 L/s. The deep aquifers are within the Cretaceous,
Paleogene, and Neogene deposits (Figure 3). The thicknesses of the deep aquifers are between
100 and 900 m [26]. Our field works and data processing was carried out in three phases:

(I) The first phase lasting 30 days consisted of the fieldwork surveys of existing water
wells in the Merke, Shu, and Korday districts in the Zhambyl region (Figure 2). The
fieldwork surveys were concentrated on the inventory of wells, including

- Wells coordinates, latitude, longitude, and elevation recording with Global Posi-
tioning System (GPS);

- Wells flow rates measurements;
- In situ parameters, temperature, pH, electrical conductivity (EC), and water tables

were measured as MSL.

(II) During the second phase, the field survey works were expanded:

- More hydrogeological investigations were provided with measurements continu-
ation of the wells flow rates, pH, temperature, and electrical conductivity;

- Well water samples were collected for laboratory analyses.

The fieldwork was completed in 25 days for the second phase. The flow rate of artesian
wells varied from 0.1 to 40 L/s. Water levels in wells were at a depth of 0.1 to 10 m. The
type of water extraction technologies was investigated. In some wells, submersible pumps
have been installed to extract groundwater for consumption and drinking water supply.

(III) During the third phase, the collected field data samples were processed and analyzed.
During field surveys in the study area in Merke, Shu, and Korday districts of the
Zhambyl region, several hundred hydrogeological wells were identified, of which
more than half were artesian wells (Table 1, Figure 4). In most wells, groundwater
was without the well-spring. Submersible pumps are installed in some wells. In a
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third of the wells, the wells are clogged with stones. Clogged wells need to be cleaned
using an airlift method or new wells need to be drilled. The survey showed that 90%
of artesian wells are within the Merke district in the Zhambyl region.Water 2023, 15, x FOR PEER REVIEW 6 of 22 
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byl region, Kazakhstan: (a) Hydrogeological and artesian wells are located in the Shu district;
(b) Hydrogeological and artesian wells are located in the Merke district; (c) Hydrogeological and
artesian wells are located in the Korday district.

Many wells were used unsustainably with the permanent spouting of water (Figure 5).
The related classification maps were prepared with well types descriptions, including
the database of spouting wells and artesian aquifers in Merke, Shu, and Korday districts
in the Zhambyl region study area (Table 2). Further investigation with analysis, water
depletion modeling, and decision-makers policies are required. Recommendations for
management decisions will be reasonable with the creation of a geo-information-analytical
subsystem of resources of artesian water in the Merke, Shu, and Korday districts in the
Zhambyl region. The integrated information-analytical systems with connected numeri-
cal mathematical modeling will be helpful to set up the next phrases [27]. The collected
and processed field data, containing hydrogeological properties, groundwater source
location, and groundwater quality (major ions, nutrients, heavy metals, and trace ele-
ments), are stored in the database and can be used by regional decision-makers and further
scientific works.

2.2. Sampling and Data Preparation
2.2.1. Laboratory Analysis

The laboratory analysis was provided for the collected field samples based on the
SSRK R 51592-2003 method [28]. The pH, electrical conductivity, and dry residue were
provided by the Mettler-Toledo liquid analyzer. Na and K cations were measured on a
flame photometer PFP-7. Ca, Mg, NH4, SO4, Cl, P, F, NO3, and NO2 were determined
on the capillary electrophoresis apparatus Capel 105 M. Reagents CTA-OH, DEA, tartaric
acid, hydrochloric acid, and sodium hydroxide were used to prepare electrolytes. The
standards were used to build scales and sample preparation in the membrane filter filtration.
All processed samples were measured in a centrifuge for about 5 min for all specified
components. The results are presented in mg/dm3 units.
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Table 2. Example description of hydrogeological wells in the research regions dated 20 August 2021.

Well No.
Geographic Coordinates

Brief Description of Wells Flow Rate,
L/S Photo of WellsNorthern

Latitude
East

Longitude

2 42◦ 52′ 42.84” 73◦ 5′ 50.91”

Spouting well is located
opposite the Aktogan village.
t of water in the well is 17.7 ◦C

pH = 8.0

5
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Table 2. Cont.

Well No.
Geographic Coordinates

Brief Description of Wells Flow Rate,
L/S Photo of WellsNorthern

Latitude
East

Longitude

9 42◦ 52′ 54.55” 73◦ 25′ 12.31”

Spouting well is located at the
entrance of Makhanda village.
t of water in the well is 11.9 ◦C

pH = 8.3

20
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Halogens were measured on the capillary electrophoresis apparatus Capel 105 M.
Boron (Si) and silicon (Si, SiO2) were determined on the KFK-2 apparatus [29]. To de-
termine them, we built a scale and the optical density was used to calculate the sample
and the scale. The boron (Si) results are presented in mg/L units. The silicon (SiO2)
results are presented in mg/dm3 units. The silicon (SiO2) results are presented in
mg/dm3 units.

Metals were determined on the ICPE-9820 emission spectrometer. Samples were
concentrated with nitric acid (NO3) and filtered with measurements. The scale and samples
were determined by the width, height, and peaks. Heavy metals were measured on an
Agilent AA 140 Atomic Absorption Spectrophotometer.

Petroleum elements and phenols were determined on a “Fluorat-02-NM” fluorescent-
photometric liquid analyzer, with the addition of the hexane reagent.
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Pesticides were determined on a gas chromatography-mass spectrometer. Hexane
was mixed with samples. The mixed liquids of 0.1 mL were sprayed through a microsy-
ringe. The peaks, height, width, and area were measured. The results are presented in
mg/dm3 units.

Alpha and Beta Activities Measurements

The alpha and beta activities were measured by using the Alpha-Beta radiome-
ter UMF-2000 methodology [30]. The measurement is determined by the given ratio
calculations. The lower limit for alpha activity is 0.02 Bq and that for beta activity is
0.1 Bq with an expanded uncertainty value of 60% for P = 0.95. The upper limit for alpha
activity is 1000 Bq and that for beta activity is 3000 Bq with an expanded uncertainty
value of 20% for P = 0.95. The Alpha-Beta radiometer UMF-2000 with a control source
allows the measurement of the activities of countable samples up to 40 mm in diameter
with simultaneous measurement of alpha activity and beta activity. The laboratory
analytical scales of the VLR-200 type according to SS 19491-74 range from 0 to 200 g,
and a basic measurement error of 0.5 mg was also used for the sample measurements. For
the calibration, the following characteristics were applied: sensitivity to alpha radiation
for different masses of the counting sample E f fα; sensitivity to beta radiation α for different
masses of the counting sample E f fβ; coefficient of account transfer from the alpha channel
to the beta channel, K, for different masses of the counting sample. The recommended
weight range for counting samples for calibration is 100–600 mg. The method is based
on the concentration of radionuclides from the volume of an aqueous sample by
evaporation to a dry residue, measuring the count rate of alpha and beta radiation of
the obtained residue using a radiometer, and comparing it with the count rate from the
reference sample with certified activity values and calculating the total alpha and beta
activity samples.

Calculation of the alpha and beta activity of the counting sample for the alpha channel
A, Bq, and α is carried out by the Formulas (1) and (2):

Aα =
〈 Nα〉

t · E f f α
(1)

and that for the beta channel A, Bq, is according to the formula:

Aβ =

〈
Nβ

〉
− 〈Nα〉 · Ktr

t · E f fβ
(2)

where <Nα> is the score for the alpha channel; <Nβ> accounts for the beta channel; Effα
and Effβ are sensitivities to alpha and beta radiation, respectively, for β of a given mass of a
countable sample; Ktr is the coefficient of transfer of the alpha count to the beta channel for
a given mass of the counting sample.

3. Results and Discussion
3.1. Groundwater Chemistry

South Kazakhstan, in comparison, is similar to other neighboring countries in regional
scalers such as “Iran’s Groundwater Hydrochemistry”; most of the groundwater does not
meet the requirements for drinking use [31].

The South Kazakhstan, Zhambyl region, field samples’ chemical analyses are presented
in Table 3. Groundwater pH was slightly alkaline with values from 7.5 to 9.5 (average value
of 7.95). Groundwater temperatures in wells range from 10 to 32 ◦C.
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Table 3. Field samples’ chemical summary results in Merke, Shu, and Korday districts in the Zhambyl
region, Kazakhstan, with drinking water standards comparison [32,33].

Parameter Unit
Dry Season (November 2020) Wet Season (April 2021) Drinking Water Standards

Min Mean Max Min Mean Max Kazakhstan WHO/EU

pH 7.5 8.0 8.9 8 8.6 9.29 6–9 6.2–8.5
Temp. ◦C 27 28.5 29.1 27.2 28.8 32
Ca2+ mg/L 30 32 34 3.8 3.9 4
Mg2+ mg/L 14.2 15 15.8 1 1.25 1.5
Na+ mg/L 16.2 33.6 17.4 50.6 53.85 57.1 200
K+ mg/L 3.1 3.3 3.5 0.1 0.15 0.2

HCO3
− mg/L 170.5 176.8 183.1 15.2 16.75 18.3

Cl− mg/L 6.9 7.0 7.1 20.2 20.75 21.3 350 250
SO4

2− mg/L 20 21.5 23 53.2 54.6 56 500 250
NO3

− mg/L 15 15.2 15.4 1.4 1.45 1.5 45 50
NO2 mg/L 0.01 0.015 0.02 0.01 0.01 0.01 0.50
SiO2 mg/L 4.0 4.4 4.8 20.2 20.8 21.4

NH4
+ mg/L 0.05 0.05 0.05 0.00 0.00 0.00 0.50

F mg/L 0.38 1,2 4.0 1.84 1.8 12.0 1.5 1.5
B mg/L 0.00 0.00 0.00 0.00 0.00 0.00 0.5 1.0
Si mg/L 2.2 3.5 4.81 19 20.2 21.4 10
Li mg/L 0.00 0.00 0.00 0.02 0.02 0.02 0.03

Mo mg/L 0.001 0.001 0.001 0.012 0.014 0.016 0.25
As mg/L 0.00 0.00 0.00 0.02 0.024 0.029 0.05 0.01
Pb mg/L 0.002 0.002 0.002 0.004 0.0045 0.005 0.03 0.01
Sr mg/L 0.00 0.00 0.00 0.10 0.2 0.3 7.0

Fe2 mg/L 0.1 0.1 0.1 0.00 0.00 0.00 0.3 0.2
Fe3 mg/L 0.1 0.1 0.1 0.00 0.00 0.00 0.3 0.2

The fluorine F values are higher in comparison to the allowed water drinking stan-
dards. Only the standard fluorine rate in water is harmless to the human body. Both
fluorine excess and deficiency are equally harmful. An excess of fluorine in water nega-
tively affects the body, which may cause diseases such as thyroid disorders, nerve impulses,
cardiovascular diseases, inflammation of the nasopharynx and digestive tract, hearing loss,
and a decrease in immunity. Fluorosis disease may occur with changes in bone tissue issues.
From the water, fluorides are carried throughout the body, settling on the teeth and bones.
Then, fluorides accumulate in the bones, causing deformations. An increased level of
fluoride in water causes infertility, osteoporosis, cancer, and Alzheimer’s disease [34]. The
silicon (Si) values are twice as high as the allowed water drinking standards. Crystalline
silica may affect the immune system, causing mycobacterial infections (tuberculous and
nontuberculous) and fungal diseases [35]. Tuberculosis rates are very high in Kazakhstan,
one of the highest rates in the world [36]. The tuberculosis rates are more than >216/100,000,
in comparison to the EU with less than <13/100 000 population [37]. The arsenic (As) values
are two-five times higher in comparison to the allowed water drinking standards. Arsenic
is naturally present at high levels in Kazakhstan’s groundwater. Arsenic is a highly toxic
element. Contaminated water with arsenic used for drinking, food preparation, and ir-
rigation causes health problems, including cancer, skin lesions, cardiovascular disease,
diabetes, negative impacts on cognitive development, young adult deaths, lung disease,
heart attacks, and kidney failure. Arsenic causes adverse pregnancy outcomes and infant
mortality [38].

A Piper diagram consists of two trigonograms projected onto a rhombus and allows
for determining the type of water. Two triangles are filled first (a triangle carrying cations
and the other anions) and then a rhombus. The left triangle demonstrates the composition
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of cations, and the right one is for anions. The values in the triangle are calculated as
follows: percentages of Mg2+, Ca2+, and Na+ + K+ cations—according to Formulas (3)–(5):

Mg (%) =
Mg (meq / kg)

(Mg + Ca + Na + K)
(3)

Ca (%) =
Ca (meq / kg)

(Mg + Ca + Na + K)
(4)

Na + K (%) =
Na + K (meq / kg)

(Mg + Ca + Na + K)
(5)

Major ion concentrations of samples were plotted in a Piper diagram to delineate the
hydrochemically paramount groundwater types in Merke, Shu, and Korday districts in the
Zhambyl region (Figure 6) [39]. In most groundwater samples, the dominant cations were
Na+ > Ca2+ > Mg2+ > K+, whereas the dominant anions were HCO3

− > SO4
2− > Cl−.
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Figure 6. Piper plot depicting the chemical compositions of groundwater from in Merke, Shu, and
Korday districts in the Zhambyl region.

The intersection of points of values of cations and anions of samples in a rhombus
determines their type. The construction of the Piper diagram showed that the dominant
component type in the groundwater is Na-HCO3, followed by Ca-HCO3, as it is presented
in the Piper diagram. The results of major ions meet national requirements for domestic
and drinking water [40].

The groundwater radioactivity was analyzed on four groundwater samples that were
collected from the Merke district. The temperature of the groundwater samples ranged
from 30.1 ◦C to 31 ◦C. The results indicate that the water meets the requirements of radiation
safety (Table 4).
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Table 4. Results of water samples for radiation safety research from 23 August 2021, with drinking
water standards comparison [41,42].

No. No.
Total Alpha

Activity, Bq/L
Drinking Water Standards Total Alpha

Activity, Bq/L
Drinking Water Standards

Kazakhstan WHO/EU Kazakhstan WHO/EU

1 65 0.19 0.1 0.1 0.7 1.0 1.0
2 67 0.15 0.1 0.1 0.6 1.0 1.0
3 74 0.09 0.1 0.1 0.12 1.0 1.0
4 195 0.18 0.1 0.1 0.14 1.0 1.0

The alpha activity values are approximately twice higher from the allowed water
drinking standards. Alpha particles can be very harmful if alpha emitters are swallowed
and enter the body from the drinking water. The alpha particles may damage living tissue
cells and deoxyribonucleic acid (DNA) [43]. Lower doses of radiation may cause cancer
or other health problems. The initial preliminary effect of radiation may be without any
appearance for many years but will cause many issues later in life [44–46].

The mineralization, or TDS (Total dissolved solids), the ratio of various components
by the location of hydrogeological wells is presented in Figure 7.
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(c) TDS-HCO3; (d) TDS-Ca; (e) TDS-SO4.

In Merken, Shui, and Kordai districts of the Zhambyl region (Figure 7), the mineral-
ization level TDS -Ca is R2 = 0.7374, TDS-HCO3 is R2 = 0.9629, and TDS-SO4 is R2 = 0.974.
This pattern may indicate differences in contributions from the Aral Lake, more salts, or
the deposition and washout of marine aerosols. In addition, intensive agricultural activity
in the area may be the cause of this apparent anomaly associated with the weathering of
silicate volcanic, with the release of alkali and alkaline earth metals and the production of
alkali. The mineralization TDS and Cl (R2 = 0.1873) are low, which may indicate a reduced
influence of water–rock interaction processes.
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Water Quality Index (WQI) reveals the degree that reflects the combined influence
of several water quality parameters. The WQI is important for the determination of the
suitability of groundwater for potable use. The WQI assessment is an effective method
for assessing water quality and may be useful for future groundwater monitoring. It is
also an easy way to present groundwater quality results. The calculated WQI, water type,
and percentage of different types of water in the Merken, Shui, and Kordai districts of the
Zhambyl region are presented in Table 5.

Table 5. Correlation coefficient ranges and interpretation.

Ions Unit Min Mean Max R2 Interpretation

Cl mg/L 6.9 10.2 21.3 0.1873 Little if any
correlation

Na mg/L 16.2 24.1 57.1 0.6096 Moderate correlation
HCO3 mg/L 15.2 54.4 183.1 0.9629 Very high correlation

Ca mg/L 3.8 16.2 34 0.7374 High correlation
SO4 mg/L 21.5 28.6 56.0 0.974 Very high correlation

For 80% of the selected wells, the groundwater quality in the Merken, Shu and Korday
districts of the Zhambyl region satisfies the Kazakhstan sanitary norm for the potable
use. The intensive use of groundwater, as well as the increase in mining, has led to many
anthropogenic distortions of the environment. The expansion of groundwater use and
extraction requires proper management. Only 36% of the rural population of Kazakhstan
has access to a centralized water supply, and 57.3% use groundwater from wells [47].
Groundwater quality needs to be monitored to minimize health risks.

3.2. Data and Database

Data accumulation in geoinformation-analytical subsystem formats implies the cre-
ation of a semantic and graphic database structure, tables and layer structures, data input
and digitization, and conversion of available data from the document base. The created
semantic database of hydrogeological and self-flowing wells in the districts of Merke, Shu,
and Korday contains all the accumulative information on the studied self-flowing wells,
such as areas, location, the chemical composition of water, mineralization, total water
hardness, temperature, and water flow rate in self-flowing wells (Figures 8–10).

Evaluation of the data contained in graphical and semantic databases is conducted
for reliability, completeness, and consistency and includes formal data verification, expert
data verification, data correction, and addition. The solution to practical problems of
hydrogeology assumes the creation of thematic maps and cartographic models. In order
to create thematic maps, the necessary information is selected, data classification and
calculations are made, maps are drawn, and the results are analyzed (Figure 8).

Recommendations were prepared by analyzing the primary and processed data, to
improve monitoring, improve sustainability, and set up the proper control system of the
groundwater resources, including protection from pollution and depletion. The field survey
was localized with mapping and classification of the spouting wells with high flow rates,
which will be reasonable to use more efficiently. In total, three main spouting wells areas
were identified, which are located in the Merke district, Zhambyl region (Figures 8–10).

The first site contains seven spouting wells within the Andasbatyr rural area of the
Merke district. The flow rate of the wells is from 5 to 40 L/s, they are located in one area,
and the distance from the outermost wells is approximately 400 m. The wells are located
north of the village Kyzylkistak from 1 to 1.4 km.
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The second site contains six spouting wells within the Andasbatyr rural area of Merke
district and one spouting well in the Zhanatogan rural area. The flow rate of these wells is
from 10 to 20 L/s, they are located in one area, and the distance from the outermost wells is
approximately 300 m.

The third site contains nine spouting wells, which are located on the territory of the
“Merke stud plant” Joint-Stock Company (JSC) of the Akerman rural area of the Merke
district. The flow rates of the wells are from 1 to 40 L/s, they are located in one area,
and the distance from the outermost wells is 200 m. Thus, most high-spouting wells
are located in the Merke district of the Zhambyl region. The capacity of 37 spouting
wells in Merke district is 0.536 m3/s, which is 6.5% of the calculated value of the an-
nual replenishment of groundwater resources. During the summer vegetation period,
the total volume of groundwater, brought out to the surface by 37 spouting wells, is
estimated at 6.947 mln. m3. Taking into account the average water use norm of the
district—4515 m3/ha, at the number of irrigations for the whole vegetation period of 7 at
the expense of 37 spouting wells, there is the possibility to provide irrigation of agricultural
crops at the additional area of 220 ha. The sprinkler irrigation technologies are becoming
popular in the Zhambyl region, which is more rational compared to the surface canal
irrigation system [48]. Other technologies such as drip subsoil irrigation are subject to
further investigation and development. Further investigation and sustainable program
adaptations are required, including expertise from other countries, such as Australia and
Canada, to adapt to Kazakhstan. In Australia, the Great Artesian Basin Well Restoration
Program (1989–1999) was developed and implemented with efficient use of groundwater,
and sustainable Managed Aquifer Recharge technologies, which require further learning
and adaptation for Kazakhstan [49,50].
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The local people consume the water from wells as it is, without additional purifications
and processing. It is typical in many regions of Kazakhstan to drink well water without
proper chemical analysis. The groundwater quality investigation by this study meets most
Kazakhstan national requirements for drinking water and the results indicate that the water
meets Kazakhstan’s requirements of radiation safety. At the same time, the established
standards for drinking water by Kazakhstan’s national authorities differ in comparison
with the WHO/EU drinking water standards. Drinking water quality requirements are
much higher in the WHO/EU, in comparison to Kazakhstan. For example, for chromium,
the difference is 10 times: 0.5 mg/L in Kazakhstan and 0.05 mg/L in EU; for cyanide,
the difference is 7 times: 0.035 mg/L in Kazakhstan and 0.005 mg/L in EU; for nitrite,
the difference is 6 times: 3.0 mg/L in Kazakhstan and 0.5 mg/L in the EU; for arsenic,
the difference is 5 times: 0.05 mg/L in Kazakhstan and 0.01 mg/L in EU; for lead, the
difference is 3 times: 0.03 mg/L in Kazakhstan and 0.01 mg/L in EU. The human body
consists of up to 70% of water and many illnesses are related to water quality. Less than
30% of the Kazakhstan population has access to safe water and sanitation [51,52]. About
50% of the population uses drinking water that does not meet the international standards of
salinity, hardness, and bacteriological standards [53]. Kazakhstan’s infant mortality rate is
6 times higher in comparison to the EU; Kazakhstan has 17.9 and the EU has 3.1 deaths per
1000 live births [54,55]. Water quality, including groundwater, with human risk analysis,
requires further investigations in Kazakhstan. Standards for drinking water need further
revision in Kazakhstan.

4. Conclusions

Kazakhstan has difficulties with surface-groundwater resources. The threat of water
scarcity and inefficient management of water resources can become a major challenge to
the sustainable socioeconomic development of Kazakhstan. Depletion of surface water and
complexities with the transboundary water resources intensifies groundwater extraction
and usage. Groundwater is becoming polluted due to mining extraction activities and
intensive pesticide and chemical usage in irrigation. Economic activities, industry, and
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agriculture water usage are depleted with inefficient over-exploitation of groundwater
resources. Our project work in Merke, Shu, and Korday districts in the Zhambyl region
shows that the groundwater resource extraction, depletion, overuse, waterlogging, and
salinization of soils are expanding. The previous studies, which tracked the 500 self-
flowing wells in the southern Kazakhstan region, also showed similar issues. Many
water infrastructure facilities are out of order and currently require major repairs and
full restoration. The number of self-flowing pressure wells has decreased, and most of
them are not suitable for use. Further proper surface–groundwater interaction studies
and modeling are required for the improvement of water management. This project
investigation showed that almost all spouting wells used by the local population in Merke,
Shu, and Korday districts in the Zhambyl region for various needs do not have special
water use permits. Subject to the issuance of permits for special water use, wells will be
reasonable to implement. Spouting wells with warm water is of special interest, and it
is necessary to estimate their therapeutic and health-improving potential. The fountain
operation of three wells with a total capacity of 2.94 thousand cubic meters per day could be
used for many applications. At the same time, additional proper investigations, including
the radiation radon level, are required. Previous studies have shown that the natural
sources of radiation of the Kazakh population are about 80%, including 50% from radon.
The radon soil concentration in some Kazakhstan areas reaches 300,000 Bq/m3, which
exceeds the maximum permissible concentration by 60 times. Further investigation, with
modeling, policy, and proper water management practice, is required with the further
targeted activities. This case study presented an investigation of the current status of
underground water use with existing issues. The results of this project will be useful for
further science investigations and modeling with prediction analysis and can support local
decision-makers to develop sustainable groundwater resources in Merke, Shu, and Korday
districts in the Zhambyl region, Kazakhstan. Similar issues could exist in many regions
worldwide, especially in developing countries, and this investigation will be applicable for
comparison studies.
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