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Abstract: Water inrush disasters in mining areas are one of the most serious geological disasters in 
coal mining. The purpose of this study is to study the establishment of a water chemical database 
and water inrush source discrimination model in the Weibei coalfield to provide the basis for re-
gional hydrogeological conditions for future mining under pressure in the Weibei area, as well as a 
basis for the rapid identification of water inrush sources in the Weibei coalfield. In this paper, a 
conventional hydrochemical and trace element discrimination model for mine water inrush was 
established, and the hydrochemical characteristic files of the entire mining area were integrated. 
Based on 10 indicators, three hydrochemical discrimination models of rock stratum aquifers were 
established. Through the Mahalanobis distance test, it was found that the six selected variables, K+ 
+ Na+, Mg2+, NH4+, Cl−, SO42−, and pH, have significant discrimination ability and good effect and can 
effectively distinguish the three main water inrush aquifers in the Weibei mining area. Then, the 
clustering stepwise discriminant analysis method was used to select 24 water samples and 14 trace 
element indicators from the conventional water chemistry test results. Based on principal compo-
nent analysis, a principal component analysis discriminant model of trace elements was established 
for the four main aquifers. The accuracy and misjudgment rate of the Bayes multi-class linear dis-
criminant using conventional ions as explanatory variables were 64.3% and 35.7%, respectively, 
showing a poor discriminant effect. On this basis, seven characteristic trace elements were analyzed 
according to Bayes multi-class linear discriminant analysis, the mutual influence and restriction re-
lationship regarding the migration of these seven trace elements in the groundwater system of the 
mining area was determined, and the modified Bayes multi-class linear discriminant analysis model 
of trace elements for the water inrush source was established, which was more accurate than the 
conventional ion Bayes multi-class linear discriminant analysis model. The accuracy rate reached 
92.9%. This research is of great significance for mine water-source identification and water-inrush 
prevention guidance. 

Keywords: cluster analysis; principal component analysis; characteristic trace elements; Bayes 
multi-class linear discriminant analysis; mine water inrush source; hydrological and geological 
types 
 

1. Introduction 
At present, with the rapid development of society and the economy, coal resources 

occupy an important position [1]; however, at the same time, the existence of hidden dan-
gers, such as mine floods and the occurrence of accidents, restrict and hinder the safe 
production of mines. These have led to major disasters occurring in China [2–4]. After a 
water outburst, coal mines bear huge drainage costs [5]. In addition, mine water inrushes 
will also lead to a shortage of water resources and underground water pollution, which 
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brings great risks to the safe use of water resources [6–8]. Mine inrushes will cause serious 
threats and losses to the economy and resource utilization [9–11]. Once a mine water in-
rush occurs, only by quickly and accurately identifying the source of the water inrush can 
targeted governance be carried out [5]. Seen from the actual situation of coal mine water 
disaster, although many new theories, methods, and technologies have been put forward 
in the prediction of coal mine water inrush, the serious and super large water inrush acci-
dents have not been effectively curbed, which shows that the prediction of floor water 
inrush is far from the actual application. 

For the Weibei mining area, there are difficulties in exploring the source of sudden 
water inflows. The conventional hydrochemical characteristics of the Taiyuan limestone 
aquifer and Ordovician limestone aquifer are similar. The groundwater quality in the min-
ing area changes due to the mixing, overflow, and recharge of multiple water sources. The 
hydrogeological conditions of limestone aquifers are complex, karst development is une-
ven, strong runoff zones occur, water richness varies greatly, and the hydraulic connec-
tion is changeable. Geochemical exploration can identify hydrogeological conditions to a 
certain extent, as well as guide production and prevent water disasters. 

With the deepening of the mining level, mining intensity and scale have also in-
creased, and the frequency of water inrush has also increased. Therefore, it is imperative 
to control mine outbursts [5,12]. In recent years, a large number of ideas and methods 
have emerged for the identification of outburst water sources, such as feature component 
discrimination [13], the water chemical feature method [12,14–16], water temperature and 
water level discrimination [17], and geophysical exploration [17,18]. Among them, the wa-
ter chemical feature method is the most widely used in water source identification due to 
its advantages of economy, efficiency, and high accuracy [5,19,20], and it can provide an 
important basis for mine water control. Judging from the change in water volume, there 
is generally a process from quantitative change to qualitative change from “wet gang → 
dripping water → water spraying → flowing water → water inrush”. Each aquifer in the 
mining area has different water chemistry characteristics [21,22]. Therefore, according to 
the characteristics of water chemical ion components, a mathematical statistical method 
can be used to build a water source discrimination model. Common water source discri-
minant models include gray correlation [16,23], the fuzzy comprehensive evaluation 
method [17,24], cluster analysis [13,15,17,25,26], discriminant analysis [2,16,18,25,27], and 
BP neural network discrimination [16]. However, in recent decades, this research has been 
based on the mathematical statistical methods used to build water-discriminative models, 
ignoring the similarity between outbursts and the chemical control mechanism of each 
water-bearing layer [5]. By studying the similarity between the water chemical control 
mechanism, it is possible to determine whether the water chemical properties of different 
water layers are similar and, to a certain extent, judge the hydraulic connection between 
different water layers. Knowing the changes in water connections in advance can prevent 
mine water inrushes [16]. Even if mine water inrush is discovered, looking at the similar-
ities in the water chemical mechanism, we can quickly obtain the source of water inrush 
for governance through a comparison between the water inrush. Therefore, the compara-
tive analysis of hydrochemical types, identification of hydrochemical components, and 
comprehensive mathematical analysis of hydrochemical components can be used to sup-
plement the detection of water inrush sources and allow for the early warning regarding 
water inrush. 

This paper takes the regional water outburst in Weibei coalfield, Shaanxi Province, 
as the research background. Based on the changes in water sample data from regular ob-
servation holes, downhole outbursts, water sample data from water inflow points, con-
ventional hydrochemical test data, and ICP-MS data, the regional groundwater hydroge-
ological conditions, hydrogeochemical characteristics of the mining area, and establish-
ment of hydrochemical characteristics files were obtained. The discriminant mode, con-
sidering the similarities between the water inrush and the chemical control mechanism of 
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each aquifer, can be used to identify the source of water inrush in the Weibei coalfield 
area. 

2. Materials and Methods 
2.1. Study Area 

Weibei refers specifically to Baoji in the west, the Yellow River in the east, the Weihe 
Plain in the south, and the hilly and gully area of the Loess Plateau in the north (Figure 
1). The terrain of the study area is high in the north and low in the south, with an altitude 
of 340–1200 m. The rivers in the area belong to the Yellow River system, and the flow in 
the dry season and the flood season is very different. The study area has a warm, temper-
ate, semi-humid, continental monsoon climate. The study area is located in the transition 
zone between the Ordos platform syncline (Shaanxi-Gansu-Ningtai platform) and the 
Fenwei fault depression in the Sino-DPRK block. In the study area, most of the karst aq-
uifers are covered by tertiary and quaternary loose rocks or buried by Carboniferous and 
Permian clastic rocks. In the section where carbonate rocks are directly covered by loose 
deposits of the Quaternary system, such as loess, atmospheric precipitation recharges 
karst water through the loose layers. 

  
Figure 1. Scope of study area. 

2.2. Data Acquisition 
According to the distribution of stratigraphic lithology and aquifer occurrence space 

in the Weibei mining area, there are four main water inrush aquifers in the mining area: 
the Quaternary loose rock aquifer, Permian sandstone fissure aquifer, Carboniferous 
sandstone (limestone) fissure aquifer and Ordovician limestone karst fissure aquifer. The 
four major water inrush aquifers were mainly sampled. 

2.2.1. Occurrence of the Four Aquifers 
Quaternary Loose Rock Aquifers 

The total thickness of the fourth series of loose rocks in the Weibei mining area is 
0~216.9 m, and the average thickness is about 100 m, which is not integrated and covers 
the strata of each era. Its lithology is loess, fine sand, and gravel from top to bottom (Table 
1). It is mainly found in the alluvial gravel layer of the fourth series loess layer and the 
banks of river valleys. Due to the control of topography and recharge conditions, the 
groundwater level and degree of water richness in the area are different, and the general 
loess plateau has a deep water level and a lack of water. In low-lying areas on the surface 
or on both sides of the river valleys, the water level is buried at a shallow depth, and the 
amount of water is relatively high. Most water-rich areas are distributed in bands along 
the valley terraces, which directly receive atmospheric precipitation recharge and have a 
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complementary relationship with the surface water. When the coal seam is buried shal-
lowly, and the water diversion cracks generated by coal mining penetrate this, the water 
inflow of the pit also increases. 

Table 1. Hydrogeological characteristics of quaternary loose rock aquifers. 

Diggings Colliery Thickness (m) q (L/s·m) K (m/d) Predominantly Lithological 
Tongchuan Xujiagou 100~130 0.0654 0.626 Clay, sub-clay, sandy clay 

PuBai Zhujiahe 0~152.22 0.008~0.47 0.013~18.7 Loess, sub-clay, sub-sand 

Chenghe 
Dongjiahe 1.79~134.41 0.01~0.1 0.0073~1.55 Loess, gravel-bearing sandstone 

Wang Cun 0~160 0.119~0.264 6.33 Conglomerate, clay, sub-sand, sand 
and silt 

Hancheng 
Elephant Mountain 0~100 0.068~21.11 1.3~4.45 Sand, sub-sand 
Mulberry Tree Ping 0~100  1.93~6.73 Silt, sub-clay 

Permian Sandstone Fractured Aquifers 
The Permian section of the Weibei mining area comprises the Shanxi Formation, 

Lower Shihe Formation, Upper Shihe Formation, and Shiqianfeng Formation. The lithol-
ogy of this system is mainly composed of mudstone, sandy mudstone, and sandstone of 
various grain sizes (Table 2). 

Table 2. Hydrogeological characteristics of Permian sandstone fractured aquifers. 

Aquifer 
Segments Thickness (m) Hydrogeological Features 

Shiqianfeng 
formation aquifer 0~100 

The lithology is mainly sandstone, followed by mudstone and sandy mudstone, and 
the aquifer is mainly lower middle- and coarse-grained sandstone, about 20 m thick, 

with fracture development, including fracture diving, q = 0.1~0.8 L/s·m, K = 
2.06~33.77 m/d. 

Upper shihe 
formation aquifer 0~300 

The lithology is mainly purple variegated, yellow–green sandy mudstone and 
siltstone, interspersed with medium–coarse-grained sandstone and thin mudstone 

layers. q = 0.0004~1.14 L/s·m，K = 0.0009~3.89 m/d. 
Lower shihe 

formation aquifer 17.56~230.86 q = 0.00084~0.473 L/s·m，K = 0.00443~1.96 m/d 

Shanxi formation 18.44~100.68 
Composed of light gray, gray–green, yellow–green sandstone, siltstone, dark gray 

sandy mudstone, mudstone, and No. 2 and No. 3 coal seams. q = 0.0001~0.08 
L/s·m，K = 0.00036~0.231 m/d 

Carboniferous and Ordovician Sandstone (Limestone) Fractured Aquifers 
Carboniferous sandstone (limestone) fissure aquifer is 10~80 m thick and is divided 

into Taiyuan Formation and Benxi Formation (Table 3). There were several water outlets, 
mostly in the conglomerate aquifer of Benxi Formation. The characteristics of water inflow 
are basically the same as the limestone of Taiyuan Formation. The Ordovician limestone 
karst fissure aquifer has undergone many structural destruction actions, and the rock 
strata are vertical, inverted, folded, fractured, and the karst fissures are developed, which 
creates good conditions for the storage and migration of groundwater. It is composed of 
a relative aquiclude section and several aquifer sections, and has a unified water level 
elevation. It is a heterogeneous composite confined aquifer with a multi-layer structure. 
Groundwater is characterized by the coexistence of dynamic and static reserves. 
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Table 3. Hydrogeological characteristics of fractured aquifers in Carboniferous and Ordovician 
sandstone (limestone). 

Aquifer Segments Thickness (m) Hydrogeological Features 

Taiyuan formation 5~105 

The lower part is mainly quartz sandstone and sandstone, interspersed with 
siltstone and mudstone, and the middle part is composed of quartz 

sandstone, siltstone, limestone, and coal seam, q = 0.000052~0.0316 L/s·m, K = 
0.003~1.649 m/d 

Benxi formation 0~41.01 
The lithology is mainly gray clumpy clay mudstone, gray mudstone, sandy 

mudstone, and gray quartz sandstone, q = 0.0002~0.154 L/s·m, K = 
0.00041~0.07 m/d 

Ordovician  q = 0.00015~124 L/s·m，K = 0.000077~12.41 m/d 

2.2.2. Sampling 
In the Weibei mining area, 61 sampling points were arranged, and 61 groups of water 

samples were collected (Figures 2 and 3). These included the main production shafts of 
the four mining areas, surface water system, long-term observation well, civil well, etc. 

  
(a) Surface water (b) Groundwater 

Figure 2. Field Sampling. 
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Figure 3. Sampling Points. 

The project sampling needed to include the long-term observation well. The water 
level of the long-term observation well in the Chenghe mining area is generally deep, and 
a deep-hole water extractor is required in the sampling process. Therefore, an inverted 
conical backflow drilling and water intake device was designed (Figure 4), with the ad-
vantage that the water intake can be completed through the backflow without opening 
the switch or piston operation, which makes it simple and easy to implement. The design 
makes it easy to dump the water when taking water in an inverted cone, easy to maintain 
plumb when lifting, and difficult to leak water during the lifting process. The water intake 
container and water dispenser were integrated, the space was not wasted, and the water 
could be taken efficiently. Water samples taken by water intake devices are less suscepti-
ble to contamination. 

 
Figure 4. Schematic diagram of a deep-hole water dispenser. 

The 61 groups of water samples collected in the Weibei mining area were separately 
sent for inspection. The test results were sorted and analyzed and it was found that, due 
to the age of all the O-ash long viewing holes in the Chenghe mining area, the local water 
environment of the wellbore was occluded and polluted to varying degrees. The pH value 
was alkaline and the Ca2+ ion content was very low, which did not meet the characteristics 
of Austrian gray water. The samples were rejected, and 38 groups of valid test water sam-
ples were collected in the Weibei mining area, including 2 sampling points for Quaternary 
aquifers, 10 sampling points for Permian sandstone fractured aquifers, and 7 sampling 
points for Limestone water of Taiyuan Formation. There were 11 sampling points for Aus-
trian grey water and 8 sampling points for other surface water and old-air mixed water. 

2.2.3. Test Methodology 
A routine water quality analysis was completed in the testing center of the Shaanxi 

Institute of Geology and Mineral Exploration, and the trace elements were completed in 
the testing center of the Beijing Nuclear Industry Geology Bureau. The test methods and 
instruments are shown in Table 4. 
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Table 4. List of test methods. 

Detect Items Method Instrument 
PH Electrode method PP-50-P11 acidity meter 

HCO3−, CO32−, OH−, Cl−, SO42−, K+, Na+, Ca2+, Mg2+, NH4+ 
Titration method 

(DZ/T0064-93, DZ55-87) Digital titrators 1620506 

Li, Sc, Ti, V, Mn, Cr, Co, Ni, Cu, Zn, Rb, Mo, Sb, Cs, Ba, U, Sr DZ/T 0064.80-1993 ICP-MS 2000 

2.3. Methods 
2.3.1. Hierarchical Clustering Stepwise Discriminant Analysis 

Each water sampling point sample containing m indicators can be defined as a point 
in the m-dimensional space, and the similarity between any two points in the m-dimen-
sional space can be measured by the “distance” [28], which is defined as “dij”. If any sam-
ple is regarded as a class, and the similarity between classes can be represented by the 
Euclidean distance DE, then: 

m 1/2
1

( ( )2)
=

= = −E ij i l j li
D d X X  (1)

where number l represents the index number of the sample, l = 1, 2, …, m, and i, j represent 
the sample serial number, respectively. Xil, Xjl represent each index of the sample, respec-
tively. 

The systematic clustering method is used to calculate the distance dij between each 
pair of n samples, find the two classes with the smallest distance, merge them into a new 
class, recalculate the distance between the new class and other types of distance, and then 
merge the two categories with the smallest distance and repeat the above process until all 
samples are clustered into one category. All the water sample points (there are n) of the 
water inrush aquifer in the mining area whose Euclidean distance DE is less than a certain 
man-made specified value, P, were selected for participation in the stepwise discriminant 
analysis, and n water sample points were divided with m indicators into four categories. 
The stepwise discriminant analysis selected the indicators 1 2, , , nx x x  with significant 
discriminative effects on the four categories from its m indicators to form the discriminant 
function: 

( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 n2 ln= + + +…… +An An An n An AnY An C C X C X C X q  (2)

where Y(An) represents the discriminant function of the An-th class, An = 1, 2, 3, 4. C0(An), 
C1(An), C2(An), …, Cn(An) represent the discriminant coefficient of the An-th class. q(An) repre-
sents the event probability of the An-th class. 

For any sample, corresponding characteristic data can be substituted into the discri-
minant function of each type of aquifer, the Y value of each type can be calculated, the 
maximum Y value can be taken, and the sample can be classified into this type [28]. 

2.3.2. F-Test 
The discriminant effect between any two types of aquifers can be measured by the F-

test [29], and the test method of the discriminant effect is described as follows: 
To test the discriminant effect between classes 1 and 2, the F-test value can be used: 

21 2 1 2
1,2 1,2

1 2 1 2

( 1)
( )( )2
n n n n PF
n n n n P D

+ − −=
+ + −

 (3)

where n1 represents the number of samples of the first type. n2 represents the number of 
samples of the second type. p represents the number of discriminant variables. Dଵ,ଶଶ  rep-
resents the generalized Mahalanobis distance, and its value can be expressed as: 



Water 2023, 15, 453 8 of 29 
 

 

2 1
(1) (2)1,2 ( )X X SD −= −  (4)

where S represents the covariance matrix between variables. Xഥ(ଵ) represents the sample 
mean vector of the first category. Xഥ(ଶ) represents the sample mean vector of the second 
category. 

Under the assumption of equal means, Fଵ,ଶ obey the F-distribution with Z and nA + 
nB-1-z degrees of freedom at a given significance level, α. If Fଵ,ଶ > F஑, F஑  is the F critical 
value at the significance level α, and the discriminative effect of the two categories is sig-
nificant. 

2.3.3. Principal Component Analysis 
The principal component analysis method is to study how to integrate multiple trace 

elements into one or a few comprehensive indicators, and these comprehensive indicators 
can reflect the basic information of the original groundwater trace elements to the greatest 
extent [30]. It is suitable to establish a principal component analysis model for the element 
content to analyze the hydrogeochemical characteristics of the water inrush in this mining 
area. 

Let 1 2 t( , , , )X X X X=   be a P-dimensional random variable, and its second-or-
der moment is denoted by E(X) = μ, D(X) = ∑. Then, select a constant vector I, under the 
condition of I୧ᇱIi = 1 (i = 1, 2, …, t), and consider its multi-class linear transformation: 

1 1 11 1 1

2 2 12 1 2

1 1

p t

p t

p p p pp t

I X i X I X
I X i X I X
I X i X I X

γ
γ
γ

′= = + +
′= = + +
′= = + +





 (5)

Var(γ1) = I୧ᇱ∑Ii, Cov(γi, γj)= I୧ᇱ∑Ij (i, j = 1, 2, …, t). If you want to use γ1 to replace the 
original t trace element variables X1, X2, …, Xt, this requires γ1 to reflect the information of 
the original t variables as best as possible. According to statistical analysis theory, the 
larger the Var(γ1), the more information γ1 contains. Therefore, I1 should be calculated 
under constraint conditions so that Var(γ1) reaches the maximum value. At this time, γ1 is 
called the first principal component. If a principal component cannot represent the trace 
element information of the aquifer, as reflected by the original t variables, consider using 
γ2. To effectively represent the information of the original variable, the existing trace ele-
ment information of γ1 does not need to appear in γ2, which should have Cov(γ1, γ2) = 0. 
Therefore, to find γ2 is to find I2 under the constraints so that Var(γ2) reaches the maximum 
value. The required γ2 is called the second principal component. Similarly, the third prin-
cipal component, the fourth principal component, etc., can be defined. Generally, the i-th 
principal component γi = X of X refers to finding Ii under the constraints and Cov(γi ,γk) 
= 0 (k < i), so that Var(γi) reaches a maximum. 

According to matrix theory, the i-th principal component of X is γi = I’ (i = 1, 2, …, p). 
Among them, Ii is the unit eigenvector of the corresponding λi; at this time, Var(γi) = λi (i 
= 1, 2, …, t). Generally, let λ1, λ2, …, λt ≥ 0 is the obtained eigenroot and I1, I2, …, It are the 

corresponding eigenvectors. Then, it is called: 1
p
i ii

λ λ= , which is the contribution rate 
of the i-th principal component γi (i =1, 2, …, t), and its size reflects the information of X1, 

X2, …, Xt: 
1 1

/m t
i ii i

λ λ
= =  . 

The contribution rate λ λ= 1
t
i ii  of the first principal component γ1 is the largest; 

it extracts X1, X2, …, Xt with the largest amount of information and the strongest compre-
hensive ability, so it can be reflected by the first principal component. The trace element 
information is used to comprehensively analyze the hydrogeochemical characteristics of 
trace elements in the Weibei mining area [31]. 
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2.3.4. Bayes Criterion 

If n samples are taken from G precursors ( 1 2, , , GA A A ), each sample must belong 

to one of the G precursors (Ag). If each sample measures t variables ( 1 2, , , tx x x ), then 
each sample can be regarded as a point in the p-dimensional space {R} [32]. n samples 
form a p-dimensional sample space {R}. An unknown sample 1 2( , , , )tX x x x  is also 
regarded as a point in the p-dimensional space to see which subspace it falls into or which 
subspace has the highest probability; then, it can be classified as one of the G mothers [32]. 

There are various division methods for space {R}. Any division method may be mis-
classified, and misclassification will cause losses. If the sample originally belonging to the 
Ah parent is wrongly classified into the Ag parent, the loss caused is recorded as L(g/h), 
and it is agreed that when h = g, L(g/h) = 0; when h ≠ g, L(g/h) > 0. 

If the probability of the misclassification of samples originally belonging to Ag parent 
to Ah is denoted as { }/P g h , then, when the probability distribution density ( )gf x  of 

G parents is known, we have { } ( )/ = 
h

gR
P g h f x dx . The average loss caused by mis-

classifications of the sample originally belonging to the Ag parent into the Ah parent is:  

{ }1, 1,
( ) (/h /h /h () x)

= ≠ = ≠
= =  

h

G G
gg gh h g g h R

W L fg P g L g dx  (6)

When the class H prior probability hq  of each parent is known, the average loss of 
misclassification of the G-type parent is: 

{ }1 1 1,
/h( ) /h

= = = ≠
= =  R h h h

G G G

g g g g h
W q W q L g P g . If the sample originally belong-

ing to the Ah parent is wrongly classified into the Ag parent, the loss is recorded as L(h/g), 
and the same is obtained: 

{ }1, 1,

1 1,

(

( ) ( )

L(

, ) (x)

/ / / (x)

/ ) (x)

= ≠ = ≠

= ≠=

=

=

=

=





 
 

hRh
G G

hh h g h h g Rh
G

R

g

G
g ghg g Rh h

W L h g

P h g f dx

P h g L h g

q h g

f dx

W f dx

 (7)

Bayes proved that to minimize the average loss of total misclassification, the method 
of dividing the space {R} should for any research individual 1 2( , , , )tX x x x=  ; then, it 
is classified as the parent of Ag. Therefore, when the class G prior probability qg is given 
to the parent, the principle of dividing the space {R} to minimize the average loss of mis-
classification is called the Bayes criterion or attribution criteria. That is to say, the individ-
ual with the largest posterior probability belonging to the Ag parent is assigned to the Ag 
parent. The maximum a posteriori probability is equivalent to the maximum qgfg(x), so 
the discriminant function of any individual x can be obtained. 

Bayesian Multi-class Linear Discriminant Analysis (LDA) Model 
Suppose G parent Ag (g = 1, 2, …, G) obeys the normal distribution N (ag, ∑) (g = 1, 2, 

…, G) [33], and its probability density function is: 

1/2p/2 1
g

1(x) (2 ) 1 exp[ ( ) ( )]
2

π − −′= − − − − gxf x a x a  (8)

where 1 2( , , , )tx x x x ′=  , and the parameters ag and ∑ are the mean vector and covari-
ance matrix of the parent Ag, respectively. 

When L(g/h) = L(h/g) (h ≠ g), the prior probability qg of the parent and the parent 
parameters are known, and the parent covariance matrix is not significantly different 
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(when the statistics are equal) [33], the G discriminant functions can be obtained as fol-
lows: 

p/2 1 1
g g

1( ) (2 ) exp[ ( ) ( )]
2

π − − −′= − − − g g gq f x q x a x a  (9)

where g = 1, 2, …, G. After derivation and sorting, the multi-class LDA function of the 
normal parent under the Bayes criterion can be obtained as: 

( ) 0 1 1 2 2g g g g tg ty x c c x c x c x= + + +…+  (10)

3. Results 
3.1. Conventional Hydrochemical Characteristics and Discrimination Model 
3.1.1. Relationship between Conventional Ions and Total Dissolved Solids (TDS) in Karst 
Water 

Total dissolved solids (TDS) are the total amount of dissolved components in water, 
which provides a comprehensive reflection of the accumulation of conventional ions (K+, 
Na+, Ca2+, Mg2+, Cl−, SO42−, CO32−, HCO3−) in water. 

The relationship between Ca2+, Mg2+, HCO3−, and TDS can determine the hydraulic 
connection between the Hancheng hydrological subunit and the Tongchuan-Pucheng-
Heyang hydrological subunit. TDS are about 2000 mg/L, which is the boundary between 
Hancheng and Tongpu Hehe hydrological subunits (Figures 5–7).  

   
Figure 5. TDS contour line of Permian sandstone fissured aquifer. 

   
Figure 6. TDS contour line of Carboniferous sandstone (limestone) aquifer. 
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Figure 7. TDS contour line of Ordovician aquifer. 

The relationship between Ca2+, Mg2+, and HCO3− of Carboniferous water and Ordo-
vician limestone water in the Tongchuan-Pucheng-Heyang hydrological subunit and TDS 
shows that the dissolution of the Carboniferous aquifer and Ordovician limestone aquifer 
in the Tongchuan-Pucheng-Heyang hydrological subunit is not significant. That is, when 
TDS are below 2000 mg/L, the changes in Ca2+, Mg2+, and HCO3− ions are not significant. 
The variation range is concentrated at about 100 mg/L, indicating that the dissolution of 
calcite, dolomite, and other minerals in the Tongchuan-Pucheng-Heyang hydrological 
subunit is close to saturation. That is to say, the Tongchuan-Pucheng-Heyang hydrologi-
cal subunit has good exchange conditions with surface water and atmospheric water, and 
the karst groundwater in this area has poor solubility to the karst minerals in this area. 
The hydrogeological conditions of the Hancheng hydrological subunit and Tongchuan-
Pucheng-Heyang hydrological subunit are obviously different. In addition, the hydrolog-
ical subunit in the current mining area of Hancheng is located in the middle- and deep-
detention areas, with a relatively closed environment and a poor exchange environment 
with surface water and atmospheric precipitation. 

The content of conventional ions in karst water mostly increases with the increase in 
TDS. In the mining area, using TDS as an index has a good effect on the comprehensive 
analysis of the conventional ion migration law of the karst water system, which shows the 
accuracy and reliability of using TDS as a comprehensive index to analyze the circulation 
characteristics of the groundwater concentration gradient field. The slope of the conven-
tional ion trend line in Figure 8 shows that Kca2+ > K(K++Na+) > KMg2+, so the migration ability 
of cations in karst water is Ca2+ > K++Na+ > Mg2+. From Figure 8, the Tongchuan-Pucheng-
Heyang hydrological unit and the Hancheng hydrogeological unit are considered sepa-
rately. According to the slope of the conventional ion trend line, KK++Na+ > Kca2+ > KMg2+ in 
the Tongchuan-Pucheng-Heyang, indicating that the runoff supply of surface water and 
atmospheric precipitation in this hydrogeological unit is good, and the calcium ion of the 
Tongchuan-Pucheng-Heyang hydrological unit is saturated. In Hancheng, Kca2+ > K(K++Na+) 
> KMg2+, so the migration ability of cations in karst water is Ca2+ > K+ + Na+ > Mg2+. 
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Figure 8. Relationship between conventional ion concentration and TDS in karst water. 

3.1.2. Conventional Hydrochemical Discrimination Model for Main Water Inrush Aqui-
fers 
Cluster Analysis of Aquifer System 

To exclude the effect of these water samples’ interference with the establishment of a 
hydrochemical discrimination model of the main water inrush aquifers, it is necessary to 
conduct a separate cluster analysis for each aquifer. Through cluster analysis, the abnor-
mal water sample point of an aquifer that does not meet a certain standard can be re-
moved, and all the water sample points can be simultaneously established in the four 
main aquifers that underwent cluster analysis to re-establish a water sample point set, 
carry out step-by-step identification and analyze the hydrochemical characteristics of each 
aquifer. This time, when analyzing the hydrogeochemical characteristics of the mining 
area and establishing the conventional hydrochemical discrimination model of the main 
water inrush aquifers, we strove to reflect the latest water quality test data. Each water 
sample point included ten indicators of K+ + Na+, Ca2+, Mg2+, NH4+, Cl−, SO42−, HCO3−, PH 
value, total hardness, and TDS, and these selected water samples can better reflect the 
hydrogeochemical sampling features at the point. 

There was a large difference between Xujiagou mine water sample 3, Zhujiahe mine 
water sample 5, Wangxie mine water sample 8, Xiangshan mine water sample 10, Sang-
shuping mine water sample 12, and Permian sandstone fissure water in other production 
mines. From the hierarchical cluster analysis pedigree diagram (Figure 9), it can be seen 
that the Euclidean distance between the five water samples and other production mine 
water types is greater than the specified standard 15. This shows that the hydrogeochem-
ical characteristics represented by these groups of water samples are quite different from 
those of other production mines. Therefore, these groups of water samples were excluded, 
and the remaining No. 4, 6, 7, 9, and 11 water samples of Permian sandstone fissure water 
in the mining area were selected to participate in the stepwise discriminant analysis. 
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Figure 9. Cluster analysis of Permian sandstone fissure water system. 

The fissure water of the Carboniferous sandstone (limestone) in the Weibei mining 
was also determined in the system cluster analysis diagram (Figure 10), and the Euclidean 
distance between the classes was determined to be no greater than 15, which was used as 
the selection criterion. The Euclidean distance between Sangshuping mine water sample 
19 and sandstone (limestone) fissure water in other production mines is 25, so water sam-
ple 19 was excluded. The remaining 13, 14, 15, 16, 17, and 18 water samples have a distance 
between classes of less than 15 and were distributed in a large mining area, so they could 
be selected to participate in the step-by-step discriminant analysis. 

 
Figure 10. Cluster analysis of Carboniferous sandstone (limestone) fracture water system. 

The Ordovician limestone water in the Weibei mining area is the same as that in the 
Carboniferous sandstone (limestone) water, and the clustering effect is better (Figure 11). 
Among the 11 sampling points in the mining area, except for the water sample of Xiang-
shan Mine No. 27 and the water sample of Sangshuping Mine No. 30, the inter-class Eu-
clidean distance from other water samples is 25 greater than 15, and other water samples 
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are less than 15, which meets the standard; therefore, the remaining water samples 20, 21, 
22, 23, 24, 25, 26, 28, and 29 were selected to participate in the stepwise discriminant anal-
ysis. 

 
Figure 11. Cluster analysis of Ordovician limestone water system. 

Gradual Discriminant Analysis of Aquifer 
(1) Discriminant analysis 

According to the results of systematic cluster analysis, 20 water sample points were 
selected from 28 water sample points in the main water inrush aquifer in the Weibei min-
ing area, and 1, 2, and 3 were used as categorical variables to represent Permian sandstone 
fissures, For the three aquifers of Carboniferous sandstone (limestone) fissures and Ordo-
vician limestone, after applying the multi-class stepwise LDA model under the FISHER 
criterion, the discriminant function was obtained as follows: 

( ) [ ]
( ) [ ]
( )

2 2
4 4

2 2
4 4

1 0.007 0.041 25.85 0.027 0.096 130.577 569.625

2 0.094 0.127 48.887 0.015 0.128 127.628 532.145

3 0.113

Y K Na Mg NH Cl SO PH

Y K Na Mg NH Cl SO PH

Y K N

+ + + + − −

+ + + + − −

+

= − + − + − + + −

= − + − +

                  
              + +   − +

= − +


[ ]2 2
4 4

  

0.002 48.554 0.034 0.119 121.082 479.033a Mg NH Cl SO PH+ + + − −             −    + −+ + +

 
(11)

where [K+ + Na+] represents the sum of the concentrations of potassium ions and sodium 
ions (mg/L); [Mg2+] represents the concentration of magnesium ions (mg/L); [NH4+] repre-
sents the concentration of ammonium ions (mg/L); [Cl−] represents chloride ion concen-
tration (mg/L); [SO42−] represents sulfate ion concentration (mg/L). 

When all samples are divided into three categories, through step-by-step discrimi-
nant analysis, the original 10 indicators of each sample are preferably transformed into six 
indicators. When discriminant classification was required, only the values of K+ + Na+, 
Mg2+, NH4+, Cl−, SO42−, and pH were substituted into each discriminant function formula, 
respectively, to calculate the Y value of each type. The largest Y value was taken, and the 
sample was classified into this type. 
(2) Discrimination effect test 

The F-test results are shown in Table 5. It can be seen from Table 5 that, at the test 
level α = 0.05, F > F0.05(2, 17), the difference between classes is significant, indicating that the 
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six selected variables, K+ + Na+, Mg2+, NH4+, Cl−, SO42−, and pH have significant discrimi-
native ability and good effect, and can effectively discriminate the three main water inrush 
aquifers in the Weibei mining area. 

Table 5. F-test for the discrimination effect of water sample in the mining area. 

Class Interclass F Value F0.05(2, 17) 

2 and 1 5.457 
3.59 3 and 1 26.206 

3 and 2 7.589 

3.2. Hydrogeochemical Characteristics and Discriminant Model of Trace Elements 
3.2.1. Systematic Cluster Analysis of Trace Elements in Aquifer 

In this study, elements with a content of less than 10 mg/L are generally referred to 
as trace elements. A total of 38 groups of water samples were selected in the Weibei min-
ing area for trace-element testing. Seventeen indicators, such as Cs, Ba, U, and Sr, were 
analyzed.  

Cluster Analysis of Aquifer System 
The water sample 12 from the Sangshuping mine in the Weibei mining area is quite 

different from the water in the Permian sandstone fissures in other production mines. 
From the phylogenetic cluster analysis, it can be seen that the Euclidean distance between 
this water sample and other production mine water types is larger than the artificial dis-
tance. The specified standard 15 indicates that the hydrogeochemical characteristics rep-
resented by this group of water samples are quite different from those of other production 
mines (Figure 12). Therefore, this group of water samples was excluded, and the remain-
ing 3, 4, and water sampling points 5, 6, 7, 8, 9, 10, and 11 participated in the stepwise 
discriminant analysis. 

 
Figure 12. Cluster analysis of Permian sandstone fissure water system. 

The fissure water of the Carboniferous sandstone (limestone) in the Weibei mining 
area was also determined to be no more than 15 according to the selection criterion on the 
phylogenetic cluster analysis diagram (Figure 13). The Euclidean distance between fissure 
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water types is 25, so water sample 19 was excluded. The remaining 13, 14, 15, 16, 17, and 
18 water samples have a distance between classes of less than 15 and are distributed over 
a large portion of the mining area, so they can be selected for participation in the step-by-
step discriminant analysis. 

 
Figure 13. Cluster analysis of Carboniferous sandstone (limestone) facture water system. 

The Ordovician limestone water in the Weibei mining area is the same as that in the 
Carboniferous sandstone (limestone) water, and the clustering effect is better (Figure 14). 
Among the 11 sampling points in the mining area, except for the water sample No. 27 
from Xiangshan Mine and No. 29 water sample from Sangshuping Mine, the inter-class 
Euclidean distance from other water samples is 25 and greater than 15, and the other water 
samples are all less than 15, which meets the standard; therefore, the remaining water 
samples, 20, 21, 22, 23, 24, 25, 26, 28, and 29, were selected for participation in the stepwise 
discriminant analysis. 
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Figure 14. Cluster analysis of Ordovician limestone water system. 

Gradual Discriminant Analysis of Aquifer 
(1) Discriminant analysis 

According to the results of the above systematic cluster analysis, 24 water sample 
points were selected from the 28 water sample points in the main water inrush aquifer in 
the Weibei mining area. Each water sample point included Li, Sc, Ti, V, Mn, Cr, Co, Ni, 
Cu, Zn, Rb, Mo, Sb, Cs, Ba, U, Sr, with 1, 2, and 3 as categorical variables, representing 
Permian sandstone fissures and Carboniferous sandstone (limestone) fissures, respec-
tively. Ordovician limestone was found in three aquifers. Applying a multi-class stepwise 
LDA model under the FISHER criterion, the discriminant function can be obtained as: 

( )

( )

1 3.02 34.917 22.414 9.153 15.042 18.899
6.613 37.641 0.684 278.376 891.702 3.598 23.004 0.008 600.411

2 2.182 26.231 15.547 6.89 11.335 17.122
4.329 26.186 0

Y Li Sc V Cr Ni Cu
Zn Rb Mo Sb Cs Ba U Sr

Y Li Sc V Cr Ni Cu
Zn Rb

= + − + + − −
+ + + − − − − −

= + − + + − −
+ +

( )
.611 218.865 627.5 2.577 19.093 0.002 364.15

3 1.439 18.689 10.549 4.543 7.765 9.859
3.02 17.224 0.368 141.934 411.412 1.72 12.175 0.003 170.035

Mo Sb Cs Ba U Sr
Y Li Sc V Cr Ni Cu

Zn Rb Mo Sb Cs Ba U Sr

+ − − − − −
= + − + + − −

+ + + − − − − −

 

(12)

where Li represents the lithium element concentration (μg/L); Sc represents the scandium 
element concentration (μg/L); V represents the vanadium element concentration (μg/L); 
Cr represents the chromium element concentration (μg/L); Ni represents the nickel ele-
ment concentration (μg/L); Cu indicates copper element concentration (μg/L); Zn indi-
cates zinc element concentration (μg/L); Rb indicates rubidium element concentration 
(μg/L); Mo indicates molybdenum element concentration (μg/L); Sb represents antimony 
element concentration (μg/L); Cs represents cesium element concentration (μg/L); Ba rep-
resents barium element concentration (μg/L); U represents uranium element concentra-
tion (μg/L); Sr represents strontium element concentration (μg/L). 

When all samples are divided into three categories, the original 17 indicators of each 
sample are preferred to 14 through stepwise discriminant analysis. When it is necessary 
to distinguish and classify, it is only necessary to substitute the value of Li, Sc, V, Cr, Ni, 
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Cu, Zn, Rb, Mo, Sb, Cs, Ba, U, Sr into each discriminant function to calculate the Y value 
of each type. The maximum Y value can be used to classify the samples into this category. 
(2) Discrimination effect test 

Under the test level α = 0.05, F1,3 and F2,3 are both greater than F0.05(2,12), indicating that 
there are significant differences between the first class and the third class, and between 
the second class and the third class and the discriminant effect is better. However, F1,2 < 
F0.05(2, 12), indicating that there is no significant difference between the first and second 
types, the total discriminant significance rate is 67%, and the discriminant effect is poor 
(Table 6). 

Table 6. F-test for discrimination effect of water sample in the mining area. 

Class Interclass F Value F0.05(2, 12) 
2 and 1 2.626 

3.88 3 and 1 20.081 
3 and 2 5.709 

3.2.2. Principal Component Analysis of Trace Elements 
Analysis of Eigenvalues and Cumulative Variance Contribution Rate 

Correlation analysis was carried out on the original data of 17 kinds of trace elements, 
such as Li, V, Mn, Cr, Ni, Cu, Rb, Mo, Cs, Sb, Co, Zn, U, etc., the correlation coefficient 
matrix of trace elements was obtained, and principal component analysis was carried out 
to select the principal component whose eigenvalue is greater than 1. Since the first four 
eigenvalues are all greater than 1, and the cumulative contribution rate of the first four 
principal components is 73.39%, these four principal components concentrated 73.39% of 
the original 17 variables’ information. To meet the requirements of principal component 
selection, the first four eigenvectors were used as principal components, which can basi-
cally reflect the hydrogeochemical information reflected by the original 17 trace elements. 
The top four calculated eigenvalues and cumulative variance contribution rates (top 10 
principal components) are listed in Table 7. 

Table 7. Characteristic value and cumulative variance contribution rate. 

Principal 
Component 

Characteristic Value Cumulative Variance Contribution Rate 

Z1 6.756 39.739 
Z2 3.051 57.688 
Z3 1.483 66.409 
Z4 1.187 73.393 
Z5 0.988 79.204 
Z6 0.905 84.527 
Z7 0.766 89.035 
Z8 0.666 92.953 
Z9 0.489 95.832 
Z10 0.271 97.424 

Interpretation of Principal Components of Groundwater 
According to Table 7, using the relationship between the first four principal compo-

nents and the analysis variables of trace elements, the discriminant expressions of the four 
principal components of the main water inrush sources in the Weibei mining area can be 
established as follows: 
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1

2

0.91 0.592 0.498 0.554 0.903 0.887 0.762
      0.122 0.820 0.522 0.774 0.034 0.272
      0.317 0.776 0.496 0.505
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(13)

In the first principal component expression, the coefficients of Mo, Zn, U, and Ba are 
negative values, and the coefficients of other terms are between 0.496 and 0.91, of which 
the coefficients of Cs, Ni, Rb, Co, and Ti are all greater than 0.7000. The content of these 
five trace elements in aquifer coal and rock in the mining area is relatively high, which 
indicates that the dissolution and filtration of the aquifer water body, and the coal rock 
flowing through it, is the main factor for the increase in trace elements in the aquifer in 
the mining area. In the second principal component expression, the coefficients of Li, Cu, 
Zn, Mn, Rb, Mo, Cs, and Co are negative or very low, and the coefficients of Cr, Sb, and 
Sc are positive, all greater than 0.600. This indicates that these trace elements are easily 
absorbed by clay particles or plant roots and often undergo irreversible chemical adsorp-
tion. The huge, thick, loose layer produces various geochemical effects and then infiltrates 
into various aquifers in the mining area. In the third principal component expression, the 
coefficients of Mo and U are larger, and other coefficients are positive or negative. This 
shows that the third principal component is related to the recharge of various aquifers 
through the mining area or the rivers around the mining area. In the fourth principal com-
ponent expression, the coefficients of trace elements are both positive and negative, the 
trace elements with positive and negative values are evenly distributed, and the absolute 
value of each coefficient is higher than that of the first, second, and third principal com-
ponents. The absolute value of the term coefficient is small. From this, it can be inferred 
that the atmospheric precipitation did not undergo complex hydrogeochemical action be-
fore the formation of groundwater, and the fourth principal component is related to the 
direct recharge of atmospheric precipitation to various aquifers through structural fis-
sures in the mining area. 

The groundwater in the mining area, Quaternary loose rock aquifer, Permian sand-
stone fissure aquifer, Carboniferous sandstone (limestone) fissure aquifer, and Ordovician 
limestone karst fissure aquifer are closely related to these four main components. The first, 
second, third, and fourth principal components can be summarized as groundwater leach-
ing, overcurrent, river recharge, and structural fissure recharge. The content distribution 
characteristics of trace elements in the groundwater of the Weibei mining area are, in the 
final analysis, the result of the comprehensive influence of atmospheric precipitation on 
various geochemical actions. 
Discrimination of Principal Components of Hydrogeochemistry of Aquifers 

The main components of the trace element cycle in water inrush aquifers in the min-
ing area, especially those with water inrush threats, are complex and relate to many hy-
drogeochemical processes, with leaching, leakage, river recharge, and tectonic fissure re-
charge as the main ones. For a pair of production mines and a water inrush aquifer, if the 
main component discrimination is carried out using the content test results of several 
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common trace elements with a good discrimination effect in the mining area, the principal 
components, characteristic values, cumulative variance contribution rates and principal 
component expressions of groundwater in aquifers of different production mines can be 
obtained, and these analysis elements will be different.  

3.2.3. Analysis of Trace Element Content in the Mining Area 
Selection of Characteristic Trace Elements 

The groundwater in the Weibei mining area is generally moderately alkaline, which 
inhibits the migration of some metal elements or a small number of non-metallic elements; 
therefore, the changes in the content of trace elements are not uniform within the mining 
area and show different migration characteristics. 

The content of trace elements in each water sample in the mining area was systemat-
ically clustered using the maximum correlation coefficient. Seventeen trace elements par-
ticipate in the systematic clustering, including Sc, V, Mn, Cr, Co, Ni, Cu, Zn, Mo, Cs, Ba, 
etc. The clustering results are shown in Figure 15. 

 
Figure 15. Systematic cluster analysis of trace elements in groundwater in the Weibei mining area. 

The figure shows large differences in the migration characteristics of trace elements 
in the groundwater of the Weibei mining area. The correlation between the main compo-
nents of these trace elements highlights some mutually exclusive trace elements: Ni, Cr, 
Rb, Li, Sr, Mo, and Ba. Taking these mutually different elements and conventional ions 
such as CI−, SO42−, HCO3−, K+, Mg2+, and Ca2+ as analysis variables, the systematic clustering 
method is used for analysis, and the clustering results are shown in Figure 16. These trace 
elements are highly correlated with groundwater conventional ions and show a good cor-
relation with each other. The migration of these seven trace elements in the groundwater 
system of the mining area is not isolated, but they interact with and restrict each other. 
These seven trace elements can be selected as characteristic trace elements to identify the 
type of water inrush source and analyze the hydrogeochemical characteristics of the min-
ing area. 
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Figure 16. Cluster analysis of different trace elements and conventional ions in the mining area. 

Relationship between Characteristic Trace Elements and Aquifers 
According to the contents of seven characteristic trace elements of Ni, Cr, Rb, Li, Sr, 

Mo, and Ba in the three aquifers in the mining area, the characteristic trace elements in the 
Permian aquifer, the Carboniferous aquifer, and the orus ash aquifer were drawn. Figure 
17 shows the average content profile of the three threatened water inrush aquifers. The 
variation trend of seven trace elements in the three main water inrush aquifers in the min-
ing area is roughly the same. However, with different aquifers, their migration character-
istics and laws of groundwater are different. Some characteristic trace elements are rela-
tively enriched in a certain type of aquifer, and some trace elements are relatively lacking 
in a certain type of aquifer. 

 
Figure 17. Characteristic Trace Element Profile of Main Water inrush Aquifers in the Mining Area. 

3.2.4. Bayes Multi-Class LDA Model of Characteristic Trace Elements 

Bayes Multi-Class LDA Model of Characteristic Trace Elements 
Variables 1, 2 and 3 were taken as classification variables, representing the Permian, 

Taiyuan, and Ordovician aquifers, respectively, and the contents of seven characteristic 
trace elements in the mining area, Ni, Cr, Rb, Li, Sr, Mo, and Ba, were taken as explanatory 
variables, according to the principle of Bayes multi-class linear discriminant analysis. 
These were used to obtain Bayes multi-class linear discriminant functions. The estimated 
values of the discriminant function coefficients are shown in Table 8, and the retrospective 
discriminant results of the functions are shown in Table 9.  
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Table 8. Estimation of coefficients (C0g, C1g, C2g, …, Cpg) of Bayes multi-class LDA function for trace 
elements. 

Variable Group 

x Y1(x) Permian Y2(x) Taiyuan Y3(x) Ordovician 

Li −0.034 −0.003 −0.043 
Ni −0.278 −0.290 −0.175 
Rb 0.069 0.151 0.178 
Mo 0.057 0.081 0.023 
Ba 0.015 0.039 0.014 
Sr 0.002 0.002 0.002 
Cr 0.289 0.257 0.187 

(constant) −16.597 −18.215 −9.189 

Table 9. Retrospective discrimination results of Bayes multi-class LDA function for trace elements. 

Original 
Classification 

New Classification 
1 (Permian) 2 (Taiyuan) 3 (Ordovician) All 

1 (Permian) 8 1 1 10 
2 (Taiyuan) 1 6 0 7 

3 (Ordovician) 0 0 11 11 
All 9 7 12 28 

Note(s): 89.3% of the initial grouped cases were correctly classified. 

The Bayes multi-type LDA function of the three main water inrush aquifers of Per-
mian, Taiyuan limestone, and Ordovician limestone, with seven characteristic trace ele-
ments as explanatory variables, were studied in the Weibei mining area. The absolute val-
ues of the coefficients of Cr and Ni are larger, and the coefficient of Sr is larger. The abso-
lute value is small, and the absolute value of other characteristic trace element coefficients 
is medium. The absolute value of the coefficient of characteristic trace elements deter-
mines the type of aquifer in the water sample to a certain extent. In the Bayes multi-class 
LDA function, with these characteristic trace elements as explanatory variables, Cr and Ni 
play a larger role in the discrimination of water sample types, Sr is smaller, and other 
characteristic trace elements are medium. With characteristic trace elements as explana-
tory variables, the correct rate of the Bayes multi-class LDA model is 89.3%, the misjudg-
ment rate is 10.07%, and the discriminant effect is relatively significant.  

Conventional Ion Bayes Multi-Class LDA Model 
Similarly, 1, 2, and 3 were taken as classification variables for the three aquifers of 

Permian, Taiyuan limestone, and Ordovician limestone, respectively, and the six conven-
tional ions Cl−, SO42−, HCO3−, K+, Mg2+, and Ca2+ in the mining area were taken as explana-
tory variables. According to the principle of the Bayes multi-class LDA model, the Bayes 
multi-class LDA function was obtained. The estimated values of their function coefficients 
are shown in Table 10. The retrospective discriminant results are shown in Table 11. 

Among the Bayes multi-class LDA function of the three inrush aquifers of Permian, 
Taiyuan limestone, and Ordovician limestone in the Weibei mining area, which take six 
conventional ions as the explanatory variables, the absolute values of the coefficients of 
Cl−, SO42−, K+ + Na+ and Ca2+ are similar, while the absolute values of the coefficients of 
Mg2+ are large. Among the Bayes multi-class LDA function with conventional ions as ex-
planatory variables, these are generally balanced. The accuracy of Bayes multi-class linear 
discrimination analysis with conventional ions as explanatory variables was 64.3%, and 
the error rate was 35.7%. The discrimination effect was poor. 
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Table 10. Estimation of coefficients (C0g, C1g, C2g, …, Cpg) of Bayes multi-class LDA function for con-
ventional ions. 

Variable Group 

x Y1(x) Permian Y2(x) Taiyuan Y3(x) Ordovician 

K+ + Na+ 0.080 0.056 0.063 
Ca2+ 0.089 0.053 0.094 
Mg2+ 0.245 0.171 0.236 
Cl− −0.052 −0.037 −0.038 

SO42− −0.040 −0.024 −0.039 
(constant) −9.533 −6.275 −7.651 

Table 11. Retrospective discrimination results of Bayes multi-class LDA function for conventional 
ions. 

Original 
Classification 

New Classification 
1 (Permian) 2 (Taiyuan) 3 (Ordovician) All 

1 (Permian) 5 2 3 10 
2 (Taiyuan) 2 5 0 7 

3 (Ordovician) 1 2 8 11 
All 8 9 11 28 

Note(s): 64.3% of the initial grouped cases were correctly classified. 

Bayes Multi-Class LDA Model of Characteristic Trace Elements Corrected by  
Conventional Ions 

Although the Bayes multi-class LDA model of characteristic trace elements has 
higher accuracy than the conventional model, it still cannot meet the needs of mine water 
control work. To improve the accuracy of characteristic trace elements in the mining area, 
it is necessary to use conventional ions for correction. As mentioned above, 1, 2, and 3 
were used as categorical variables, representing the three aquifers of Permian, Taiyuan 
limestone, and Ordovician limestone, respectively. The contents of seven characteristic 
trace elements and conventional ions in the mining area were used as explanatory varia-
bles. Based on the principle of the quasi-LDA model, the Bayes multi-class LDA function 
was obtained. The estimated value of the discriminant function coefficient is shown in 
Table 12, and the retrospective discriminant result of the function is shown in Table 13. 

Bayes multi-type LDA function of the three main water inrush aquifers of Permian, 
Taiyuan limestone, and Ordovician limestone were used as explanatory variables. In ad-
dition to the influence of the variables on the water sample, the absolute values of the 
coefficients of Cr and Ni in the characteristic trace elements are larger and play a larger 
role in the discrimination process, while the effect of Sr is smaller and the coefficients of 
other characteristic trace elements are small and roughly equivalent. The discriminative 
role played by conventional ions is generally balanced. 

Table 12. Modified Bayes multi-class LDA function coefficient (C0g, C1g, C2g, …, Cpg) estimates. 

Variable Group 

x Y1(x) Permian Y2(x) Taiyuan Y3(x) Ordovician 

K+ + Na+ −0.036 −0.208 −0.088 
Ca2+ −0.013 −0.201 −0.021 
Mg2+ 0.045 −0.392 −0.064 
Cl− 0.031 0.157 0.080 
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SO42− 0.013 0.104 0.023 
Li −0.042 −0.111 −0.045 
Ni −0.471 −0.864 −0.601 
Rb 0.265 0.847 0.657 
Mo 0.086 0.139 0.053 
Ba 0.048 0.161 0.064 
Cr 0.409 0.691 0.446 
Sr 0.001 0.002 0.001 

(constant) −20.046 −31.169 −17.515 

Table 13. Retrospective discrimination results of modified Bayes multi-class LDA function. 

Original 
Classification 

New Classification 
1 (Permian) 2 (Taiyuan) 3 (Ordovician) All 

1 (Permian) 9 0 1 10 
2 (Taiyuan) 0 6 1 7 

3 (Ordovician) 0 0 11 11 
All 9 6 11 22 

Note(s): 92.9% of the initial grouping cases were correctly classified. 

In sum, in the modified Bayes multi-class LDA function of characteristic trace ele-
ments in the mining area, the discriminant role played by the characteristic trace elements 
and conventional ions in the discriminant process, and the discriminative role played in 
their respective Bayes multi-class LDA function are the same, with some differences in the 
distribution of coefficients. The correct rate for the Bayes multi-class LDA model of trace 
elements, when corrected by conventional ions, was 92.9%, and the discrimination effect 
was significantly improved. 

4. Discussion 
In the groundwater circulation system, the smaller the TDS, the more sufficient the 

water recharge and the shorter the groundwater retention time [34]. This also leads to the 
relative weakening of hydrogeochemical effects such as karst filtration. In a groundwater 
circulation system, at a certain level, water quality is generally considered to migrate from 
a small TDS area to a large TDS area. The tighter the contour line, the more sufficient the 
filtration effect with the surrounding karst; the sparser the contour line, the weaker the 
filtration effect with the surrounding karst. Among them, limestone water of the Taiyuan 
formation and Ordovician limestone water in the Weibei mining area are the two major 
karst water inrush water sources, and the water-bearing medium is composed of car-
bonate minerals such as limestone, marl, and dolomite. The water quality of too-ash and 
ash water in the whole mining area varies greatly with the geographical distribution of 
the mining area. The groundwater anions and cations in the two aquifers show their own 
characteristics, which are distinct from the recharge area, the runoff area and the discharge 
area or the stagnation area. On the one hand, carbonate rocks in karst strata are easily 
dissolved by water and transported by hydrodynamics; The relationship shows that there 
is a good linear correlation between the conventional ions and the TDS in the ash water. 
Therefore, it is possible to study the hydrochemical characteristics of the karst water aq-
uifer subsystem and the Orthodox ash aquifer subsystem as a single karst water system 
to analyze the relationship between the conventional ions of karst water and TDS, espe-
cially the relationship between Ca2+ and TDS, which is helpful for understanding the karst 
water system. The water cycle is very important. In addition, most of the conventional ion 
content in the Weibei mining area increases with the increase of TDS, which shows the 
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accuracy and reliability of using TDS as a comprehensive index to simulate the ground-
water concentration gradient field to analyze its cycle characteristics [35]. The karst water 
system of the Tongchuan-Pucheng-Heyang hydrogeological unit is closely related to the 
overlying shallow aquifer, surface water, and atmospheric precipitation. The dissolution 
of limestone and dolomite reaches saturation in the recharge area, and the karst ground-
water in this area has poor solubility in the karst minerals in this area. In addition, the 
currently exploited Hancheng hydrogeological unit is the middle and deep detention area 
of the karst water system, with a relatively closed environment and poor exchange envi-
ronment with surface water and atmospheric precipitation. 

Twenty water samples were selected from the conventional hydrochemical test re-
sults using the cluster stepwise discriminant analysis method, and three hydrochemical 
discriminant models of the Permian sandstone fractures, the Carboniferous sandstone 
(limestone) fractures, and the Ordovician limestone aquifers in the Weibei coalfield were 
established using the ten indicators of K+ + Na+, Ca2+, Mg2+, NH4+, Cl−, SO42−, HCO3−, pH 
value, total hardness, and TDS, and total hardness. The model was found to be able to 
better distinguish the source of water inrush through the Mahalanobian distance test. 
Through F test, it is considered that the six selected variables K+ + Na+, Mg2+, NH4+, Cl−, 
SO42−, and pH have significant discrimination ability and good effect, and effectively iden-
tify the three main water-inrush aquifers in Weibei mining area. 

According to the difference in the principal component discriminant analysis results, 
combined with the regional geological background and structural geological characteris-
tics of the aquifer in the mining area, the hydrogeochemical principal component discrim-
ination can be carried out for different types of groundwater [36]. This can better deter-
mine the trace element hydrogeochemical characteristics of the water inrush source in the 
mining area, accurately identify the water source, and serve the safe production of coal 
mines. Based on the principal component analysis and the cluster stepwise discriminant 
analysis method, twenty-four water samples and fourteen trace element indicators were 
selected from the conventional hydrochemical test results, and the principal component 
analysis discriminant model of trace elements for four main aquifers was established. On 
this basis, seven characteristic trace elements, Ni, Cr, Rb, Li, Sr, Mo, and Ba, are selected 
as the characteristic trace elements to identify the type of water inrush source and analyze 
the hydrogeochemical characteristics of the mining area. According to Bayes multi-class 
LDA model, the correct rate of discrimination with characteristic trace elements as explan-
atory variables is 89.3%, and the wrong rate is 10.07%. The correct rate of discrimination 
with conventional ions as explanatory variables was 64.3%, and the false rate was 35.7%. 
In order to improve the discrimination probability, the correct rate of Bayes multi-class 
linear discrimination of characteristic trace elements modified by conventional ions is 
92.9%, and the discrimination effect is significantly improved. 

5. Conclusions 
Based on the regional hydrogeological conditions of the Weibei coalfield, the water 

inrush source in the mining area was selected as the research object, and the hydrogeo-
chemical characteristics of trace elements were obtained. For the Quaternary loose aquifer, 
the Permian sandstone aquifer, the Carboniferous aquifer, and the Ordovician limestone 
aquifer, regular and trace water inrush source discrimination models were established for 
mathematical verification. Ten indicators were extracted from each water sample point to 
reflect the hydrogeological and chemical characteristics. The six indicators selected by the 
cluster stepwise discriminant analysis method through the Mahalanobis distance test 
have the significant discriminant ability and good effect and can better distinguish the 
water inrush sources. Through the principal component analysis and content characteris-
tics analysis of trace elements, it is believed that the content-change trend of seven char-
acteristic trace elements in the three aquifers is roughly the same; namely, Ni, Cr, Rb, Li, 
Sr, Mo, and Ba. However, with different aquifers, their migration characteristics and reg-
ular pattern in groundwater are different. A key comparison can be made between the 
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modified trace element model and the conventional element model. The accuracy of the 
conventional element model was higher, with an accuracy rate of 92.9%. This lays a foun-
dation for the systematic understanding of regional hydrogeological conditions in the 
Weibei coalfield and the establishment of a water inrush source discrimination model in 
the Weibei mining area. The research results can be further extended to all hydrogeologi-
cal units in coal mining enterprises, and even to the whole country, with broad application 
prospects. 
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Nomenclature 

Symbols  
q Unit water inflow 
K the permeability coefficient 
m the number of indicators 
n the number of samples 
DE Euclidean distance 
i, j the sample serial number 
dij the similarity of any two points in the m-dimensional space 
Xil, Xjl each sample index 
Y(An) the discriminant function of the An-th class 
Cn(An) discriminant coefficient of the An-th class 
q(An) the event probability of the An-th class 
Y the discriminant value 
F1,2 the test value between test classes 1 and 2 
n1 the number of samples of the first type 
n2 the number of samples of the second type 
P the number of discriminant variables Dଵ,ଶଶ  the generalized Mahalanobis distance 
S the covariance matrix between variables Xഥ(ଵ) the sample mean vector of the first category Xഥ(ଶ) the sample mean vector of the second category 
Z the degrees of freedom F஑ the F critical value at the significance level α 

1 2( , , , )=  pX X X X  the P-dimensional random variable 

I the constant vector 
t the number of element variables 
G the number of precursors 
Ag the sample of the G precursors 
Ah the sample of the H precursors 
{R} the p-dimensional space 

L(g/h) the loss caused by misclassification of samples originally belonging 
to the Ah parent into the Ag parent 
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P{g/h} the probability caused by misclassification of samples originally 
belonging to the Ag parent into the Ah parent 

( )gf x  the class G probability distribution density 

Wh the average loss caused by misclassifying the sample originally 
belonging to the Ag parent into the Ah parent 

hq  the class H prior probability 

( , )P h g  the probability caused by the misclassification of samples originally 
belonging to the Ah parent into the Ag parent 

WR the average loss of misclassification of the G-type parent 

Wg the average loss caused by misclassifying the sample originally 
belonging to the Ah parent into the Ag parent 

(x)hf  the class H probability distribution density 

qg the class G prior probability 
ag the mean vector of Ag 
fx(x) the probability density function of Ag 
qgfg(x) the G discriminant functions 

yg(x) 
the multi-class LDA functions of the normal parent under the Bayes 
criterion 

cig the multi-class LDA coefficient 
K+ the potassium ion concentration 
Na+ the sodium ion concentration  
Mg2+ the magnesium ion concentration 
NH4+ the ammonium ion concentration 
Cl− the chloride ion concentration 
SO42− the sulfate ion concentration 
Li the lithium element concentration 
Sc he scandium element concentration 
V the vanadium element concentration 
Cr the chromium element concentration 
Ni the nickel element concentration 
Cu the copper element concentration 
Zn the zinc element concentration 
Rb the rubidium element concentration 
Mo the molybdenum element concentration 
Sb the antimony element concentration 
Cs the cesium element concentration 
Ba the barium element concentration 
U the uranium element concentration 
Sr the strontium element Concentration 
Greek symbols  
γ i replace the original p trace element variables X1, X2, …, Xp 

λ the obtained eigenroot 
Abbreviations  
LDA linear discriminant analysis 
TDS total dissolved solid 
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