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Abstract: This study investigated the potential impacts of climate change on water scarcity and
hydrological extremes in the Yellow River Basin in the near-term (2026–2050), mid-term (2051–2075),
and long-term (2076–2100) periods under three combined pathways of Shared Socioeconomic Path-
ways (SSPs) and Representative Concentration Pathways (RCPs) SSP1–2.6, SSP2–45, and SSP5–8.5
relative to the reference period (1986–2010), based on the runoff simulation through the Huayuankou
hydrological station using the HBV-D hydrological model, which was forced by a statistically down-
scaling dataset. The results indicate that water shortage would still threaten the Yellow River because
annual runoff will remain below 1000 m3/year, although water scarcity would be alleviated to some
degree. More and larger floods will happen in summer in the 21st century, especially in the long-term
period under the SSP5–8.5 scenario. More Hydrological droughts will occur during July–October,
and some extreme droughts would likely exceed the historical largest magnitudes in July and August
in the long term under the SSP5–8.5 scenario.

Keywords: climate change impacts; water scarcity; hydrological drought; flood; Yellow River

1. Introduction

The Yellow River is China’s second-largest river in terms of length and watershed
area. It supports 30.3% of the national population and represents 2.6% of the national total
water resources [1]. The river is scarce in water resources, with a per capita water resource
of approximately 579 m3 that includes 485 m3 of surface water resources and was projected
to be at risk of water scarcity in 2021–2050 [2,3]. The Yellow River Basin experiences severe
droughts and frequent floods. In past decades, most of the basin is considered to have a
progressively drier transition based on the standardized precipitation evapotranspiration
index and the Palmer drought index [4–6]; however, a contrary change has been identified
in western parts of the Yellow River [7,8]. In much of the basin, the area and intensity
of meteorological droughts would increase between 2040 and 2060 [9], but the duration
and intensity of such events are expected to decrease in the source area [10]. The river
is also known for its devastating floods and extremely high sediment load [11], and the
occurrence of especially large floods and heavy sediment loads are concentrated in July
and August [12]. In comparison with the historical period, the river is expected to have a
higher risk of floods in the future [13]. Therefore, a major task for hydrological designers
and planners is to investigate potential future changes in runoff, especially in terms of
hydrological extremes such as droughts and floods. The most common method to explore
the potential changes in hydrological variables, such as runoff at various temporal scales,
hydrological drought, and flood, is based on the runoff simulations by the hydrological
model forced by GCMs.

Hydrological drought has negative impacts on the quantity and quality of water [14].
It is an extreme condition reflecting the extension and development of meteorological
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drought and agricultural drought [15]. One of the most well-known hydrological drought
indexes is the standardized runoff/streamflow index [16–19]. Its calculation and expla-
nation are similar to those of the standardized meteorological drought index used opera-
tionally by the World Meteorological Organization. Previous studies of the Yellow River
Basin have investigated meteorological or agricultural droughts [4–6,20] or multivariate
droughts [21,22]. Few studies explored the potential for future hydrological drought, al-
though some studies analyzed hydrological drought in the Yellow River Basin based on
streamflow records [21,23,24].

For floods, their changes in frequency and magnitude are of wide concern in the
field of research on future disaster risk reduction and are often assessed using indexes
such as the annual maximum runoff for 1, 3, 5, 7, or more days, e.g., [25,26], or the
peak-over-threshold floods for an average rate of a specified number of times per year,
e.g., [2,27]) at various return periods such as 100, 50, 30, or 20 years [28–30] relative
to the reference period. For the Yellow River Basin, most previous studies analyzed
the characteristics of extreme floods [31–33], explored the changes in magnitude and/or
frequency of historical floods [31,34,35], or projected the potential flood risk [2,36] under
Representative Concentration Pathways (RCPs).

GCM is the most popular tool to project future climate and to conjunct the downscaling
techniques to the projection of hydrological variables. However, it is generally believed
that different GCMs have their specific accuracy and reliability and that ensemble mean
coupling with different GCMs provides more accurate climate change information [37,38].
The study aimed to explore the potential hydrological risk with indexes of water scarcity,
hydrological drought, and floods in the Yellow River Basin during the 21st century under
combined pathways of Shared Socioeconomic Pathways (SSPs) and RCPs, based on the
hydrological simulation forced by global climate models (GCMs) in the Coupled Model
Intercomparison Project phase 6 (CMIP6) (https://esgf-node.llnl.gov/search/cmip6/).

This study applied more indexes, longer time scales, and a greater number of GCMs
than any previously singly related study. Moreover, the applied atmospheric forcing is the
latest information that is from CMIP6 GCMs, which outperforms CMIP5 [39]. Moreover,
the simulations of CMIP6 GCM were bias-corrected and spatial disaggregating in China.
This processing improves the climate simulation by CMIP6 GCMs in the Yellow River Basin
and China [40,41]. Moreover, SSP-RCP scenarios rather than RCP scenarios were applied,
and the period of projection was extended to 2100 rather than to 2050 [2,36]. These are the
innovation of this study.

2. Materials and Methods
2.1. Study Region

The Yellow River Basin (32◦10′–41◦50′ N, 90◦53′–119◦05′ E) covers an area of approxi-
mately 79.5 × 104 km2, which includes an arid climate region in the northwest, a semiarid
region in the central area, and a humid region in the southeast. Annual mean temperature
varies from−3.4 to 15.0 ◦C, and the areal mean value is 8.1–10.5 ◦C. Annual mean precipita-
tion varies from 144.5 mm in the arid region to 1066.4 mm in the humid region, and the areal
mean value is 341–703 mm. Floods occur mainly during July–October, affected by seasonal
precipitation patterns. This study focused on the upper watershed of the Huayuankou
hydrological station (Figure 1a), which marks the division between the middle and lower
reaches of the Yellow River and accounts for 91.8% of the entire area of the Yellow River
Basin. More than 170 medium or large reservoirs have been constructed and operated. The
streamflow through Huayuankou Station can be reduced from 42,300 to 22,600 m3/s for a
1-in-1000-year flood and from 29,200 m3/s to 15,700 m3/s for a 1-in-100-year flood by the
joint operation of upstream reservoirs [39].

https://esgf-node.llnl.gov/search/cmip6/
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Figure 1. Location of (a) the Yellow River Basin and (b) three hydrological stations, together with 
basin topography and the grid of the downscaled climate dataset used in this study. 
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Figure 1. Location of (a) the Yellow River Basin and (b) three hydrological stations, together with
basin topography and the grid of the downscaled climate dataset used in this study.

2.2. Datasets

The statistical downscaled datasets with 0.25◦ × 0.25◦ resolution (Figure 1b) were
developed by the National Climate Center of the China Meteorological Administration. The
datasets comprise daily precipitation, daily mean, maximum and minimum temperature
from 1986 to 2014, and projection from 2015 to 2100 under SSP1–2.6, SSP2–4.5, and SSP5–8.5
scenarios [41]. The datasets were set up by spatial disaggregating and bias-correcting with
equal distance cumulative distribution function based on 13 CMIP6 GCMs (Table 1). The
reproducibility of the spatial pattern of the downscaled datasets and raw simulations of
CMIP6 GCMs has ever assessed over China [41] and the Yellow River Basin [40]. The assess-
ments reveal that downscaling improved the spatial distributions of annual precipitation
and extreme climate events and that it possessed higher spatial pattern correlations and
greater Taylor Skill scores no matter single model or multi-model ensemble compared with
the raw simulations of GCMs. In the study, the series of daily precipitation and daily mean
temperature was used to force the HBV-D hydrological model.

The population data were obtained from the Science Data Bank (https://cstr.cn/31253.
11.sciencedb.01683) [42]. They are the latest population information in China for 2010–2100
under the SSP1, SSP2, and SSP5 scenarios and have a resolution of 0.5◦ × 0.5◦. They
were developed using the multidimensional population–development–environment (PDE)
model [43] with improved localized parameters [44]. The steps to project population with
PDE refer to [2]. The PDE, with gradually improved parameters in China, even supported
various research on the impacts, risks, and adaptation of climate change [2,45–48]. The
population data applied here were the mean by aggregating the values of each grid in the
study area. They were used to calculate the water scarcity indicator.

The data of monthly observed runoff for 1957–1997 through Jimai station, for 1970–2000
through Heishiguan, and monthly naturalized runoff for 1952–1998 through Huayuankou
were from the Yellow River Resources Bureau. They are used to calibrate and validate the
hydrological model.

2.3. Hydrological Model

In this study, the hydrological model HBV-D was used to simulate runoff. Its prototype
is a lumped hydrological model developed by Swedish Meteorological and Hydrological
Institute in the 1970s. Various versions of the HBV model have been developed and used
worldwide since then [49]. HBV-D is a semi-distributed hydrological model, which is one
of the derivations of the original HBV model. It has physically sound evapotranspiration
schemes and descriptions of land cover characteristics. It is appropriate for the investigation
of the hydrological impacts of climate change on large river basins [50]. The HBV-D model
has been applied to estimate the precipitation threshold of flood disasters [51,52] and to
predict/project runoff for tributaries [2,53–55] in the upper and middle reaches of the
Yellow River.

https://cstr.cn/31253.11.sciencedb.01683
https://cstr.cn/31253.11.sciencedb.01683
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Table 1. Details of the CMIP6 models used in this study.

ID Model Name Affiliated Country and Research Unit Atmos. Lat/Lon Grid (◦)

1 ACCESS-CM2
Commonwealth Scientific and Industrial Research
Organisation, and Australian Research Council of
Excellence for Climate System Science (Australia)

1.2◦ × 1.8◦

2 ACCESS-ESM-1–5 Commonwealth Scientific and Industrial Research
Organisation(Australia) 1.2◦ × 1.8◦

3 BCC-CSM2-MR Beijing Climate Center, China Meteorological
Administration (China) 1.1◦ × 1.1◦

4 CanESM5 Canadian Centre for Climate Modelling and
Analysis (Canada) 2.8 × 2.8

5 CNRM-CM6–1
Centre National de Recherches Météorologiques,
Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique (France)
1.4 × 1.4

6 CNRM-ESM2–1
Centre National de Recherches Météorologiques,
Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique (France)
1.4 × 1.4

7 HadGEM3-GC31-LL Met Office Hadley Centre (United Kingdom) 1.3 × 1.9

8 INM-CM4–8 Institute for Numerical Mathematics, Russian
Academy of Science (Russia) 1.5 × 2.0

9 INM-CM5–0 Institute for Numerical Mathematics, Russian
Academy of Science (Russia) 1.5 × 1.5

10 IPSL-CM6A-LR Institut Pierre Simon Laplace (France) 1.3 × 2.5

11 MIROC6

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), National

Institute for Environmental Studies, and RIKEN
Center for Computational Science (Japan)

1.4 × 1.4

12 MPI-ESM1–2-HR Max Planck Institute for Meteorology (Germany) 0.9 × 0.9
13 MRI-ESM2–0 Meteorological Research Institute (Japan) 1.1 × 1.1

The nonlinear parameter estimation and optimization package PEST was used to
calibrate the HBV-D model using monthly runoff through the Huayuankou Station dur-
ing 1952–1990 and to reference the parameters calibrated for some tributaries in previ-
ous research [2,40,51,52,54,55]. PEST applies a robust Gauss–Marquardt–Levenberg algo-
rithm and combines the advantages of the inverse Hessian Method and the steep decent
method [56,57]. The calibrated HBV-D was further validated using monthly runoff through
Huayuankou Station, Jimai Station, and Heishiguan Station. The Jimai Station and the
Heishiguan are on the mainstream in the source area and on a tributary of the middle
Yellow River (Figure 1b), respectively. Selecting the two stations is to evaluate the accuracy
of spatial pattern simulation for runoff of the HBV model.

2.4. Projection of Hydrological Variables

Water scarcity, hydrological droughts, and floods were projected with indices using
the series of natural runoff simulated by calibrated HBV-D. The water scarcity on the
annual scale was assessed with the water scarcity indicator (WSI), which is the per capita
availability of renewable freshwater resources [58]. It is suitable for assessing the impact of
climate change on physical water scarcity [59]. Water scarcity is considered to occur when
the indicator falls below 1000 m3/year. A state of absolute scarcity is considered to occur
when the indicator is below 500 m3/year [60]. To correct the bias in the projected annual
water stress, the projected anomaly was added to the observed per capita surface water
resources in 2010 with the same approach as in [2]. At the monthly scale, relative water
scarcity will occur if the monthly runoff reduces by more than 20% of the reference.

Hydrological droughts were assessed with a standardized runoff index (SRI), which
has been used previously [61–63]. In this study, SRI was computed following the procedure
to calculate the standardized precipitation index [64] by replacing precipitation records with
runoff records. Therefore, the classes or states used to describe hydrological drought were
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identical to those adopted in the standardized precipitation index, as listed in Table 2. This
classification allows comparison with other SRI values temporally and spatially. This study
projected hydrological droughts on the 12-month time scale (SRI-12), as recommended by
Mercado et al. [65].

Table 2. Classification of drought conditions according to the SRI.

SRI Values Classifications

SRI ≥ 2.0 Extremely wet
1.5 ≤ SRI < 2.0 Very wet
1.0 ≤ SRI < 1.5 Moderately wet
−1.0 ≤ SRI < 1.0 Near normal
−1.5 ≤ SRI < -1.0 Moderately dry
−2.0 ≤ SRI < -1.5 Severely dry

SRI < −2.0 Extreme dry

Floods were resampled using the peak-over-threshold (POT) method for an average
rate of three times per year. Projected floods were assessed using the return period and
magnitude in the near-term (2026–2050), mid-term (2051–2075), and long-term (2076–2100)
periods under the SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios for 1-in-30-year events.
The return period and magnitude were estimated using Generalized Pareto Distribution
(GPD), which can be successfully fitted to the magnitudes and return periods of the POT
floods [66,67]. The projected changes in flood magnitude were estimated based on the
anomaly percentage relative to a reference period (1986–2010).

3. Results
3.1. Performance Assessment of HBV-D

As listed in Table 3, the Nash–Sutcliffe efficiency (Ens) was greater than 0.50, the
coefficient of determination (R2) greater than 0.6, and the volume bias (PBIAS) within
the range of −25% to 25% for the three stations. It was judged that the HBV-D model is
satisfactory in simulating natural runoff through the Huayuankou hydrological station
according to the evaluation criteria [68]. Thus it was used in this study to simulate natural
runoff through the Huayuankou Station without considering human activities such as
reservoir regulation and water extraction from the Yellow River. However, there is a pit
for assessing the impacts of climate change on the spatial patterns of runoff in such a large
basin. This leads to this study’s focus on the changes in the runoff for the basin but not the
changes in the spatial pattern of runoff.

Table 3. Evaluation of HBV-D performance for monthly simulation through three hydrological
stations in the Yellow River Basin.

Station Period Ens R2 PBIAS(%)

Huayuankou Calibration (1952–1990) 0.74 0.86 3.9
Verification (1991–2012) 0.71 0.86 5.3

Jimai Verification (1959–1997) 0.55 0.78 22
Heishiguan Verification (1970–2000) 0.72 0.88 18

3.2. Changes in Water Scarcity

Annual water scarcity per capita in terms of the ensemble median will vary within
the range of 511–828 m3 for the near-, mid-, and long-term periods under the SSP1–2.6,
SSP2–4.5, and SSP5–8.5 scenarios (Table 4). The rate of change will be fastest under the
SSP5–8.5 scenario and slowest under the SSP2–4.5 scenario and will increase more rapidly
over time. From the value of 485 m3 in the reference period, the median value will increase
to 541 m3 for the near-term period under the SSP1–2.6 scenario and increase to 828 m3 for
the long-term period under the SSP5–8.5 scenario. Some projections suggest that the value
will even exceed 1000 m3, while other projections indicate that the value will be below
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500 m3. It suggests that water scarcity could be alleviated to some degree, but the risk of
absolute scarcity will be extremely high, and the state of water scarcity will continue over
the coming decades in the 21st century.

Table 4. Projected annual runoff per capita for the near-, mid-, and long-term periods under the
SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios.

Period
Per Capita Annual Runoff: Median [min, max] (m3)

SSP1–2.6 SSP2–4.5 SSP5–8.5

2026–2050 541 [373, 746] 511 [345, 826] 524 [399, 861]
2051–2075 607 [450, 1098] 528 [359, 1102] 641 [394, 1028]
2076–2100 788 [478, 1318] 583 [428, 1112] 828 [552, 1999]

Under most projections, runoff in most months for the near-term period will be within
the range of −20% to 20% relative to the value of the reference period (Figure 2), but
the number and the magnitude of the monthly increase will be greater than the decrease.
Moreover, the increase will become faster over time and faster under the higher scenario
than the lower scenario. For the mid-term and long-term periods, approximately half of the
projections indicate an increase in monthly runoff by more than 20% in December, January,
and September under the SSP5–8.5 and SSP2–4.5 scenarios. However, approximately half of
the projections indicate that runoff will be within normal conditions in the transition season
from winter to spring (February and March), summer (June–August), and mid-late autumn
(October and November) in the future three periods under the SSP2–4.5 and SSP5–8.5
scenarios. These projections suggest a higher probability of water scarcity alleviation than
worsening for mid-late winter and early autumn in the 21st century.
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Figure 2. Projected change in monthly runoff (%) relative to the reference period for the near-, mid-,
and long-term periods under the SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios (red and blue lines
represent −20% and 20% of the reference value, respectively. The outliers are marked with red +.).

3.3. Changes in Hydrological Droughts

As shown in Figure 3, the median of monthly SRI-12 will increase by 7% at least,
even by more than 2-fold of the reference for all months in the near-, mid-, and long-term
under the SSP1–2.6, SSP2–4.5, and SSP5-8.5 scenarios except for August for mid-term under
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SSP1–2.6 and long-term under SSP5–8.5, but at least 50% projections still within the near
normal condition.
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Figure 3. Projected SRI-12 for the near-, mid-, and long-term periods under the SSP1–2.6, SSP2–4.5,
and SSP5–8.5 scenarios (black, red, blue, and green boxes represent the reference period, SSP1–2.6,
SSP2–4.5, and SSP5–8.5 scenarios, respectively).

Fewer hydrological droughts will occur in November–June, while more will occur
during July–October. Specifically, more droughts will occur in July–September under the
SSP2–4.5 scenario, in July and August under the SSP1–2.6 scenario for the near-, mid-, and
long-term periods, in August and September under the SSP5–8.5 scenario for the near-
and mid-term periods, and in October under the SSP1–2.6 and SSP2–4.5 scenarios for the
mid-term period (Table 5).

Table 5 further shows that moderate droughts will occur more frequently in July for
the near- and mid-term periods under the SSP1–2.6 scenario and for the long-term under
the other two scenarios, in August for the mid-term and long-term under the SSP1–2.6
scenario, and for the future three periods under the SSP2–4.5 scenario, and in August
and September for the near- and mid-term periods under the SSP5–8.5 scenario. Severe
droughts will occur more frequently in July for the long-term under the three scenarios, in
August for the near-term and mid-term periods under the SSP5–8.5 scenario, in September
for all three periods and three scenarios, and in August for the mid-term period under
the SSP2–4.5 and SSP5–8.5 scenarios. Extreme droughts will occur more frequently in
June for the long-term under the SSP2–4.5 and SSP5–8.5 scenarios, in July for almost all
periods and scenarios except for the mid-term under SSP1–2.6 scenario, in September and
October for the mid-term period under the SSP2–4.5 and long-term under the SSP2–4.5 and
SSP5–8.5 scenarios, and in November for the mid-term and long-term periods under the
SSP2–4.5 scenario.
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Table 5. Changes in frequency (times) of SRI-12 relative to the reference period for the near-, mid-,
and long-term periods under the SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios.

Month Scenario
Moderately Dry Severely Dry Extreme Dry

Near-Term Mid-Term Long-Term Near-Term Mid-Term Long-Term Near-Term Mid-Term Long-Term

6
ssp126 −14 −19 −17 −1 −8 −7 −4 −4 −28
ssp245 −26 −21 −12 −8 −1 1 −6 0 -10
ssp585 −14 −21 −5 −12 −3 −2 −4 −4 −5

7
ssp126 5 3 −8 0 −4 3 6 −1 −3
ssp245 0 −1 13 1 −2 4 0 7 22
ssp585 1 −5 5 −2 4 4 3 4 13

8
ssp126 −5 7 7 6 −1 −2 6 0 6
ssp245 4 6 5 −3 0 7 1 3 17
ssp585 10 7 −1 3 3 −2 4 3 0

9
ssp126 0 6 −8 7 8 2 −2 −2 −9
ssp245 −2 −6 −4 6 7 10 −2 4 7
ssp585 8 3 −8 10 10 4 0 −5 −2

10
ssp126 −6 −1 −9 2 3 −4 −2 −1 −17
ssp245 −3 −5 −1 −7 3 −3 −3 4 −2
ssp585 13 −1 −1 −4 −6 2 3 −4 6

11
ssp126 −2 −4 −4 0 −2 −10 −5 −4 −20
ssp245 −4 −6 −7 −4 −1 −6 −8 2 −12
ssp585 −8 −4 −11 4 −4 −7 −3 −7 −22

These suggest that fewer hydrological droughts will occur during November–June but
more during July–October. Moreover, the probability of exceeding the historical maximum
intensity will be higher in July and August than in other months.

The numbers of hydrological droughts exceeding the historical maximum intensity are
shown in Figure 4. It is projected that extreme droughts with greater magnitude will occur
in December–February and June–October during 2076–2100 under the SSP5–8.5 scenario,
in July and August during 2026–2050 under the SSP5–8.5 scenario, and during 2056–2075
under the SSP2–4.5 scenario. The maximum probability would be approximately 1% in
July under the SSP5–8.5 scenario and in August under the SSP1–2.6 and SSP5–8.5 scenarios
for the long-term period. The probability will be lower in June–February and in April for
certain periods under certain scenarios.
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Figure 4. The number of hydrological droughts (SRI-12) exceeding the historical maximum intensity
for the near-, mid-, and long-term periods under the SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios.

3.4. Changes in Floods

Figure 5 shows that the magnitude of 1-in-30-year floods will increase, and the return
period will decrease in the three future periods under the SSP1–2.6, SSP2–4.5, and SSP5–8.5
scenarios. The magnitude of floods will increase by 7.5%–11.8%, and the return period will
decrease to 18.1–21.8 years in terms of the median for the near-term period under all three
scenarios, but the magnitude will increase by 30.4% and the return period will decrease to
9.3 years in the long-term period under the SSP5–8.5 scenario (Table 6). It suggests that the
Yellow River Basin will experience larger and more frequent floods in the future.
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Table 6. Magnitude and return period of 1-in-30-year floods for the near-, mid-, and long-term
periods under the SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios.

Period
Change in Magnitude of 1-in-30-Year Floods (%)

Median [min, max]
Return Period of 1-in-30-Year Floods

Median [min, max]
SSP1–2.6 SSP2–4.5 SSP5–8.5 SSP1–2.6 SSP2–4.5 SSP5–8.5

2026–2050 7.5
[−21.7, 46.8]

11.8
[−15.8, 61.5]

7.5
[−15.1, 40.1]

18.1
[7.5, 49.4]

20.0
[4.8, 87.0]

21.8
[8.2, 99.0]

2051–2075 16.8
[−25.6, 47.5]

8.5
[−19.1, 95.8]

19.6
[−13.3, 86.7]

12.1
[5.6, 213.7]

19.7
[3.7, 155.8]

12.0
[4.1, 75.7]

2076–2100 7.1
[−20.0, 68.4]

7.4
[−7.5, 73.1]

30.4
[−7.8, 107.3]

21.1
[3.7, 183.9]

20.9
[4.8, 47.2]

9.3
[2.8, 41.5]

4. Discussion

The findings of this study indicate that annual runoff per capita will likely increase
in the 21st century, whereas it was ever projected to decrease [2,3] before 2050 under the
RCP2.6, RCP4.5, and RCP8.5 scenarios. The contrasting conclusions could be attributed to
the use of different reference periods and different projection periods. The reference period
is 1976-2005 for reference [2] and 1961-1990 for reference [3]. However, all three studies
confirm that water scarcity will be a major threat in the Yellow River Basin in the future.

The projected larger and more frequent floods are consistent with previous conclusions
of a higher risk of floods [2,13] in the coming 30 years under the RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 scenarios. A higher risk of floods would present considerable socioeconomic
challenges for the Yellow River Basin.

Water scarcity on annual and seasonal scales was explored in this study. However,
it would be informative to develop another index to describe water scarcity because the
annual runoff per capita is an index that considers only supply-side changes without con-
sideration of social adaptability. Moreover, water scarcity on a monthly scale was assessed
based on the changes in runoff relative to the reference period. It is an index of relative
change and cannot reflect the condition of absolute water scarcity and social adaptability.

Uncertainty in the projected hydrological variables remains an ongoing issue. Gen-
erally, the structure, initial conditions, and parameters of the adopted climate model,
hydrological model and population model, climate change scenarios, downscaling method,
and climate variability represent the major potential sources of uncertainty. Many previous
studies explored such uncertainties and reported that the importance of various sources of
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uncertainty varies with region, projection period, and projected variables, but the uncer-
tainties associated with climate models and greenhouse gas emission scenarios are usually
dominant [69–74]. Here, the uncertainties associated with the GCM structure and climate
scenarios were considered by using 13 GCMs of CMIP6 and 3 SSP-RCPs scenarios and
population under three SSPs. The equilibrium climate sensitivity (ECS) of the 13 GCMs
in the study ranges from 1.83 to 5.62 ◦C [75] and covers most of the ECS ranges of CMIP6
models [76], and can quantify the ranges and uncertainties contributed by GCMs. Moreover,
most of the CMIP6 models have advantages over precious CMIP5 models in reproducing
the interannual anomalous rainfall pattern over Eastern China [77]. Evaluation of the ability
of 23 climate models from CMIP6 in simulating extreme climate events showed that the
multi-model ensemble of CMIP6 can capture the spatial patterns of precipitation extremes
pretty well over China [78].

Although Jimai station and Heishiguan Station were used to evaluate the accuracy
of spatial pattern simulation for runoff of the HBV model, it is still a pit to validate the
model in this large basin. The weakness of evaluation for the accuracy of spatial pattern
simulation for runoff leads to this study’s focus on the assessment of changes in the
runoff for the basin and cannot further assess the changes in the spatial pattern of runoff.
Moreover, the uncertainties associated with the hydrological model and the downscaling
procedure were neglected because it is a too great challenge to attempt to examine all
possible sources of uncertainty simultaneously. Ideally, additional hydrological models,
downscaling methods, and GCMs should be incorporated into the projections to provide
more convincing information. However, the downscaled d climate forcing applied in
this study is suitable for reproducing the climate of the Yellow River Basin [41], and the
HBV-D model is capable of successfully simulating runoff through the Huayuankou Station.
Therefore, the derived results can be considered to have important implications regarding
water resources management in the context of climate change and population development.

5. Conclusions

This study projected that water scarcity in the Yellow River Basin will continue in the
21st century, although annual runoff per capita will increase to some degree in terms of
the median and for most projections. For example, annual runoff per capita will increase
to 828 m3/year in the long-term period under the SSP5–8.5 scenario from the value of
485 m3/year during the reference period.

The degree of water scarcity alleviation will vary with the season. Water scarcity will
likely be alleviated for mid-late winter and early autumn in the 21st century. However, the
runoff will be in normal condition for other months under most projections.

The Yellow River Basin will likely experience larger and more frequent floods in the
21st century. The risk will be highest in the long-term period under the SSP5–8.5 scenario,
when the magnitude will increase by 30.4% and the return period will decrease to 9.3 years
for 1-in-30-year floods.

Less hydrological droughts in terms of SRI-12 will occur in November–June, while
more droughts will occur in July–October. Droughts exceeding the historical maximum
intensity will likely occur in July and August in the long-term period.

In the future, in the context of slight water scarcity alleviation, hydrological extremes
comprising severe floods and droughts will be encountered more frequently in the Yellow
River Basin, with a greater risk of occurrence in summer. The projections of this study have
implications for policymakers and water management planners regarding the mitigation of
the negative impacts of climate change on the Yellow River Basin.
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