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Abstract: Water inrush disasters in mining areas are one of the most serious geological disasters in
coal mining. The purpose of this study is to study the establishment of a water chemical database
and water inrush source discrimination model in the Weibei coalfield to provide the basis for regional
hydrogeological conditions for future mining under pressure in the Weibei area, as well as a basis for
the rapid identification of water inrush sources in the Weibei coalfield. In this paper, a conventional
hydrochemical and trace element discrimination model for mine water inrush was established,
and the hydrochemical characteristic files of the entire mining area were integrated. Based on
10 indicators, three hydrochemical discrimination models of rock stratum aquifers were established.
Through the Mahalanobis distance test, it was found that the six selected variables, K+ + Na+, Mg2+,
NH4

+, Cl−, SO4
2−, and pH, have significant discrimination ability and good effect and can effectively

distinguish the three main water inrush aquifers in the Weibei mining area. Then, the clustering
stepwise discriminant analysis method was used to select 24 water samples and 14 trace element
indicators from the conventional water chemistry test results. Based on principal component analysis,
a principal component analysis discriminant model of trace elements was established for the four
main aquifers. The accuracy and misjudgment rate of the Bayes multi-class linear discriminant
using conventional ions as explanatory variables were 64.3% and 35.7%, respectively, showing a
poor discriminant effect. On this basis, seven characteristic trace elements were analyzed according
to Bayes multi-class linear discriminant analysis, the mutual influence and restriction relationship
regarding the migration of these seven trace elements in the groundwater system of the mining
area was determined, and the modified Bayes multi-class linear discriminant analysis model of
trace elements for the water inrush source was established, which was more accurate than the
conventional ion Bayes multi-class linear discriminant analysis model. The accuracy rate reached
92.9%. This research is of great significance for mine water-source identification and water-inrush
prevention guidance.

Keywords: cluster analysis; principal component analysis; characteristic trace elements; Bayes
multi-class linear discriminant analysis; mine water inrush source; hydrological and geological types

1. Introduction

At present, with the rapid development of society and the economy, coal resources
occupy an important position [1]; however, at the same time, the existence of hidden
dangers, such as mine floods and the occurrence of accidents, restrict and hinder the safe
production of mines. These have led to major disasters occurring in China [2–4]. After a
water outburst, coal mines bear huge drainage costs [5]. In addition, mine water inrushes
will also lead to a shortage of water resources and underground water pollution, which
brings great risks to the safe use of water resources [6–8]. Mine inrushes will cause serious
threats and losses to the economy and resource utilization [9–11]. Once a mine water
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inrush occurs, only by quickly and accurately identifying the source of the water inrush can
targeted governance be carried out [5]. Seen from the actual situation of coal mine water
disaster, although many new theories, methods, and technologies have been put forward in
the prediction of coal mine water inrush, the serious and super large water inrush accidents
have not been effectively curbed, which shows that the prediction of floor water inrush is
far from the actual application.

For the Weibei mining area, there are difficulties in exploring the source of sudden
water inflows. The conventional hydrochemical characteristics of the Taiyuan limestone
aquifer and Ordovician limestone aquifer are similar. The groundwater quality in the
mining area changes due to the mixing, overflow, and recharge of multiple water sources.
The hydrogeological conditions of limestone aquifers are complex, karst development
is uneven, strong runoff zones occur, water richness varies greatly, and the hydraulic
connection is changeable. Geochemical exploration can identify hydrogeological conditions
to a certain extent, as well as guide production and prevent water disasters.

With the deepening of the mining level, mining intensity and scale have also increased,
and the frequency of water inrush has also increased. Therefore, it is imperative to control
mine outbursts [5,12]. In recent years, a large number of ideas and methods have emerged
for the identification of outburst water sources, such as feature component discrimina-
tion [13], the water chemical feature method [12,14–16], water temperature and water
level discrimination [17], and geophysical exploration [17,18]. Among them, the water
chemical feature method is the most widely used in water source identification due to
its advantages of economy, efficiency, and high accuracy [5,19,20], and it can provide an
important basis for mine water control. Judging from the change in water volume, there
is generally a process from quantitative change to qualitative change from “wet gang→
dripping water→ water spraying→ flowing water→ water inrush”. Each aquifer in the
mining area has different water chemistry characteristics [21,22]. Therefore, according to
the characteristics of water chemical ion components, a mathematical statistical method
can be used to build a water source discrimination model. Common water source dis-
criminant models include gray correlation [16,23], the fuzzy comprehensive evaluation
method [17,24], cluster analysis [13,15,17,25,26], discriminant analysis [2,16,18,25,27], and
BP neural network discrimination [16]. However, in recent decades, this research has
been based on the mathematical statistical methods used to build water-discriminative
models, ignoring the similarity between outbursts and the chemical control mechanism
of each water-bearing layer [5]. By studying the similarity between the water chemical
control mechanism, it is possible to determine whether the water chemical properties of
different water layers are similar and, to a certain extent, judge the hydraulic connection
between different water layers. Knowing the changes in water connections in advance can
prevent mine water inrushes [16]. Even if mine water inrush is discovered, looking at the
similarities in the water chemical mechanism, we can quickly obtain the source of water
inrush for governance through a comparison between the water inrush. Therefore, the
comparative analysis of hydrochemical types, identification of hydrochemical components,
and comprehensive mathematical analysis of hydrochemical components can be used to
supplement the detection of water inrush sources and allow for the early warning regarding
water inrush.

This paper takes the regional water outburst in Weibei coalfield, Shaanxi Province, as
the research background. Based on the changes in water sample data from regular observa-
tion holes, downhole outbursts, water sample data from water inflow points, conventional
hydrochemical test data, and ICP-MS data, the regional groundwater hydrogeological
conditions, hydrogeochemical characteristics of the mining area, and establishment of
hydrochemical characteristics files were obtained. The discriminant mode, considering the
similarities between the water inrush and the chemical control mechanism of each aquifer,
can be used to identify the source of water inrush in the Weibei coalfield area.
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2. Materials and Methods
2.1. Study Area

Weibei refers specifically to Baoji in the west, the Yellow River in the east, the Weihe
Plain in the south, and the hilly and gully area of the Loess Plateau in the north (Figure 1).
The terrain of the study area is high in the north and low in the south, with an altitude of
340–1200 m. The rivers in the area belong to the Yellow River system, and the flow in the
dry season and the flood season is very different. The study area has a warm, temperate,
semi-humid, continental monsoon climate. The study area is located in the transition zone
between the Ordos platform syncline (Shaanxi-Gansu-Ningtai platform) and the Fenwei
fault depression in the Sino-DPRK block. In the study area, most of the karst aquifers are
covered by tertiary and quaternary loose rocks or buried by Carboniferous and Permian
clastic rocks. In the section where carbonate rocks are directly covered by loose deposits
of the Quaternary system, such as loess, atmospheric precipitation recharges karst water
through the loose layers.
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2.2. Data Acquisition

According to the distribution of stratigraphic lithology and aquifer occurrence space
in the Weibei mining area, there are four main water inrush aquifers in the mining area: the
Quaternary loose rock aquifer, Permian sandstone fissure aquifer, Carboniferous sandstone
(limestone) fissure aquifer and Ordovician limestone karst fissure aquifer. The four major
water inrush aquifers were mainly sampled.

2.2.1. Occurrence of the Four Aquifers
Quaternary Loose Rock Aquifers

The total thickness of the fourth series of loose rocks in the Weibei mining area is
0~216.9 m, and the average thickness is about 100 m, which is not integrated and covers
the strata of each era. Its lithology is loess, fine sand, and gravel from top to bottom
(Table 1). It is mainly found in the alluvial gravel layer of the fourth series loess layer and
the banks of river valleys. Due to the control of topography and recharge conditions, the
groundwater level and degree of water richness in the area are different, and the general
loess plateau has a deep water level and a lack of water. In low-lying areas on the surface
or on both sides of the river valleys, the water level is buried at a shallow depth, and
the amount of water is relatively high. Most water-rich areas are distributed in bands
along the valley terraces, which directly receive atmospheric precipitation recharge and
have a complementary relationship with the surface water. When the coal seam is buried
shallowly, and the water diversion cracks generated by coal mining penetrate this, the
water inflow of the pit also increases.
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Table 1. Hydrogeological characteristics of quaternary loose rock aquifers.

Diggings Colliery Thickness
(m) q (L/s·m) K (m/d) Predominantly Lithological

Tongchuan Xujiagou 100~130 0.0654 0.626 Clay, sub-clay, sandy clay
PuBai Zhujiahe 0~152.22 0.008~0.47 0.013~18.7 Loess, sub-clay, sub-sand

Chenghe Dongjiahe 1.79~134.41 0.01~0.1 0.0073~1.55 Loess, gravel-bearing sandstone

Wang Cun 0~160 0.119~0.264 6.33 Conglomerate, clay, sub-sand,
sand and silt

Hancheng Elephant Mountain 0~100 0.068~21.11 1.3~4.45 Sand, sub-sand
Mulberry Tree Ping 0~100 1.93~6.73 Silt, sub-clay

Permian Sandstone Fractured Aquifers

The Permian section of the Weibei mining area comprises the Shanxi Formation, Lower
Shihe Formation, Upper Shihe Formation, and Shiqianfeng Formation. The lithology of
this system is mainly composed of mudstone, sandy mudstone, and sandstone of various
grain sizes (Table 2).

Table 2. Hydrogeological characteristics of Permian sandstone fractured aquifers.

Aquifer
Segments Thickness (m) Hydrogeological Features

Shiqianfeng formation aquifer 0~100

The lithology is mainly sandstone, followed by mudstone
and sandy mudstone, and the aquifer is mainly lower

middle- and coarse-grained sandstone, about 20 m thick,
with fracture development, including fracture diving,

q = 0.1~0.8 L/s·m, K = 2.06~33.77 m/d.

Upper shihe formation aquifer 0~300

The lithology is mainly purple variegated, yellow–green
sandy mudstone and siltstone, interspersed with

medium–coarse-grained sandstone and thin mudstone
layers. q = 0.0004~1.14 L/s·m, K = 0.0009~3.89 m/d.

Lower shihe formation aquifer 17.56~230.86 q = 0.00084~0.473 L/s·m, K = 0.00443~1.96 m/d

Shanxi formation 18.44~100.68

Composed of light gray, gray–green, yellow–green
sandstone, siltstone, dark gray sandy mudstone,

mudstone, and No. 2 and No. 3 coal seams.
q = 0.0001~0.08 L/s·m, K = 0.00036~0.231 m/d

Carboniferous and Ordovician Sandstone (Limestone) Fractured Aquifers

Carboniferous sandstone (limestone) fissure aquifer is 10~80m thick and is divided
into Taiyuan Formation and Benxi Formation (Table 3). There were several water outlets,
mostly in the conglomerate aquifer of Benxi Formation. The characteristics of water inflow
are basically the same as the limestone of Taiyuan Formation. The Ordovician limestone
karst fissure aquifer has undergone many structural destruction actions, and the rock strata
are vertical, inverted, folded, fractured, and the karst fissures are developed, which creates
good conditions for the storage and migration of groundwater. It is composed of a relative
aquiclude section and several aquifer sections, and has a unified water level elevation. It is
a heterogeneous composite confined aquifer with a multi-layer structure. Groundwater is
characterized by the coexistence of dynamic and static reserves.
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Table 3. Hydrogeological characteristics of fractured aquifers in Carboniferous and Ordovician
sandstone (limestone).

Aquifer Segments Thickness (m) Hydrogeological Features

Taiyuan formation 5~105

The lower part is mainly quartz sandstone and sandstone,
interspersed with siltstone and mudstone, and the middle
part is composed of quartz sandstone, siltstone, limestone,

and coal seam, q = 0.000052~0.0316 L/s·m,
K = 0.003~1.649 m/d

Benxi formation 0~41.01
The lithology is mainly gray clumpy clay mudstone, gray
mudstone, sandy mudstone, and gray quartz sandstone,

q = 0.0002~0.154 L/s·m, K = 0.00041~0.07 m/d
Ordovician q = 0.00015~124 L/s·m, K = 0.000077~12.41 m/d

2.2.2. Sampling

In the Weibei mining area, 61 sampling points were arranged, and 61 groups of water
samples were collected (Figures 2 and 3). These included the main production shafts of the
four mining areas, surface water system, long-term observation well, civil well, etc.

Water 2023, 15, x FOR PEER REVIEW 6 of 29 
 

 

2.2.2. Sampling 

In the Weibei mining area, 61 sampling points were arranged, and 61 groups of water 

samples were collected (Figures 2 and 3). These included the main production shafts of 

the four mining areas, surface water system, long-term observation well, civil well, etc. 

  
(a) Surface water (b) Groundwater 

Figure 2. Field Sampling. 

  

Figure 3. Sampling Points. 

The project sampling needed to include the long-term observation well. The water 

level of the long-term observation well in the Chenghe mining area is generally deep, and 

a deep-hole water extractor is required in the sampling process. Therefore, an inverted 

conical backflow drilling and water intake device was designed (Figure 4), with the ad-

vantage that the water intake can be completed through the backflow without opening 

the switch or piston operation, which makes it simple and easy to implement. The design 

makes it easy to dump the water when taking water in an inverted cone, easy to maintain 

plumb when lifting, and difficult to leak water during the lifting process. The water intake 

container and water dispenser were integrated, the space was not wasted, and the water 

could be taken efficiently. Water samples taken by water intake devices are less suscepti-

ble to contamination. 

Figure 2. Field Sampling.

The project sampling needed to include the long-term observation well. The water
level of the long-term observation well in the Chenghe mining area is generally deep, and a
deep-hole water extractor is required in the sampling process. Therefore, an inverted conical
backflow drilling and water intake device was designed (Figure 4), with the advantage that
the water intake can be completed through the backflow without opening the switch or
piston operation, which makes it simple and easy to implement. The design makes it easy
to dump the water when taking water in an inverted cone, easy to maintain plumb when
lifting, and difficult to leak water during the lifting process. The water intake container
and water dispenser were integrated, the space was not wasted, and the water could
be taken efficiently. Water samples taken by water intake devices are less susceptible to
contamination.
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The 61 groups of water samples collected in the Weibei mining area were separately
sent for inspection. The test results were sorted and analyzed and it was found that,
due to the age of all the O-ash long viewing holes in the Chenghe mining area, the local
water environment of the wellbore was occluded and polluted to varying degrees. The
pH value was alkaline and the Ca2+ ion content was very low, which did not meet the
characteristics of Austrian gray water. The samples were rejected, and 38 groups of valid
test water samples were collected in the Weibei mining area, including 2 sampling points
for Quaternary aquifers, 10 sampling points for Permian sandstone fractured aquifers, and
7 sampling points for Limestone water of Taiyuan Formation. There were 11 sampling
points for Austrian grey water and 8 sampling points for other surface water and old-air
mixed water.

2.2.3. Test Methodology

A routine water quality analysis was completed in the testing center of the Shaanxi
Institute of Geology and Mineral Exploration, and the trace elements were completed in
the testing center of the Beijing Nuclear Industry Geology Bureau. The test methods and
instruments are shown in Table 4.
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Table 4. List of test methods.

Detect Items Method Instrument

PH Electrode method PP-50-P11 acidity meter
HCO3

−, CO3
2−, OH−, Cl−, SO4

2−,
K+, Na+, Ca2+, Mg2+, NH4

+
Titration method

(DZ/T0064-93, DZ55-87) Digital titrators 1620506

Li, Sc, Ti, V, Mn, Cr, Co, Ni, Cu, Zn,
Rb, Mo, Sb, Cs, Ba, U, Sr DZ/T 0064.80-1993 ICP-MS 2000

2.3. Methods
2.3.1. Hierarchical Clustering Stepwise Discriminant Analysis

Each water sampling point sample containing m indicators can be defined as a point in
the m-dimensional space, and the similarity between any two points in the m-dimensional
space can be measured by the “distance” [28], which is defined as “dij”. If any sample is
regarded as a class, and the similarity between classes can be represented by the Euclidean
distance DE, then:

DE = dij = (∑m
i=1 (Xi l − Xj l)2)

1/2 (1)

where number l represents the index number of the sample, l = 1, 2, . . . , m, and i, j
represent the sample serial number, respectively. Xil, Xjl represent each index of the sample,
respectively.

The systematic clustering method is used to calculate the distance dij between each
pair of n samples, find the two classes with the smallest distance, merge them into a new
class, recalculate the distance between the new class and other types of distance, and then
merge the two categories with the smallest distance and repeat the above process until all
samples are clustered into one category. All the water sample points (there are n) of the
water inrush aquifer in the mining area whose Euclidean distance DE is less than a certain
man-made specified value, P, were selected for participation in the stepwise discriminant
analysis, and n water sample points were divided with m indicators into four categories.
The stepwise discriminant analysis selected the indicators x1, x2, . . . , xn with significant
discriminative effects on the four categories from its m indicators to form the discriminant
function:

Y(An) = C
0(An) + C

1(An)X1 + C2(An)X2 + . . . Cn(An)Xn + ln q(An) (2)

where Y(An) represents the discriminant function of the An-th class, An = 1, 2, 3, 4. C0(An),
C1(An), C2(An), . . . , Cn(An) represent the discriminant coefficient of the An-th class. q(An)
represents the event probability of the An-th class.

For any sample, corresponding characteristic data can be substituted into the dis-
criminant function of each type of aquifer, the Y value of each type can be calculated, the
maximum Y value can be taken, and the sample can be classified into this type [28].

2.3.2. F-Test

The discriminant effect between any two types of aquifers can be measured by the
F-test [29], and the test method of the discriminant effect is described as follows:

To test the discriminant effect between classes 1 and 2, the F-test value can be used:

F1,2 =
n1n2(n1 + n2 − 1)− P
(n1 + n2)(n1 + n2 − 2)P

D2
1,2 (3)

where n1 represents the number of samples of the first type. n2 represents the number
of samples of the second type. p represents the number of discriminant variables. D2

1,2
represents the generalized Mahalanobis distance, and its value can be expressed as:

D2
1,2 = (X(1) − X(2))S

−1 (4)
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where S represents the covariance matrix between variables. X(1) represents the sample
mean vector of the first category. X(2) represents the sample mean vector of the second
category.

Under the assumption of equal means, F1,2 obey the F-distribution with Z and nA +
nB-1-z degrees of freedom at a given significance level, α. If F1,2 > Fα, Fα is the F critical
value at the significance level α, and the discriminative effect of the two categories is
significant.

2.3.3. Principal Component Analysis

The principal component analysis method is to study how to integrate multiple
trace elements into one or a few comprehensive indicators, and these comprehensive
indicators can reflect the basic information of the original groundwater trace elements to
the greatest extent [30]. It is suitable to establish a principal component analysis model for
the element content to analyze the hydrogeochemical characteristics of the water inrush in
this mining area.

Let X = (X1, X2, . . . , Xt) be a P-dimensional random variable, and its second-order
moment is denoted by E(X) = µ, D(X) = ∑. Then, select a constant vector I, under the
condition of I′i Ii = 1 (i = 1, 2, . . . , t), and consider its multi-class linear transformation:

γ1 = I′1X = i11X1 + . . . + Ip1Xt
γ2 = I′2X = i12X1 + . . . + Ip2Xt
γp = I′pX = i1pX1 + . . . + IppXt

(5)

Var(γ1) = I′i∑Ii, Cov(γi, γj)= I′i∑Ij (i, j = 1, 2, . . . , t). If you want to use γ1 to replace the
original t trace element variables X1, X2, . . . , Xt, this requires γ1 to reflect the information
of the original t variables as best as possible. According to statistical analysis theory, the
larger the Var(γ1), the more information γ1 contains. Therefore, I1 should be calculated
under constraint conditions so that Var(γ1) reaches the maximum value. At this time,
γ1 is called the first principal component. If a principal component cannot represent the
trace element information of the aquifer, as reflected by the original t variables, consider
using γ2. To effectively represent the information of the original variable, the existing trace
element information of γ1 does not need to appear in γ2, which should have Cov(γ1, γ2)
= 0. Therefore, to find γ2 is to find I2 under the constraints so that Var(γ2) reaches the
maximum value. The required γ2 is called the second principal component. Similarly, the
third principal component, the fourth principal component, etc., can be defined. Generally,
the i-th principal component γi = X of X refers to finding Ii under the constraints and
Cov(γi ,γk) = 0 (k < i), so that Var(γi) reaches a maximum.

According to matrix theory, the i-th principal component of X is γi = I′ (i = 1, 2, . . . , p).
Among them, Ii is the unit eigenvector of the corresponding λi; at this time, Var(γi) = λi (i =
1, 2, . . . , t). Generally, let λ1, λ2, . . . , λt ≥ 0 is the obtained eigenroot and I1, I2, . . . , It are
the corresponding eigenvectors. Then, it is called: λi/∑

p
i=1 λi, which is the contribution

rate of the i-th principal component γi (i = 1, 2, . . . , t), and its size reflects the information
of X1, X2, . . . , Xt: ∑m

i=1 λi/∑t
i=1 λi.

The contribution rate λi/∑t
i=1 λi of the first principal component γ1 is the largest; it

extracts X1, X2, . . . , Xt with the largest amount of information and the strongest compre-
hensive ability, so it can be reflected by the first principal component. The trace element
information is used to comprehensively analyze the hydrogeochemical characteristics of
trace elements in the Weibei mining area [31].

2.3.4. Bayes Criterion

If n samples are taken from G precursors (A1, A2, . . . , AG), each sample must belong
to one of the G precursors (Ag). If each sample measures t variables (x1, x2, . . . , xt), then
each sample can be regarded as a point in the p-dimensional space {R} [32]. n samples form
a p-dimensional sample space {R}. An unknown sample X(x1, x2, . . . , xt) is also regarded
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as a point in the p-dimensional space to see which subspace it falls into or which subspace
has the highest probability; then, it can be classified as one of the G mothers [32].

There are various division methods for space {R}. Any division method may be
misclassified, and misclassification will cause losses. If the sample originally belonging to
the Ah parent is wrongly classified into the Ag parent, the loss caused is recorded as L(g/h),
and it is agreed that when h = g, L(g/h) = 0; when h 6= g, L(g/h) > 0.

If the probability of the misclassification of samples originally belonging to Ag parent
to Ah is denoted as P{g/h}, then, when the probability distribution density fg(x) of G
parents is known, we have P{g/h} =

∫
Rh

fg(x)dx. The average loss caused by misclassifi-
cations of the sample originally belonging to the Ag parent into the Ah parent is:

Wh = ∑G
g=1,g 6=h L(g/h)P{g/h} = ∑G

g=1,g 6=h L(g/h)
∫

Rh

fg(x)dx (6)

When the class H prior probability qh of each parent is known, the average loss of mis-
classification of the G-type parent is: WR = ∑G

g=1 qhWh = ∑G
g=1 qh∑G

g=1,g 6=h L(g/h)P{g/h}.
If the sample originally belonging to the Ah parent is wrongly classified into the Ag parent,
the loss is recorded as L(h/g), and the same is obtained:

P(h, g) =
∫

Rh fh(x)dx

Wg = ∑G
h=1,h 6=g L(h/g)P{h/g} = ∑G

h=1,h 6=g L(h/g)
∫

Rh fh(x)dx

WR = ∑G
g=1 qg∑G

h=1,h 6=g L(h/g)
∫

Rg fh(x)dx

(7)

Bayes proved that to minimize the average loss of total misclassification, the method
of dividing the space {R} should for any research individual X = (x1, x2, . . . , xt); then,
it is classified as the parent of Ag. Therefore, when the class G prior probability qg is
given to the parent, the principle of dividing the space {R} to minimize the average loss
of misclassification is called the Bayes criterion or attribution criteria. That is to say, the
individual with the largest posterior probability belonging to the Ag parent is assigned to
the Ag parent. The maximum a posteriori probability is equivalent to the maximum qgfg(x),
so the discriminant function of any individual x can be obtained.

Bayesian Multi-class Linear Discriminant Analysis (LDA) Model
Suppose G parent Ag (g = 1, 2, . . . , G) obeys the normal distribution N (ag, ∑) (g = 1,

2, . . . , G) [33], and its probability density function is:

fx(x) = (2π)−p/2∣∣∑−1
∣∣1/2 exp[−1

2
(x− ag)

′∑ −1(x− ag)] (8)

where x = (x1, x2, . . . , xt)′, and the parameters ag and ∑ are the mean vector and covariance
matrix of the parent Ag, respectively.

When L(g/h) = L(h/g) (h 6= g), the prior probability qg of the parent and the parent
parameters are known, and the parent covariance matrix is not significantly different (when
the statistics are equal) [33], the G discriminant functions can be obtained as follows:

qg fg(x) = qg(2π)−p/2
∣∣∣∑ −1

∣∣∣ exp[−1
2
(x− ag)

′∑ −1(x− ag)] (9)

where g = 1, 2, . . . , G. After derivation and sorting, the multi-class LDA function of the
normal parent under the Bayes criterion can be obtained as:

yg(x) = c0g + c1gx1 + c2gx2 + . . . + ctgxt (10)
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3. Results
3.1. Conventional Hydrochemical Characteristics and Discrimination Model
3.1.1. Relationship between Conventional Ions and Total Dissolved Solids (TDS) in Karst
Water

Total dissolved solids (TDS) are the total amount of dissolved components in water,
which provides a comprehensive reflection of the accumulation of conventional ions (K+,
Na+, Ca2+, Mg2+, Cl−, SO4

2−, CO3
2−, HCO3

−) in water.
The relationship between Ca2+, Mg2+, HCO3

−, and TDS can determine the hydraulic
connection between the Hancheng hydrological subunit and the Tongchuan-Pucheng-
Heyang hydrological subunit. TDS are about 2000 mg/L, which is the boundary between
Hancheng and Tongpu Hehe hydrological subunits (Figures 5–7).
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The relationship between Ca2+, Mg2+, and HCO3
− of Carboniferous water and Or-

dovician limestone water in the Tongchuan-Pucheng-Heyang hydrological subunit and
TDS shows that the dissolution of the Carboniferous aquifer and Ordovician limestone
aquifer in the Tongchuan-Pucheng-Heyang hydrological subunit is not significant. That
is, when TDS are below 2000 mg/L, the changes in Ca2+, Mg2+, and HCO3

− ions are not
significant. The variation range is concentrated at about 100 mg/L, indicating that the
dissolution of calcite, dolomite, and other minerals in the Tongchuan-Pucheng-Heyang
hydrological subunit is close to saturation. That is to say, the Tongchuan-Pucheng-Heyang
hydrological subunit has good exchange conditions with surface water and atmospheric
water, and the karst groundwater in this area has poor solubility to the karst minerals
in this area. The hydrogeological conditions of the Hancheng hydrological subunit and
Tongchuan-Pucheng-Heyang hydrological subunit are obviously different. In addition,
the hydrological subunit in the current mining area of Hancheng is located in the middle-
and deep-detention areas, with a relatively closed environment and a poor exchange
environment with surface water and atmospheric precipitation.

The content of conventional ions in karst water mostly increases with the increase in
TDS. In the mining area, using TDS as an index has a good effect on the comprehensive
analysis of the conventional ion migration law of the karst water system, which shows the
accuracy and reliability of using TDS as a comprehensive index to analyze the circulation
characteristics of the groundwater concentration gradient field. The slope of the conven-
tional ion trend line in Figure 8 shows that Kca

2+ > K(K
+

+Na
+

) > KMg
2+, so the migration

ability of cations in karst water is Ca2+ > K++Na+ > Mg2+. From Figure 8, the Tongchuan-
Pucheng-Heyang hydrological unit and the Hancheng hydrogeological unit are considered
separately. According to the slope of the conventional ion trend line, KK

+
+Na

+ > Kca
2+ >

KMg
2+ in the Tongchuan-Pucheng-Heyang, indicating that the runoff supply of surface

water and atmospheric precipitation in this hydrogeological unit is good, and the calcium
ion of the Tongchuan-Pucheng-Heyang hydrological unit is saturated. In Hancheng, Kca

2+

> K(K
+

+Na
+

) > KMg
2+, so the migration ability of cations in karst water is Ca2+ > K+ + Na+ >

Mg2+.

3.1.2. Conventional Hydrochemical Discrimination Model for Main Water Inrush Aquifers
Cluster Analysis of Aquifer System

To exclude the effect of these water samples’ interference with the establishment of
a hydrochemical discrimination model of the main water inrush aquifers, it is necessary
to conduct a separate cluster analysis for each aquifer. Through cluster analysis, the
abnormal water sample point of an aquifer that does not meet a certain standard can be
removed, and all the water sample points can be simultaneously established in the four
main aquifers that underwent cluster analysis to re-establish a water sample point set,
carry out step-by-step identification and analyze the hydrochemical characteristics of each
aquifer. This time, when analyzing the hydrogeochemical characteristics of the mining
area and establishing the conventional hydrochemical discrimination model of the main
water inrush aquifers, we strove to reflect the latest water quality test data. Each water
sample point included ten indicators of K+ + Na+, Ca2+, Mg2+, NH4

+, Cl−, SO4
2−, HCO3

−,
PH value, total hardness, and TDS, and these selected water samples can better reflect the
hydrogeochemical sampling features at the point.

There was a large difference between Xujiagou mine water sample 3, Zhujiahe mine
water sample 5, Wangxie mine water sample 8, Xiangshan mine water sample 10, Sang-
shuping mine water sample 12, and Permian sandstone fissure water in other production
mines. From the hierarchical cluster analysis pedigree diagram (Figure 9), it can be seen
that the Euclidean distance between the five water samples and other production mine
water types is greater than the specified standard 15. This shows that the hydrogeochemical
characteristics represented by these groups of water samples are quite different from those
of other production mines. Therefore, these groups of water samples were excluded, and
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the remaining No. 4, 6, 7, 9, and 11 water samples of Permian sandstone fissure water in
the mining area were selected to participate in the stepwise discriminant analysis.
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Figure 9. Cluster analysis of Permian sandstone fissure water system.

The fissure water of the Carboniferous sandstone (limestone) in the Weibei mining
was also determined in the system cluster analysis diagram (Figure 10), and the Euclidean
distance between the classes was determined to be no greater than 15, which was used as
the selection criterion. The Euclidean distance between Sangshuping mine water sample
19 and sandstone (limestone) fissure water in other production mines is 25, so water
sample 19 was excluded. The remaining 13, 14, 15, 16, 17, and 18 water samples have a
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distance between classes of less than 15 and were distributed in a large mining area, so they
could be selected to participate in the step-by-step discriminant analysis.
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Figure 10. Cluster analysis of Carboniferous sandstone (limestone) fracture water system.

The Ordovician limestone water in the Weibei mining area is the same as that in the
Carboniferous sandstone (limestone) water, and the clustering effect is better (Figure 11).
Among the 11 sampling points in the mining area, except for the water sample of Xiangshan
Mine No. 27 and the water sample of Sangshuping Mine No. 30, the inter-class Euclidean
distance from other water samples is 25 greater than 15, and other water samples are less
than 15, which meets the standard; therefore, the remaining water samples 20, 21, 22, 23, 24,
25, 26, 28, and 29 were selected to participate in the stepwise discriminant analysis.
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Gradual Discriminant Analysis of Aquifer

(1) Discriminant analysis

According to the results of systematic cluster analysis, 20 water sample points were
selected from 28 water sample points in the main water inrush aquifer in the Weibei
mining area, and 1, 2, and 3 were used as categorical variables to represent Permian
sandstone fissures, For the three aquifers of Carboniferous sandstone (limestone) fissures
and Ordovician limestone, after applying the multi-class stepwise LDA model under the
FISHER criterion, the discriminant function was obtained as follows:

Y(1) = −0.007
[
K+ + Na+

]
− 0.041

[
Mg2+]+ 25.85

[
NH4

+
]
− 0.027

[
Cl−

]
+ 0.096

[
SO4

2−]+ 130.577[PH]− 569.625
Y(2) = −0.094

[
K+ + Na+

]
− 0.127

[
Mg2+]+ 48.887

[
NH4

+
]
+ 0.015

[
Cl−

]
+ 0.128

[
SO4

2−]+ 127.628[PH]− 532.145
Y(3) = −0.113

[
K+ + Na+

]
− 0.002

[
Mg2+]+ 48.554

[
NH4

+
]
+ 0.034

[
Cl−

]
+ 0.119

[
SO4

2−]+ 121.082[PH]− 479.033
(11)

where [K+ + Na+] represents the sum of the concentrations of potassium ions and
sodium ions (mg/L); [Mg2+] represents the concentration of magnesium ions (mg/L);
[NH4

+] represents the concentration of ammonium ions (mg/L); [Cl−] represents chloride
ion concentration (mg/L); [SO4

2−] represents sulfate ion concentration (mg/L).
When all samples are divided into three categories, through step-by-step discriminant

analysis, the original 10 indicators of each sample are preferably transformed into six
indicators. When discriminant classification was required, only the values of K+ + Na+,
Mg2+, NH4

+, Cl−, SO4
2−, and pH were substituted into each discriminant function formula,

respectively, to calculate the Y value of each type. The largest Y value was taken, and the
sample was classified into this type.

(2) Discrimination effect test

The F-test results are shown in Table 5. It can be seen from Table 5 that, at the test
level α = 0.05, F > F0.05(2, 17), the difference between classes is significant, indicating that
the six selected variables, K+ + Na+, Mg2+, NH4

+, Cl−, SO4
2−, and pH have significant

discriminative ability and good effect, and can effectively discriminate the three main water
inrush aquifers in the Weibei mining area.

Table 5. F-test for the discrimination effect of water sample in the mining area.

Class Interclass F Value F0.05(2, 17)

2 and 1 5.457
3.593 and 1 26.206

3 and 2 7.589

3.2. Hydrogeochemical Characteristics and Discriminant Model of Trace Elements
3.2.1. Systematic Cluster Analysis of Trace Elements in Aquifer

In this study, elements with a content of less than 10 mg/L are generally referred
to as trace elements. A total of 38 groups of water samples were selected in the Weibei
mining area for trace-element testing. Seventeen indicators, such as Cs, Ba, U, and Sr, were
analyzed.

Cluster Analysis of Aquifer System

The water sample 12 from the Sangshuping mine in the Weibei mining area is quite
different from the water in the Permian sandstone fissures in other production mines. From
the phylogenetic cluster analysis, it can be seen that the Euclidean distance between this
water sample and other production mine water types is larger than the artificial distance.
The specified standard 15 indicates that the hydrogeochemical characteristics represented
by this group of water samples are quite different from those of other production mines
(Figure 12). Therefore, this group of water samples was excluded, and the remaining 3, 4,
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and water sampling points 5, 6, 7, 8, 9, 10, and 11 participated in the stepwise discriminant
analysis.
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The fissure water of the Carboniferous sandstone (limestone) in the Weibei mining
area was also determined to be no more than 15 according to the selection criterion on the
phylogenetic cluster analysis diagram (Figure 13). The Euclidean distance between fissure
water types is 25, so water sample 19 was excluded. The remaining 13, 14, 15, 16, 17, and 18
water samples have a distance between classes of less than 15 and are distributed over a
large portion of the mining area, so they can be selected for participation in the step-by-step
discriminant analysis.
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The Ordovician limestone water in the Weibei mining area is the same as that in the
Carboniferous sandstone (limestone) water, and the clustering effect is better (Figure 14).
Among the 11 sampling points in the mining area, except for the water sample No. 27
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from Xiangshan Mine and No. 29 water sample from Sangshuping Mine, the inter-class
Euclidean distance from other water samples is 25 and greater than 15, and the other water
samples are all less than 15, which meets the standard; therefore, the remaining water
samples, 20, 21, 22, 23, 24, 25, 26, 28, and 29, were selected for participation in the stepwise
discriminant analysis.
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Gradual Discriminant Analysis of Aquifer

(1) Discriminant analysis

According to the results of the above systematic cluster analysis, 24 water sample
points were selected from the 28 water sample points in the main water inrush aquifer in
the Weibei mining area. Each water sample point included Li, Sc, Ti, V, Mn, Cr, Co, Ni,
Cu, Zn, Rb, Mo, Sb, Cs, Ba, U, Sr, with 1, 2, and 3 as categorical variables, representing
Permian sandstone fissures and Carboniferous sandstone (limestone) fissures, respectively.
Ordovician limestone was found in three aquifers. Applying a multi-class stepwise LDA
model under the FISHER criterion, the discriminant function can be obtained as:

Y(1) = 3.02Li + 34.917Sc− 22.414V + 9.153Cr + 15.042Ni− 18.899Cu−
6.613Zn + 37.641Rb + 0.684Mo + 278.376Sb− 891.702Cs− 3.598Ba− 23.004U − 0.008Sr− 600.411
Y(2) = 2.182Li + 26.231Sc− 15.547V + 6.89Cr + 11.335Ni− 17.122Cu−
4.329Zn + 26.186Rb + 0.611Mo + 218.865Sb− 627.5Cs− 2.577Ba− 19.093U − 0.002Sr− 364.15

Y(3) = 1.439Li + 18.689Sc− 10.549V + 4.543Cr + 7.765Ni− 9.859Cu−
3.02Zn + 17.224Rb + 0.368Mo + 141.934Sb− 411.412Cs− 1.72Ba− 12.175U − 0.003Sr− 170.035

(12)

where Li represents the lithium element concentration (µg/L); Sc represents the scandium
element concentration (µg/L); V represents the vanadium element concentration (µg/L);
Cr represents the chromium element concentration (µg/L); Ni represents the nickel element
concentration (µg/L); Cu indicates copper element concentration (µg/L); Zn indicates zinc
element concentration (µg/L); Rb indicates rubidium element concentration (µg/L); Mo
indicates molybdenum element concentration (µg/L); Sb represents antimony element
concentration (µg/L); Cs represents cesium element concentration (µg/L); Ba represents
barium element concentration (µg/L); U represents uranium element concentration (µg/L);
Sr represents strontium element concentration (µg/L).
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When all samples are divided into three categories, the original 17 indicators of each
sample are preferred to 14 through stepwise discriminant analysis. When it is necessary
to distinguish and classify, it is only necessary to substitute the value of Li, Sc, V, Cr, Ni,
Cu, Zn, Rb, Mo, Sb, Cs, Ba, U, Sr into each discriminant function to calculate the Y value of
each type. The maximum Y value can be used to classify the samples into this category.

(2) Discrimination effect test

Under the test level α = 0.05, F1,3 and F2,3 are both greater than F0.05(2,12), indicating
that there are significant differences between the first class and the third class, and between
the second class and the third class and the discriminant effect is better. However, F1,2 <
F0.05(2, 12), indicating that there is no significant difference between the first and second
types, the total discriminant significance rate is 67%, and the discriminant effect is poor
(Table 6).

Table 6. F-test for discrimination effect of water sample in the mining area.

Class Interclass F Value F0.05(2, 12)

2 and 1 2.626
3.883 and 1 20.081

3 and 2 5.709

3.2.2. Principal Component Analysis of Trace Elements
Analysis of Eigenvalues and Cumulative Variance Contribution Rate

Correlation analysis was carried out on the original data of 17 kinds of trace elements,
such as Li, V, Mn, Cr, Ni, Cu, Rb, Mo, Cs, Sb, Co, Zn, U, etc., the correlation coefficient
matrix of trace elements was obtained, and principal component analysis was carried out
to select the principal component whose eigenvalue is greater than 1. Since the first four
eigenvalues are all greater than 1, and the cumulative contribution rate of the first four
principal components is 73.39%, these four principal components concentrated 73.39% of
the original 17 variables’ information. To meet the requirements of principal component
selection, the first four eigenvectors were used as principal components, which can basically
reflect the hydrogeochemical information reflected by the original 17 trace elements. The
top four calculated eigenvalues and cumulative variance contribution rates (top 10 principal
components) are listed in Table 7.

Table 7. Characteristic value and cumulative variance contribution rate.

Principal Component Characteristic Value Cumulative Variance
Contribution Rate

Z1 6.756 39.739
Z2 3.051 57.688
Z3 1.483 66.409
Z4 1.187 73.393
Z5 0.988 79.204
Z6 0.905 84.527
Z7 0.766 89.035
Z8 0.666 92.953
Z9 0.489 95.832
Z10 0.271 97.424

Interpretation of Principal Components of Groundwater

According to Table 7, using the relationship between the first four principal compo-
nents and the analysis variables of trace elements, the discriminant expressions of the four
principal components of the main water inrush sources in the Weibei mining area can be
established as follows:
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γ1 = 0.91XLi + 0.592XV + 0.498XMn + 0.554XCr + 0.903XNi + 0.887XCu + 0.762XRb
−0.122XMo + 0.820XCs + 0.522XSb + 0.774XCo − 0.034XZn − 0.272XU
−0.317XBa + 0.776XTi + 0.496XSc + 0.505XSr

γ2 = −0.083XLi + 0.101XV − 0.598XMn + 0.684XCr + 0.225XNi + 0.178XCu − 0.505XRb
−0.030XMo − 0.332XCs + 0.671XSb − 0.457XCo + 0.086XZn − 0.061XU
+0.368XBa + 0.451XTi + 0.601XSc − 0.623XSr

γ3 = 0.028XLi − 0.501XV + 0.049XMn + 0.221XCr + 0.079XNi − 0.165XCu + 0.300XRb
+0.553XMo + 0.263XCs + 0.275XSb + 0.094XCo + 0.177XZn + 0.635XU
+0.264XBa − 0.255XTi + 0.162XSc − 0.049XSr

γ4 = −0.045XLi − 0.277XV + 0.443XMn + 0.124XCr + 0.045XNi + 0XCu − 0.016XRb
−0.452XMo − 0.084XCs − 0.005XSb + 0.331XCo + 0.478XZn − 0.039XU
+0.551XBa − 0.073XTi − 0.046XSc − 0.182XSr

(13)

In the first principal component expression, the coefficients of Mo, Zn, U, and Ba are
negative values, and the coefficients of other terms are between 0.496 and 0.91, of which
the coefficients of Cs, Ni, Rb, Co, and Ti are all greater than 0.7000. The content of these five
trace elements in aquifer coal and rock in the mining area is relatively high, which indicates
that the dissolution and filtration of the aquifer water body, and the coal rock flowing
through it, is the main factor for the increase in trace elements in the aquifer in the mining
area. In the second principal component expression, the coefficients of Li, Cu, Zn, Mn, Rb,
Mo, Cs, and Co are negative or very low, and the coefficients of Cr, Sb, and Sc are positive,
all greater than 0.600. This indicates that these trace elements are easily absorbed by clay
particles or plant roots and often undergo irreversible chemical adsorption. The huge,
thick, loose layer produces various geochemical effects and then infiltrates into various
aquifers in the mining area. In the third principal component expression, the coefficients
of Mo and U are larger, and other coefficients are positive or negative. This shows that
the third principal component is related to the recharge of various aquifers through the
mining area or the rivers around the mining area. In the fourth principal component
expression, the coefficients of trace elements are both positive and negative, the trace
elements with positive and negative values are evenly distributed, and the absolute value
of each coefficient is higher than that of the first, second, and third principal components.
The absolute value of the term coefficient is small. From this, it can be inferred that the
atmospheric precipitation did not undergo complex hydrogeochemical action before the
formation of groundwater, and the fourth principal component is related to the direct
recharge of atmospheric precipitation to various aquifers through structural fissures in the
mining area.

The groundwater in the mining area, Quaternary loose rock aquifer, Permian sand-
stone fissure aquifer, Carboniferous sandstone (limestone) fissure aquifer, and Ordovician
limestone karst fissure aquifer are closely related to these four main components. The first,
second, third, and fourth principal components can be summarized as groundwater leach-
ing, overcurrent, river recharge, and structural fissure recharge. The content distribution
characteristics of trace elements in the groundwater of the Weibei mining area are, in the
final analysis, the result of the comprehensive influence of atmospheric precipitation on
various geochemical actions.

Discrimination of Principal Components of Hydrogeochemistry of Aquifers

The main components of the trace element cycle in water inrush aquifers in the
mining area, especially those with water inrush threats, are complex and relate to many
hydrogeochemical processes, with leaching, leakage, river recharge, and tectonic fissure
recharge as the main ones. For a pair of production mines and a water inrush aquifer, if
the main component discrimination is carried out using the content test results of several
common trace elements with a good discrimination effect in the mining area, the principal
components, characteristic values, cumulative variance contribution rates and principal
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component expressions of groundwater in aquifers of different production mines can be
obtained, and these analysis elements will be different.

3.2.3. Analysis of Trace Element Content in the Mining Area
Selection of Characteristic Trace Elements

The groundwater in the Weibei mining area is generally moderately alkaline, which
inhibits the migration of some metal elements or a small number of non-metallic elements;
therefore, the changes in the content of trace elements are not uniform within the mining
area and show different migration characteristics.

The content of trace elements in each water sample in the mining area was system-
atically clustered using the maximum correlation coefficient. Seventeen trace elements
participate in the systematic clustering, including Sc, V, Mn, Cr, Co, Ni, Cu, Zn, Mo, Cs, Ba,
etc. The clustering results are shown in Figure 15.
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The figure shows large differences in the migration characteristics of trace elements in
the groundwater of the Weibei mining area. The correlation between the main components
of these trace elements highlights some mutually exclusive trace elements: Ni, Cr, Rb, Li, Sr,
Mo, and Ba. Taking these mutually different elements and conventional ions such as CI−,
SO4

2−, HCO3
−, K+, Mg2+, and Ca2+ as analysis variables, the systematic clustering method

is used for analysis, and the clustering results are shown in Figure 16. These trace elements
are highly correlated with groundwater conventional ions and show a good correlation
with each other. The migration of these seven trace elements in the groundwater system of
the mining area is not isolated, but they interact with and restrict each other. These seven
trace elements can be selected as characteristic trace elements to identify the type of water
inrush source and analyze the hydrogeochemical characteristics of the mining area.
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Relationship between Characteristic Trace Elements and Aquifers

According to the contents of seven characteristic trace elements of Ni, Cr, Rb, Li,
Sr, Mo, and Ba in the three aquifers in the mining area, the characteristic trace elements
in the Permian aquifer, the Carboniferous aquifer, and the orus ash aquifer were drawn.
Figure 17 shows the average content profile of the three threatened water inrush aquifers.
The variation trend of seven trace elements in the three main water inrush aquifers in
the mining area is roughly the same. However, with different aquifers, their migration
characteristics and laws of groundwater are different. Some characteristic trace elements
are relatively enriched in a certain type of aquifer, and some trace elements are relatively
lacking in a certain type of aquifer.
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3.2.4. Bayes Multi-Class LDA Model of Characteristic Trace Elements
Bayes Multi-Class LDA Model of Characteristic Trace Elements

Variables 1, 2 and 3 were taken as classification variables, representing the Permian,
Taiyuan, and Ordovician aquifers, respectively, and the contents of seven characteristic
trace elements in the mining area, Ni, Cr, Rb, Li, Sr, Mo, and Ba, were taken as explanatory
variables, according to the principle of Bayes multi-class linear discriminant analysis.
These were used to obtain Bayes multi-class linear discriminant functions. The estimated
values of the discriminant function coefficients are shown in Table 8, and the retrospective
discriminant results of the functions are shown in Table 9.
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Table 8. Estimation of coefficients (C0g, C1g, C2g, . . . , Cpg) of Bayes multi-class LDA function for
trace elements.

Variable Group

x Y1(x) Permian Y2(x) Taiyuan Y3(x) Ordovician

Li −0.034 −0.003 −0.043
Ni −0.278 −0.290 −0.175
Rb 0.069 0.151 0.178
Mo 0.057 0.081 0.023
Ba 0.015 0.039 0.014
Sr 0.002 0.002 0.002
Cr 0.289 0.257 0.187

(constant) −16.597 −18.215 −9.189

Table 9. Retrospective discrimination results of Bayes multi-class LDA function for trace elements.

Original
Classification

New Classification

1 (Permian) 2 (Taiyuan) 3 (Ordovician) All

1 (Permian) 8 1 1 10
2 (Taiyuan) 1 6 0 7

3 (Ordovician) 0 0 11 11
All 9 7 12 28

Note(s): 89.3% of the initial grouped cases were correctly classified.

The Bayes multi-type LDA function of the three main water inrush aquifers of Permian,
Taiyuan limestone, and Ordovician limestone, with seven characteristic trace elements as
explanatory variables, were studied in the Weibei mining area. The absolute values of the
coefficients of Cr and Ni are larger, and the coefficient of Sr is larger. The absolute value is
small, and the absolute value of other characteristic trace element coefficients is medium.
The absolute value of the coefficient of characteristic trace elements determines the type
of aquifer in the water sample to a certain extent. In the Bayes multi-class LDA function,
with these characteristic trace elements as explanatory variables, Cr and Ni play a larger
role in the discrimination of water sample types, Sr is smaller, and other characteristic
trace elements are medium. With characteristic trace elements as explanatory variables, the
correct rate of the Bayes multi-class LDA model is 89.3%, the misjudgment rate is 10.07%,
and the discriminant effect is relatively significant.

Conventional Ion Bayes Multi-Class LDA Model

Similarly, 1, 2, and 3 were taken as classification variables for the three aquifers of
Permian, Taiyuan limestone, and Ordovician limestone, respectively, and the six conven-
tional ions Cl−, SO4

2−, HCO3
−, K+, Mg2+, and Ca2+ in the mining area were taken as

explanatory variables. According to the principle of the Bayes multi-class LDA model,
the Bayes multi-class LDA function was obtained. The estimated values of their function
coefficients are shown in Table 10. The retrospective discriminant results are shown in
Table 11.

Among the Bayes multi-class LDA function of the three inrush aquifers of Permian,
Taiyuan limestone, and Ordovician limestone in the Weibei mining area, which take six
conventional ions as the explanatory variables, the absolute values of the coefficients of
Cl−, SO4

2−, K+ + Na+ and Ca2+ are similar, while the absolute values of the coefficients
of Mg2+ are large. Among the Bayes multi-class LDA function with conventional ions as
explanatory variables, these are generally balanced. The accuracy of Bayes multi-class
linear discrimination analysis with conventional ions as explanatory variables was 64.3%,
and the error rate was 35.7%. The discrimination effect was poor.
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Table 10. Estimation of coefficients (C0g, C1g, C2g, . . . , Cpg) of Bayes multi-class LDA function for
conventional ions.

Variable Group

x Y1(x) Permian Y2(x) Taiyuan Y3(x) Ordovician

K+ + Na+ 0.080 0.056 0.063
Ca2+ 0.089 0.053 0.094
Mg2+ 0.245 0.171 0.236
Cl− −0.052 −0.037 −0.038

SO4
2− −0.040 −0.024 −0.039

(constant) −9.533 −6.275 −7.651

Table 11. Retrospective discrimination results of Bayes multi-class LDA function for conventional
ions.

Original
Classification

New Classification

1 (Permian) 2 (Taiyuan) 3 (Ordovician) All

1 (Permian) 5 2 3 10
2 (Taiyuan) 2 5 0 7

3 (Ordovician) 1 2 8 11
All 8 9 11 28

Note(s): 64.3% of the initial grouped cases were correctly classified.

Bayes Multi-Class LDA Model of Characteristic Trace Elements Corrected by Conventional
Ions

Although the Bayes multi-class LDA model of characteristic trace elements has higher
accuracy than the conventional model, it still cannot meet the needs of mine water control
work. To improve the accuracy of characteristic trace elements in the mining area, it is
necessary to use conventional ions for correction. As mentioned above, 1, 2, and 3 were
used as categorical variables, representing the three aquifers of Permian, Taiyuan limestone,
and Ordovician limestone, respectively. The contents of seven characteristic trace elements
and conventional ions in the mining area were used as explanatory variables. Based on
the principle of the quasi-LDA model, the Bayes multi-class LDA function was obtained.
The estimated value of the discriminant function coefficient is shown in Table 12, and the
retrospective discriminant result of the function is shown in Table 13.

Table 12. Modified Bayes multi-class LDA function coefficient (C0g, C1g, C2g, . . . , Cpg) estimates.

Variable Group

x Y1(x) Permian Y2(x) Taiyuan Y3(x) Ordovician

K+ + Na+ −0.036 −0.208 −0.088
Ca2+ −0.013 −0.201 −0.021
Mg2+ 0.045 −0.392 −0.064
Cl− 0.031 0.157 0.080

SO4
2− 0.013 0.104 0.023

Li −0.042 −0.111 −0.045
Ni −0.471 −0.864 −0.601
Rb 0.265 0.847 0.657
Mo 0.086 0.139 0.053
Ba 0.048 0.161 0.064
Cr 0.409 0.691 0.446
Sr 0.001 0.002 0.001

(constant) −20.046 −31.169 −17.515
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Table 13. Retrospective discrimination results of modified Bayes multi-class LDA function.

Original
Classification

New Classification

1 (Permian) 2 (Taiyuan) 3 (Ordovician) All

1 (Permian) 9 0 1 10
2 (Taiyuan) 0 6 1 7

3 (Ordovician) 0 0 11 11
All 9 6 11 22

Note(s): 92.9% of the initial grouping cases were correctly classified.

Bayes multi-type LDA function of the three main water inrush aquifers of Permian,
Taiyuan limestone, and Ordovician limestone were used as explanatory variables. In
addition to the influence of the variables on the water sample, the absolute values of the
coefficients of Cr and Ni in the characteristic trace elements are larger and play a larger
role in the discrimination process, while the effect of Sr is smaller and the coefficients of
other characteristic trace elements are small and roughly equivalent. The discriminative
role played by conventional ions is generally balanced.

In sum, in the modified Bayes multi-class LDA function of characteristic trace elements
in the mining area, the discriminant role played by the characteristic trace elements and
conventional ions in the discriminant process, and the discriminative role played in their
respective Bayes multi-class LDA function are the same, with some differences in the
distribution of coefficients. The correct rate for the Bayes multi-class LDA model of trace
elements, when corrected by conventional ions, was 92.9%, and the discrimination effect
was significantly improved.

4. Discussion

In the groundwater circulation system, the smaller the TDS, the more sufficient the
water recharge and the shorter the groundwater retention time [34]. This also leads to the
relative weakening of hydrogeochemical effects such as karst filtration. In a groundwater
circulation system, at a certain level, water quality is generally considered to migrate from
a small TDS area to a large TDS area. The tighter the contour line, the more sufficient the
filtration effect with the surrounding karst; the sparser the contour line, the weaker the
filtration effect with the surrounding karst. Among them, limestone water of the Taiyuan
formation and Ordovician limestone water in the Weibei mining area are the two major
karst water inrush water sources, and the water-bearing medium is composed of carbonate
minerals such as limestone, marl, and dolomite. The water quality of too-ash and ash
water in the whole mining area varies greatly with the geographical distribution of the
mining area. The groundwater anions and cations in the two aquifers show their own
characteristics, which are distinct from the recharge area, the runoff area and the discharge
area or the stagnation area. On the one hand, carbonate rocks in karst strata are easily
dissolved by water and transported by hydrodynamics; The relationship shows that there
is a good linear correlation between the conventional ions and the TDS in the ash water.
Therefore, it is possible to study the hydrochemical characteristics of the karst water aquifer
subsystem and the Orthodox ash aquifer subsystem as a single karst water system to
analyze the relationship between the conventional ions of karst water and TDS, especially
the relationship between Ca2+ and TDS, which is helpful for understanding the karst water
system. The water cycle is very important. In addition, most of the conventional ion
content in the Weibei mining area increases with the increase of TDS, which shows the
accuracy and reliability of using TDS as a comprehensive index to simulate the groundwater
concentration gradient field to analyze its cycle characteristics [35]. The karst water system
of the Tongchuan-Pucheng-Heyang hydrogeological unit is closely related to the overlying
shallow aquifer, surface water, and atmospheric precipitation. The dissolution of limestone
and dolomite reaches saturation in the recharge area, and the karst groundwater in this area
has poor solubility in the karst minerals in this area. In addition, the currently exploited
Hancheng hydrogeological unit is the middle and deep detention area of the karst water
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system, with a relatively closed environment and poor exchange environment with surface
water and atmospheric precipitation.

Twenty water samples were selected from the conventional hydrochemical test results
using the cluster stepwise discriminant analysis method, and three hydrochemical discrim-
inant models of the Permian sandstone fractures, the Carboniferous sandstone (limestone)
fractures, and the Ordovician limestone aquifers in the Weibei coalfield were established
using the ten indicators of K+ + Na+, Ca2+, Mg2+, NH4

+, Cl−, SO4
2−, HCO3

−, pH value,
total hardness, and TDS, and total hardness. The model was found to be able to better
distinguish the source of water inrush through the Mahalanobian distance test. Through
F test, it is considered that the six selected variables K+ + Na+, Mg2+, NH4

+, Cl−, SO4
2−,

and pH have significant discrimination ability and good effect, and effectively identify the
three main water-inrush aquifers in Weibei mining area.

According to the difference in the principal component discriminant analysis results,
combined with the regional geological background and structural geological characteristics
of the aquifer in the mining area, the hydrogeochemical principal component discrimination
can be carried out for different types of groundwater [36]. This can better determine the
trace element hydrogeochemical characteristics of the water inrush source in the mining
area, accurately identify the water source, and serve the safe production of coal mines.
Based on the principal component analysis and the cluster stepwise discriminant analysis
method, twenty-four water samples and fourteen trace element indicators were selected
from the conventional hydrochemical test results, and the principal component analysis
discriminant model of trace elements for four main aquifers was established. On this
basis, seven characteristic trace elements, Ni, Cr, Rb, Li, Sr, Mo, and Ba, are selected as the
characteristic trace elements to identify the type of water inrush source and analyze the
hydrogeochemical characteristics of the mining area. According to Bayes multi-class LDA
model, the correct rate of discrimination with characteristic trace elements as explanatory
variables is 89.3%, and the wrong rate is 10.07%. The correct rate of discrimination with
conventional ions as explanatory variables was 64.3%, and the false rate was 35.7%. In
order to improve the discrimination probability, the correct rate of Bayes multi-class linear
discrimination of characteristic trace elements modified by conventional ions is 92.9%, and
the discrimination effect is significantly improved.

5. Conclusions

Based on the regional hydrogeological conditions of the Weibei coalfield, the water
inrush source in the mining area was selected as the research object, and the hydrogeo-
chemical characteristics of trace elements were obtained. For the Quaternary loose aquifer,
the Permian sandstone aquifer, the Carboniferous aquifer, and the Ordovician limestone
aquifer, regular and trace water inrush source discrimination models were established for
mathematical verification. Ten indicators were extracted from each water sample point
to reflect the hydrogeological and chemical characteristics. The six indicators selected by
the cluster stepwise discriminant analysis method through the Mahalanobis distance test
have the significant discriminant ability and good effect and can better distinguish the
water inrush sources. Through the principal component analysis and content characteristics
analysis of trace elements, it is believed that the content-change trend of seven characteristic
trace elements in the three aquifers is roughly the same; namely, Ni, Cr, Rb, Li, Sr, Mo, and
Ba. However, with different aquifers, their migration characteristics and regular pattern
in groundwater are different. A key comparison can be made between the modified trace
element model and the conventional element model. The accuracy of the conventional
element model was higher, with an accuracy rate of 92.9%. This lays a foundation for the
systematic understanding of regional hydrogeological conditions in the Weibei coalfield
and the establishment of a water inrush source discrimination model in the Weibei mining
area. The research results can be further extended to all hydrogeological units in coal
mining enterprises, and even to the whole country, with broad application prospects.
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Nomenclature

Symbols
q Unit water inflow
K the permeability coefficient
m the number of indicators
n the number of samples
DE Euclidean distance
i, j the sample serial number
dij the similarity of any two points in the m-dimensional space
Xil, Xjl each sample index
Y(An) the discriminant function of the An-th class
Cn(An) discriminant coefficient of the An-th class
q(An) the event probability of the An-th class
Y the discriminant value
F1,2 the test value between test classes 1 and 2
n1 the number of samples of the first type
n2 the number of samples of the second type
P the number of discriminant variables
D2

1,2 the generalized Mahalanobis distance
S the covariance matrix between variables
−
X(1) the sample mean vector of the first category
−
X(2) the sample mean vector of the second category
Z the degrees of freedom
Fα the F critical value at the significance level α
X = (X1, X2, . . . , Xp) the P-dimensional random variable
I the constant vector
t the number of element variables
G the number of precursors
Ag the sample of the G precursors
Ah the sample of the H precursors
{R} the p-dimensional space

L(g/h)
the loss caused by misclassification of samples originally belonging
to the Ah parent into the Ag parent

P{g/h}
the probability caused by misclassification of samples originally
belonging to the Ag parent into the Ah parent

fg(x) the class G probability distribution density

Wh
the average loss caused by misclassifying the sample originally
belonging to the Ag parent into the Ah parent



Water 2023, 15, 453 26 of 28

qh the class H prior probability

P(h, g)
the probability caused by the misclassification of samples originally
belonging to the Ah parent into the Ag parent

WR the average loss of misclassification of the G-type parent

Wg
the average loss caused by misclassifying the sample originally
belonging to the Ah parent into the Ag parent

fh(x) the class H probability distribution density
qg the class G prior probability
ag the mean vector of Ag
fx(x) the probability density function of Ag
qgfg(x) the G discriminant functions

yg(x)
the multi-class LDA functions of the normal parent under the
Bayes criterion

cig the multi-class LDA coefficient
K+ the potassium ion concentration
Na+ the sodium ion concentration
Mg2+ the magnesium ion concentration
NH4

+ the ammonium ion concentration
Cl− the chloride ion concentration
SO4

2− the sulfate ion concentration
Li the lithium element concentration
Sc he scandium element concentration
V the vanadium element concentration
Cr the chromium element concentration
Ni the nickel element concentration
Cu the copper element concentration
Zn the zinc element concentration
Rb the rubidium element concentration
Mo the molybdenum element concentration
Sb the antimony element concentration
Cs the cesium element concentration
Ba the barium element concentration
U the uranium element concentration
Sr the strontium element Concentration
Greek symbols
γi replace the original p trace element variables X1, X2, . . . , Xp
λ the obtained eigenroot
Abbreviations
LDA linear discriminant analysis
TDS total dissolved solid

References
1. Liu, X.; Pei, T.; Zhou, C.; Du, Y.; Ma, T.; Xie, C.; Xu, J. A systems dynamic model of a coal-based city with multiple adaptive

scenarios: A case study of Ordos, China. Sci. China Earth Sci. 2017, 61, 302–316. [CrossRef]
2. Zhao, D.; Wu, Q.; Cui, F.; Xu, H.; Zeng, Y.; Cao, Y.; Du, Y. Using random forest for the risk assessment of coal-floor water inrush in

Panjiayao Coal Mine, northern China. Hydrogeol. J. 2018, 26, 2327–2340. [CrossRef]
3. Carranza, F.; Romero, R.; Mazuelos, A.; Iglesias, N. Recovery of Zn from acid mine water and electric arc furnace dust in an

integrated process. J. Environ. Manag. 2016, 165, 175–183. [CrossRef]
4. Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.E.; Ross, Z.E.; Vernon, F.L. Internal structure of the San Jacinto fault zone in the trifurcation

area southeast of Anza, California, from data of dense seismic arrays. Geophys. J. Int. 2018, 213, 98–114. [CrossRef]
5. Chen, Y.; Tang, L.; Zhu, S. Comprehensive study on identification of water inrush sources from deep mining roadway. Environ.

Sci. Pollut. Res. 2022, 29, 19608–19623. [CrossRef] [PubMed]
6. Huang, Z.; Zeng, W.; Zhao, K. Experimental investigation of the variations in hydraulic properties of a fault zone in Western

Shandong, China. J. Hydrol. 2019, 574, 822–835. [CrossRef]

http://doi.org/10.1007/s11430-016-9077-5
http://doi.org/10.1007/s10040-018-1767-5
http://doi.org/10.1016/j.jenvman.2015.09.025
http://doi.org/10.1093/gji/ggx540
http://doi.org/10.1007/s11356-021-16703-3
http://www.ncbi.nlm.nih.gov/pubmed/34718973
http://doi.org/10.1016/j.jhydrol.2019.04.063


Water 2023, 15, 453 27 of 28

7. Ma, D.; Rezania, M.; Yu, H.-S.; Bai, H.-B. Variations of hydraulic properties of granular sandstones during water inrush: Effect of
small particle migration. Eng. Geol. 2017, 217, 61–70. [CrossRef]

8. Liu, S.; Li, W.; Wang, Q. Height of the water-flowing fractured zone of the Jurassic coal seam in northwestern China. Mine Water
Environ. 2018, 37, 312–321. [CrossRef]

9. Gui, H.; Lin, M. Types of water hazards in China coalmines and regional characteristics. Nat. Hazards 2016, 84, 1501–1512.
[CrossRef]

10. Gui, H.; Lin, M.; Song, X. Features of separation water hazard in China coalmines. Water Pract. Technol. 2017, 12, 146–155.
[CrossRef]

11. Wu, Q.; Zhao, D.; Wang, Y.; Shen, J.; Mu, W.; Liu, H. Method for assessing coal-floor water-inrush risk based on the variable-weight
model and unascertained measure theory. Hydrogeol. J. 2017, 25, 2089–2103. [CrossRef]

12. Sun, L. Statistical analyses of groundwater chemistry in coalmine and its hydrological implications. J. Appl. Sci. Eng. 2017, 20,
335–344.

13. Zhang, H.; Xu, G.; Chen, X.; Mabaire, A.; Zhou, J.; Zhang, Y.; Zhang, G.; Zhu, L. Groundwater hydrogeochemical processes
and the connectivity of multilayer aquifers in a coal mine with karst collapse columns. Mine Water Environ. 2020, 39, 356–368.
[CrossRef]

14. Liu, J.; Wang, H.; Jin, D.; Xu, F.; Zhao, C. Hydrochemical characteristics and evolution processes of karst groundwater in
Carboniferous Taiyuan formation in the Pingdingshan coalfield. Environ. Earth Sci. 2020, 79, 151. [CrossRef]

15. Chen, Y.; Zhu, S.; Xiao, S. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in
different mining districts. Nat. Hazards 2019, 99, 689–704. [CrossRef]

16. Chen, Y.; Zhu, S.; Yang, C.; Xiao, S. Analysis of hydrochemical evolution in main discharge aquifers under mining disturbance
and water source identification. Environ. Sci. Pollut. Res. Int. 2021, 28, 26784–26793. [CrossRef] [PubMed]

17. Liu, R.; Peng, J.; Leng, Y.; Lee, S.; Panahi, M.; Chen, W.; Zhao, X. Hybrids of support vector regression with grey wolf optimizer
and firefly algorithm for spatial prediction of landslide susceptibility. Remote Sens. 2021, 13, 4966. [CrossRef]

18. Liu, Q.; Sun, Y.; Xu, Z.; Xu, G. Application of the comprehensive identification model in analyzing the source of water inrush.
Arab. J. Geosci. 2018, 11, 189. [CrossRef]

19. Ayadi, R.; Trabelsi, R.; Zouari, K.; Saibi, H.; Itoi, R.; Khanfir, H. Hydrogeological and hydrochemical investigation of groundwater
using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: A case study of the intermediate aquifer, Sfax, southeastern
Tunisia. Hydrogeol. J. 2018, 26, 983–1007. [CrossRef]

20. Bouzourra, H.; Bouhlila, R.; Elango, L.; Slama, F.; Ouslati, N. Characterization of mechanisms and processes of groundwater
salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations. Environ. Sci. Pollut. Res. 2015, 22,
2643–2660. [CrossRef]

21. Dong, S.; Feng, H.; Xia, M.; Li, Y.; Wang, C.; Wang, L. Spatial–temporal evolutions of groundwater environment in prairie
opencast coal mine area: A case study of Yimin Coal Mine, China. Environ. Geochem. Health 2020, 42, 3101–3118. [CrossRef]
[PubMed]

22. Chen, S.; Gui, H. Hydrogeochemical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern
Anhui Province, China. Appl. Water Sci. 2017, 7, 1903–1910. [CrossRef]

23. Ju, Q.; Hu, Y. Source identification of mine water inrush based on principal component analysis and grey situation decision.
Environ. Earth Sci. 2021, 80, 157. [CrossRef]

24. Guo, Y.; Wei, J.; Gui, H.; Zhang, Z.; Hu, M. Evaluation of changes in groundwater quality caused by a water inrush event in
Taoyuan coal mine, China. Environ. Earth Sci. 2020, 79, 528. [CrossRef]

25. Chen, K.; Sun, L.; Xu, J. Statistical analyses of groundwater chemistry in the Qingdong coalmine, northern Anhui province, China:
Implications for water–rock interaction and water source identification. Appl. Water Sci. 2021, 11, 50. [CrossRef]

26. Sun, L.H. Statistical analysis of hydrochemistry of groundwater and its implications for water source identification: A case study.
Arab. J. Geosci. 2014, 7, 3417–3425. [CrossRef]

27. Jiang, C.; An, Y.; Zheng, L.; Huang, W. Water source discrimination in a multiaquifer mine using a comprehensive stepwise
discriminant method. Mine Water Environ. 2021, 40, 442–455. [CrossRef]

28. Liu, W.; Yu, J.; Shen, J.; Zheng, Q.; Han, M.; Hu, Y.; Meng, X.J.G. Application of clustering and stepwise discriminant analysis
based on hydrochemical characteristics in determining the source of mine water inrush. Geofluids 2021, 2021, 6670645. [CrossRef]

29. Gall, I.K.; Ritzi, R.W., Jr.; Baldwin, A.D., Jr.; Pushkar, P.D.; Carney, C.K.; Talnagi, J.F., Jr. The correlation between bedrock uranium
and dissolved radon in ground water of a fractured carbonate aquifer in southwestern Ohio. J. Ground Water 2010, 33, 197–206.
[CrossRef]

30. Xiao, J.; Jin, Z.; Wang, J. Geochemistry of trace elements and water quality assessment of natural water within the Tarim River
Basin in the extreme arid region, NW China. J. Geochem. Explor. 2014, 136, 118–126. [CrossRef]

31. Nematollahi, M.J.; Keshavarzi, B.; Moore, F.; Nasrollahzadeh Saravi, H.; Rahman, M.M. Hydrogeochemical and ecological risk
assessments of trace elements in the coastal surface water of the southern Caspian Sea. Environ. Monit. Assess. 2021, 193, 452.
[CrossRef] [PubMed]

32. Xu, B.; Huang, K.; Liu, C.-L. Maxi-min discriminant analysis via online learning. Neural Netw. 2012, 34, 56–64. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.enggeo.2016.12.006
http://doi.org/10.1007/s10230-017-0501-1
http://doi.org/10.1007/s11069-016-2488-5
http://doi.org/10.2166/wpt.2017.020
http://doi.org/10.1007/s10040-017-1614-0
http://doi.org/10.1007/s10230-020-00667-w
http://doi.org/10.1007/s12665-020-8898-4
http://doi.org/10.1007/s11069-019-03767-1
http://doi.org/10.1007/s11356-021-12639-w
http://www.ncbi.nlm.nih.gov/pubmed/33501572
http://doi.org/10.3390/rs13244966
http://doi.org/10.1007/s12517-018-3550-2
http://doi.org/10.1007/s10040-017-1702-1
http://doi.org/10.1007/s11356-014-3428-0
http://doi.org/10.1007/s10653-020-00544-z
http://www.ncbi.nlm.nih.gov/pubmed/32162139
http://doi.org/10.1007/s13201-015-0365-0
http://doi.org/10.1007/s12665-021-09459-z
http://doi.org/10.1007/s12665-020-09243-5
http://doi.org/10.1007/s13201-021-01378-5
http://doi.org/10.1007/s12517-013-1061-8
http://doi.org/10.1007/s10230-020-00742-2
http://doi.org/10.1155/2021/6670645
http://doi.org/10.1111/j.1745-6584.1995.tb00274.x
http://doi.org/10.1016/j.gexplo.2013.10.013
http://doi.org/10.1007/s10661-021-09211-x
http://www.ncbi.nlm.nih.gov/pubmed/34181101
http://doi.org/10.1016/j.neunet.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22831850


Water 2023, 15, 453 28 of 28

33. Kim, H.; Drake, B.L.; Park, H. Multiclass classifiers based on dimension reduction with generalized lda. Pattern Recognit. 2007, 40,
2939–2945. [CrossRef]

34. McNab, W.W.; Singleton, M.J.; Moran, J.E.; Esser, B.K. Ion exchange and trace element surface complexation reactions associated
with applied recharge of low-TDS water in the San Joaquin Valley, California. Appl. Geochem. 2009, 24, 129–137. [CrossRef]

35. Motevalli, A.; Moradi, H.R.; Javadi, S. A comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea
water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [CrossRef]

36. Amiri, V.; Nakagawa, K. Using a linear discriminant analysis (LDA)-based nomenclature system and self-organizing maps (SOM)
for spatiotemporal assessment of groundwater quality in a coastal aquifer. J. Hydrol. 2021, 603, 127082. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.patcog.2007.03.002
http://doi.org/10.1016/j.apgeochem.2008.11.009
http://doi.org/10.1016/j.jhydrol.2017.12.047
http://doi.org/10.1016/j.jhydrol.2021.127082

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition 
	Occurrence of the Four Aquifers 
	Sampling 
	Test Methodology 

	Methods 
	Hierarchical Clustering Stepwise Discriminant Analysis 
	F-Test 
	Principal Component Analysis 
	Bayes Criterion 


	Results 
	Conventional Hydrochemical Characteristics and Discrimination Model 
	Relationship between Conventional Ions and Total Dissolved Solids (TDS) in Karst Water 
	Conventional Hydrochemical Discrimination Model for Main Water Inrush Aquifers 

	Hydrogeochemical Characteristics and Discriminant Model of Trace Elements 
	Systematic Cluster Analysis of Trace Elements in Aquifer 
	Principal Component Analysis of Trace Elements 
	Analysis of Trace Element Content in the Mining Area 
	Bayes Multi-Class LDA Model of Characteristic Trace Elements 


	Discussion 
	Conclusions 
	References

