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Abstract: Rainfall-induced landslides pose a significant threat to human life, destroy highways and
railways, and cause farmland degradation in the Loess Plateau. From 19 June 2013 to 26 July 2013,
continuous and heavy rainfall events occurred in the Tianshui area, Gansu Province. This strong
rainfall process included four short-term serious rainfall events and long-term intermittent rainfall,
triggering many shallow loess landslides. To improve our understanding of this rainfall process as
the triggering mechanism of the loess landslides, we conducted the physical-based spatiotemporal
prediction of rainfall-induced landslides. By utilizing precipitation data recorded every 12 h from the
rain gauge stations and 51 soil samples from within a 50 km radius of the study area, we predicted
1000 physical-based model-calculated pictures of potential landslides, and the slope failure probability
(Pf) of the study area was obtained by Monte Carlo simulations. The model was validated by the
actual landslide data of the 2013 heavy rainfall event, and the effects of the precipitation process
and the trigger mechanism on the landslides were discussed. The results showed that the fourth
rainfall event had the best prediction ability, while the third event had the second-best prediction
ability. There was a solid linear link between the antecedent precipitation (Pa) and the predicted
landslide area (Pls) based on the fitting relationship, indicating that antecedent rainfall may play a
significant role in the occurrence of landslides in the region. By comparing the distribution of the
predicted results of the four heavy rainfall events with the actual landslide, we observed that the
first two rainfall processes may not have been the main reason for slope failure, contributing only to
prepare for the landslides in the later period. The superposition of the fourth and third rainfall events
finally determined the spatial distribution characteristics of the landslide induced by the 2013 heavy
rainfall event.

Keywords: heavy rainfall; loess landslide; physical-based model; FSLAM model; triggering mechanism;
hazard assessment; Tianshui area; Gansu Province

1. Introduction

Due to the influence of global extreme climate change, there have been more extreme
rainfall events in mountain areas in recent years, dramatically increasing the frequency of
rainfall-induced landslides globally [1,2]. Compared with other natural hazards such as
volcanic eruptions and floods, rainfall-induced landslides cause significant human harm as
well as substantial economic losses [3–6].
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Many studies have adopted a variety of methods to carry out the spatiotemporal
prediction of rainfall-induced landslides [7], which mainly include an empirical method,
a data-driven method, and a physical-based method. The empirical method is based on
historical landslide data and rainfall records to analyze the relationship between rainfall
characteristics and landslide occurrence [8–10]. The process is simple and easy to use, but
it only considers rainfall and ignores other geological and hydrological conditions. As
a result, this method is only applicable in areas with similar geological and geomorphic
characteristics [11–13]. Furthermore, the empirical method requires abundant landslide and
rainfall data, so it fails to develop an effective rainfall threshold in mountain areas where
landslide and rainfall data are scarce. The data-driven method uses mathematical models
to examine the relationships between influencing factors and landslide occurrence [14–16].
The landslide hazard assessment of the study area can be carried out using known models.
However, because data-driven models are trained using regional landslide data and, thus,
limited by the area’s geological and geomorphic characteristics, the data-driven method
still has regional constraints in the spatial prediction of rainfall-induced landslides.

The physical-based method, in contrast to the data-driven method, does not use actual
landslide data, but rather simulates the physical process of rainfall-induced landslide occur-
rence by combining hydrological and infinite slope models [17]. Because of their preferable
practicability and wide regional applicability, physical-based models have been widely
used in the spatial prediction of regional rainfall-induced landslides. The establishment of
hydrological models is the most difficult issue in physical-based rainfall landslide hazard
assessment. The most commonly used hydrological models include the steady-state model
and the transient-state model [18]. The steady-state model assumes a stable rainfall infil-
tration process and saturated water retention parallel to the slope surface. As a result, the
model assumes that the changes in groundwater flow and long-term rainfall affect the uni-
form recharge state of the groundwater rather than being caused by a single rainfall event.
The popular models include the SHALSTAB [19,20] and SINMAP models [21]. Although
the steady-state hydrological model is useful for assessing slope stability over a large area,
the model is limited to a few unrealistic situations related to rainfall characteristics and site
conditions, and it lacks prediction for real rainfall scenarios [17].

In recent years, some physical-based models based on the transient-state hydrological
model have been developed, such as the SLIP model [22–24], GIS-TiVaSS model [25,26],
GIS-TISSA model [27], CRESTSLIDE model [28,29], HIRESSS model [30–32], and TRIGRS
model [17], which have been widely used in the spatiotemporal prediction and early
warning of rainfall-induced landslides. However, one of the challenges in applying the
transient-state hydrological model is the requirement for a large amount of input data,
such as mechanical and hydrological parameters of the study area [33–36]. Meanwhile,
these transient-state hydrological models only consider the impact of vertical seepage from
short-term heavy rainfall events on groundwater levels, ignoring the effect of lateral flow on
long-term groundwater levels in mid–long-term precipitation, resulting in underestimation
of the assessment results.

Furthermore, most previous works do not take the uncertainty of the input data into
account, instead using the deterministic analytical method to calculate the probability
of slope failure. However, because the deterministic analysis method ignores spatial
heterogeneity and uncertainty of the soil data, providing only a single fixed value for the
uncertainty of the input parameters is inappropriate [12,37–41]. Especially at a large scale,
there are certain difficulties in obtaining a large number of input data, resulting in possible
errors in the quality of the input data and unsatisfactory prediction results [11]. This spatial
uncertainty and heterogeneity analysis can consider the probability, so it is regarded as an
effective method for dealing with data uncertainty and heterogeneity [12,38,39,42–45].

Given the current issues with the physical-based models, Medina et al. [46] developed
a new physical-based model called “Fast Shallow Landslide Assessment Model” (FSLAM)
that can be used for large areas (>100 km2) with a high-resolution topography in a very
short computational time. Meanwhile, this model can consider the combined effects of
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the lateral and vertical flows to calculate the water table and the uncertainty of the input
parameters well, showing great potential in the spatiotemporal landslide prediction of
large areas [46,47]. The 2013 heavy rainfall event was the longest and most serious rainfall
since the meteorological records in the Tianshui area began, resulting in 50,000 individuals
affected and 24 deaths, nearly 10,000 houses destroyed, and a direct economic loss of
RMB 8.4 billion. This rainfall event induced about 54,000 shallow landslides and debris
flows in the Tianshui area [48], providing us with an invaluable window to investigate
the distribution patterns and triggering mechanisms of rainfall-induced landslides in this
area. Although Qi et al. [49] utilized machine learning to map the landslide susceptibility
in this area, there has been no study on the spatiotemporal prediction of rainfall-induced
landslides from this rainfall event using a physical-based model—especially for the FSLAM
model, which has not been applied in the Loess Plateau region. Meanwhile, the analysis
of rainfall processes and triggering mechanisms for landslide occurrence from this event
is still very limited. To improve our understanding of the effects of this rainfall process
on the triggering mechanisms of the loess landslides, we conducted the physical-based
spatiotemporal prediction of rainfall-induced landslides based on the FSLAM model. The
model was validated by applying the actual shallow landslide data from the 2013 rainfall
event. Finally, the effects of precipitation parameters and trigger mechanisms on shallow
landslides are discussed.

2. Study Area
2.1. General Settings

The study area is located in a basin (34.3◦ N~34.8◦ N and 106.0◦ E~106.3◦ E) near the
Maiji area of Tianshui, Gansu Province, with an area of about 520 km2. The study area
has a loess hilly landform formed by Quaternary loess deposits, with an elevation range
of 900–2100 m (Figure 1). The climate in the region is warm, temperate, and semi-humid,
with an average temperature of 11.5 ◦C. The minimum temperature is −18 ◦C, and the
maximum temperature is 35 ◦C. The annual rainfall in the study area is 500 mm, and most
of the rainfall is concentrated in June, July, and August. Among these months, the rainfall in
July is the greatest, with a monthly average rainfall of about 100 mm. In 2013, the monthly
rainfall reached twice the average rainfall (Figure 2).

The study area’s strata include Quaternary sediments (Q3 and Q4), Tertiary sedimen-
tary rocks (N and E), Devonian clastic rocks (D2s), and magmatic rocks (Mag). Quaternary
sediments are the most widely distributed strata, accounting for about 50% of the total
area. The Quaternary sediments are primarily Late Quaternary loess (Q3eol), with a small
number of fluvial deposits (Q4a-pl) distributed along both sides of the rivers. The Tertiary
sedimentary rocks include gray–white clay rock and red mudstone of the Neogene (N) and
conglomerate, purplish–red glutenite of the Paleogene (E). The Devonian clastic rocks (D2s)
are mainly argillaceous slate and quartz sandstone of the Shujiaba formation, accounting
for less 10% of the total area (Figure 3). Furthermore, the study area contains dense forest
and cropland, but there are also dense residential areas and roads in the east of the area,
including the towns of Shetang and Mabaoquan, with significant population growth and
urbanization (Figure 4).
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study area, with a total landslide area of 20 km2, and with the landslide number density 
and area density being 30/km2 and 4%, respectively. The majority of these landslides 
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4c). The field investigations showed that most of the landslides were narrow and 
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Figure 3. Geological map of the study area, obtained from 1:200,000 geological maps published by
the China Geological Survey (http://dcc.cgs.gov.cn/);.

2.2. The Landslide Inventory

The landslide inventory used in this study area consisted of the landslides induced by
the 2013 heavy rainfall event in the Tianshui area. The landslide inventory was visually
interpreted by comparing the remote sensing images before and after the rainfall event,
ensuring that the landslides interpreted were caused by the 2013 rainfall event [48]. The
results showed that 14,982 landslides occurred within 500 km2 of the entire study area,
with a total landslide area of 20 km2, and with the landslide number density and area
density being 30/km2 and 4%, respectively. The majority of these landslides were between
100 m2 and 1000 m2, accounting for about 70% of the total number (Figure 4c). The field
investigations showed that most of the landslides were narrow and small-scale shallow
loess landslides and loess mudflows. These shallow loess landslides frequently form
in the upper valley, and some landslides are transformed into debris flows during the
movement process [48,49].

http://dcc.cgs.gov.cn/
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Figure 4. The distribution of residential areas, main roads, and landslides caused by the 2013 rainfall
event in the study area: (a) The locations of the national rainfall stations and soil samples used in this study.
(b) The distribution of rainfall-induced landslides of the 2013 rainfall event; (c) Frequency density of the
landslide size (area in m2) distribution. The road and resident data were obtained from the OpenStreetMap
database (https://master.apis.dev.openstreetmap.org/export#map=11/35.2510/103.4308).

3. Data and Methods
3.1. Rainfall Data

Based on the China Meteorological Administration’s rainfall stations, we gathered
rainfall data every 12 h from June to July. To determine the geographical distribution of
rainfall in the area, the most frequently used Kriging interpolation algorithm was employed
to interpolate data from 14 national rainfall stations that were less than 100 km from the
study area. According to the rainfall data from rainfall station 57,014 in the study area,
the whole rainfall process lasted about 40 days—from June 19 to July 25—and the total
accumulated rainfall in the study area was 470 mm, including four short-term heavy
rainfall events (each short-term heavy rainfall event lasted about 2–3 days). The four heavy
rain events took place from June 19 to 21, July 8 to 10, July 21 to 22, and July 24 to 25,
respectively (Figure 5). In addition to these four rainfall events, there was also long-term
intermittent rainfall.

Based on the rainfall station data and Kriging interpolation, we determined the spatial
distribution of rainfall in different periods. Figure 6 shows the distribution of precipitation
during the four heavy rainfall events. The results show that the spatial change in the
cumulative rainfall was minor, with the precipitation in the north slightly higher than that
in the south across the study area (Figure 6). Of the four short-term rainfall events, the
rainfall of first event was the heaviest, at around 120~150 mm, accounting for 30% of all
precipitation. The rainfall for the second event was estimated to be around 70–96 mm. Only
two days separated the third and fourth rainfall events, which is a short time span; the
cumulative precipitation of the two events was 100 and 37 mm, respectively.

https://master.apis.dev.openstreetmap.org/export#map=11/35.2510/103.4308
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3.2. Analysis of Soil Samples

The accuracy of the physical model is primarily determined by the input parameters,
so accurate acquisition of soil parameters is critical for modeling prediction [31,32]. Based
on previous studies, we collected information on the soil mechanical and hydrological
parameters from 51 soil samples within a 50 km radius of the study area. Among the 51 soil
samples, 47 were Quaternary soil samples and the remaining 4 were Tertiary mudstone
samples (Figure 7). We analyzed the 47 Quaternary soil samples, and the results showed
that, for the cohesion, the minimum value was 8 kPa, the maximum value was 37.2 kPa, and
the average value was 22.4 kPa (Figure 7a). The internal friction angles ranged from 13.1◦

to 21◦, with an average value of 18.0◦ (Figure 7b). The saturated hydraulic conductivity
(Ks) ranged from a high of 250 × 10−6 cm/s to a low of 29 × 10−6 cm/s (Figure 7a).
Simultaneously, we used quantile–quantile plots to determine whether these parameters
conformed to the normal distribution. The results showed that the parameters of the
Quaternary soil samples were in good agreement with the normal distribution (Figure 8).
Additionally, we analyzed the four Tertiary mudstone samples (Figure 7b). The results
showed that the samples had maximum and minimum cohesion of 25 kPa and 11 kPa,
respectively, and maximum and minimum internal friction angles of 32 kPa and 22 kPa,
respectively. The values of Ks were lower compared with the Quaternary soils, with a
maximum and minimum of only 10−6 cm/s and 1 × 10−7 cm/s, respectively (Figure 7b).
Given the small number of Tertiary samples, we assumed that the four Tertiary mudstone
samples also followed the normal distribution.

To evaluate landslide threats in various scenarios and investigate the functional link
between hillslope hydrology and slope materials, the topographical, soil hydrological, and
mechanical features were mapped, as along with current land use. The slope angle of the
research region was calculated based on the elevation data, which were generated using
ALOS PALSAR DEM with 12.5 m resolution (Figure 9a). The China Geological Survey’s
1:200,000 geological maps were used to obtain the lithology data (http://dcc.cgs.gov.cn/).
The soil thickness distribution was evaluated using the Z-model developed by Saulnier
et al. [50]. Based on previous studies [51,52], we assumed that the maximum value of the
soil thickness in the study area was 6 m and the minimum was 0.5 m. Soil thickness can be
estimated using Equation (1) (Figure 9b). Soil data were acquired from the Harmonized
World Soil Database, which is a part of the World Soil Database established by the Food
and Agriculture Organization of the United Nations (FAO) and the International Institute
for Applied Systems Analysis (IIASA) (http://webarchive.iiasa.ac.at/Research/LUC/
External-World-soil-database/HTML/). The soil types in the study area include loam and
sandy clay loam, with loam primarily distributed in the north and middle of the study
area and sandy clay loam primarily distributed in the south (Figure 9c). The land-use
and land-cover (LULC) data were derived from the 10 m resolution global land-cover
results [53] (Figure 9d). The parameter values used for different LULC were obtained
from the USDA [54] (Table 1). Finally, the above input data were converted into a raster
resolution of 12.5 m.

http://dcc.cgs.gov.cn/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
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Zi = Zmax −
(

hi − hmin
hmax − hmin

)
(Zmax − Zmin) (1)

where Zmax and Zmin are the maximum and minimum soil thicknesses, respectively, and
hmax and hmin are the maximum and minimum elevations of the study area, respectively.

Table 1. The parameter values used for different LULC of the study area.

LULC min (Kpa) Crmax (Kpa) CN-9 CN-10

Cropland (10) 2 4 69 79
Forest (20) 4 14 60 69
Grassland (30) 2 4 69 79
Shrubland (40) 3 6 65 76
Wetland (50) 0 0 100 100
Water (60) 0 0 100 100
Urban area (80) 0 1 92 96
Bare land(90) 0 0 100 100
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CN-9 and CN-10 represent two different soil types in the study area: CN-9 represents
sandy clay loam, and CN-10 represents loam.

3.3. Brief Description of the FSLAM Model

A physical-based model called the Fast Shallow Landslide Assessment Model (FSLAM)
was created to estimate the likelihood of landslides occurring at the regional level [46,55].
Like other physical models, this one has two sub-models: (1) A geotechnical model that
is used to calculate the slope stability using the popular infinite slope model, and (2) a
hydrological model that determines the location of the water table as a result of rainfall
infiltration into the soil layer. The following formula is used to calculate the factor of
safety (FS):

FS =
C

gρszcosθsinθ
+

(
1 − h

z
× ρw

ρs

)
×

(
tanϕ

tanθ

)
(2)

C = Cs + Cr (3)

where C is the cohesion, ρs is the saturated soil density, ρw is the water density, θ is the
slope angle, ϕ is the friction angle, h is the depth of the groundwater table, z is the depth of
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the soil, Cs is the effective cohesion related to the lithology, and Cr is the apparent cohesion
produced by the root strength.

The hydrological model considers the combined effects of medium- and long-term
antecedent precipitation (Pa) and short-term event-specific precipitation (Pe) on the changes
to the total groundwater table (h). The effect of the event-specific precipitation (Pe) applies
vertical flow methods to compute the increase in the short-term water table (he), while
the antecedent precipitation (Pa) determines the changes in the medium- and long-term
groundwater levels (ha) using the lateral flow method. The final water table position (h) is
determined as follows:

h = ha + he (4)

During the mid–long-term, the Pa contributes to groundwater recharge (qa) and,
ultimately, determines the ha at a steady state. The recharge is a reduced percentage of
precipitation due to runoff and evapotranspiration, and it is also known as effective water
infiltration into the soil layer. To properly quantify this recharge, the groundwater flow
requires careful evaluation of the antecedent rainfall [56]. The FSLAM model employs the
classic steady-state TOPMODEL to compute the antecedent effects of effective rainfall on
groundwater levels [57], as applied in many models [58,59].

ha =
( a

b

) qa

Kssinθcosθ

(
ρw

ρs

)
(5)

where a is the drainage area, b is the cell size, Ks is the saturated hydraulic conductivity,
and qa is the effective infiltration rate due to antecedent rainfall.

The FSLAM model uses the vertical flow approach to determine the rise in the water
table (he), in contrast to the event-specific rainfall (Pe), which disregards the recharge
contribution from upper areas (Figure 10). The FSLAM model considers the influence of
rainfall events on the changes in groundwater levels due to vertical seepage from short-term
heavy rainfall events. Several models have been calculated using the vertical infiltration
method [60]. Vertical flow is concerned with the vadose zone, where unsaturated soil flow
is represented by the Richards equation, which has complicated physics [17,61]. Models
incorporating the Richards equation necessitate a large number of input parameters as well
as extensive calibration. A computational difficulty is also presented by resolving these
physics at the regional level. Such models are less applicable at the regional level due to
their complexity and lengthy calculations, especially when numerous possibilities must be
taken into account [46]. The FSLAM model, on the other hand, is intended to be fast at the
regional scale, even with a high-resolution topography. As a result, rather than tracking the
destabilization process, the FSLAM model examines the final value of the Fs. Given the soil
porosity, total infiltration from a rainfall event is instantly translated into an increase in the
water table:

he = qe/n (6)

where qe represents the storm event infiltration, and n represents the soil porosity. To
determine the value of qe, the Pe is converted into groundwater recharge. The method
selected in this study was the event-oriented SCS-CN model [54]. This model was created
to compute the surface runoff associated with storm events, but it also computes the
infiltration implicitly. The runoff curve number (also called a curve number, or simply CN)
is an empirical parameter used in hydrology for predicting direct runoff or infiltration from
excess rainfall. The model’s success can be attributed to its simplicity, as it only requires
one parameter. Finally, event infiltration qe is computed by the SCS-CN model as follows:

qe = Pe −
(Pe − (5080/CN − 51))2

Pe + 4 × (5080/CN − 51)
(7)
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After combining all of the terms from the two different approaches to predicting
rainfall, the final equation for the factor of safety (Fs) can be expressed as follows:

FS =
C

gρszcosθsinθ
+

(
1 −

((( a
b

) qa

Kssinθcosθ

(
ρw

ρs

)
+

qe

n × z

))
× ρw

ρs

)
×

(
tanϕ

tanθ

)
(8)

Simultaneously, Monte Carlo simulation—a reliable and well-known method in appli-
cations concerning probability analyses and reliability studies—was used in this study to
account for the uncertainty in soil properties [43,46,47]. We took into account the uncer-
tainties of the two critical slope failure parameters: internal friction angle, and cohesion.
Hence, when stochastic parameters are used, the model can calculate the probability of
failure (PoF) of the study area.

4. Result

In this study, the short-term heavy rainfall event consisted of the precipitation from
four events from June to July, and the antecedent precipitation was the total rainfall in
the 10 days before a single heavy rainfall event (Figure 5). Based on the FSLAM model,
we calculated the prediction results of the factor of safety (Fs) under four different heavy
rainfall events in order to compare the impacts those heavy rainfall events on the triggering
mechanisms of landslides. Figure 11 shows the distribution of the average values of 1000
predicted pictures. From Figure 11, we can observe that the trend of the Fs maps obtained
from the four rainfall events is broadly similar. The majority of the areas with low Fs values
are spread out on both sides of the gullies, which is relatively consistent with the actual
landslide distribution. However, there are significant disparities in the predicted unstable
area, i.e., the blue region where the Fs predicted for the four event rainfalls is less than 1.
For the first rainfall event, there are few areas (blue areas) with Fs less than 1, and only
sporadic areas show instability. When the second rainfall event is used as the input data,
the unstable area (i.e., blue region) gradually increases, but the predicted failure area is still
small compared to the actual landslide area, indicating that most landslides are still not
predicted. However, when the third and fourth rainfall events are used as input data, the
area with Fs less than 1 is expected to grow significantly. The majority of the blue areas
are located near the gully area with a steep hillslope gradient, which corresponds to the
spatial distribution of the actual landslides. Mainly, when the fourth rainfall event is used
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as the input data, the majority of the actual landslides essentially occur in unstable areas
(i.e., blue areas), indicating that most actual landslides are predicted.
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Figure 12 depicts the frequency density distribution of the factor of safety (Fs) under
the four rainfall events. The results show that the Fs values of most areas are concentrated
between 1 and 3, accounting for about 80% of the total area. We can also observe that the
peak value of the frequency curve of the four rainfall events decreases. The peak values
of Fs in the first and second rainfall events are 1.8 and 1.6, respectively, but the peaks
associated with the third and fourth rainfall events are 1.3 and 1.1, respectively.
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The FSLAM model determined the slope failure probability (Pf) of the study area
based on a Monte Carlo simulation of 1000 anticipated pictures of future landslides. The
Pf value was classified into five groups based on a 0.25 interval: very low hazard (0.01),
low hazard (0.01–0.25), moderate hazard (0.25–0.5), high hazard (0.5–0.75), and very high
hazard (0.75–1). Figure 13 shows the prediction of Pf under the four rainfall events. The
results show that the prediction results of Pf are roughly consistent with the actual landslide
distribution. Simultaneously, for the first and second rainfall events, the majority of the
landslides occur in the low-hazard area, with Pf of 0.01–0.25. For the third and fourth
rainfall events, the predictions of high-hazard and very-high-hazard areas are significantly
increased—especially for the fourth rainfall event, where the very-high-hazard areas (i.e.,
red areas) are increased considerably, and most of the landslides occur in the high-hazard
and very-high-hazard areas.

To quantitatively analyze the hazard results, we counted the class area and the corre-
sponding landslide areal density (LAD) of different hazard classes. Figure 14 shows the
predicted hazard zoning results and the landslide number density (LND) distribution un-
der the four rainfall events. The results show that nearly 90% of the study area is expected
to consist of very-low- and low-hazard areas, with very-low-hazard areas accounting for
around 80% and low-hazard areas accounting for roughly 10%. For very-high-hazard areas
(i.e., red areas), the predicted areas of the third and fourth rainfall events account for 3%
and 5% of the total area, respectively, while the predicted areas of the first two rainfall
events account for less than 1%. In addition, from the LND curves in different hazard
classes, we can observe that the LND of the third and fourth rainfall events increases with
the hazard zoning, while the LND curves predicted by the first and second rainfall events
do not show the same trend.
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We used the actual landslide data to evaluate the prediction ability of the four haz-
ard results. For this study, 14,982 landslides were used as sliding samples. We chose
15018 non-landslide samples at random from the landslide-free area, i.e., outside the buffer
zone of landslide samples (buffer radius = 100 m). Finally, we used 30,000 samples to
test the model performance calculated for the four rainfall events. Figure 15 presents the
fourfold plots summarizing the numbers of samples correctly and incorrectly classified by
the different prediction results [62,63]. The results show that the third and fourth rainfall
events correctly predicted the location of most of the landslides, with about 2000 (true
positives (TP), 14%) and 4300 landslides ((true positives)TP, 28%) correctly classified, re-
spectively, while the other two rainfall events correctly predicted the fewest landslides.
In addition, the accuracy of the four predicted hazard results was calculated. The accu-
racy is expressed as a percentage of correctly classified samples, which is expressed by
accuracy = (TP + TN)/(TP + TN + FP + FN). The better the prediction ability, the higher
the accuracy [62]. The results show that the accuracy of the four predicted results was
50.1%, 52.0%, 56.1%, and 63%, respectively, showing that the fourth rainfall event had the
best prediction ability, while the third event had the second-best prediction ability.
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To quantitatively evaluate the impact of the antecedent precipitation (Pa) on the
predicted landslide area (Pls), we calculated the predicted landslide area (Pls) of four
rainfall events with a Pf threshold of 0.5. Figure 16 shows the relationship between Pa and
Pls for the four rainfall events. From Figure 16, we can observe that the predicted landslide
area (Pls) is positively correlated with the antecedent precipitation (Pa). With the increase
in Pa, the Pls is also gradually increased. There is a solid linear link between the Pa and Pls
based on the fitting relationship of Pls = 0.3 Pa − 0.26, indicating that antecedent rainfall
plays a major role in the occurrence of landslides in the region.
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5. Discussion

The occurrence of rainfall-induced landslides is a dynamic evolutionary process of
rainfall events. For rainfall-induced landslides, the timing of landslide events frequently
lags behind that of rainfall events. The two stages of rainfall that cause landslides are as
follows: the first stage is the early stage, where the rainfall infiltration causes an increase
in the water content and a gradual decline in the slope’s shear strength of soil mass.
The gradual deterioration of the slope structure creates the necessary conditions for the
development of rainfall-induced landslides. The second stage is the key stage; the rainfall
at this stage will directly lead to the occurrence of landslides. Thus, the development of
the landslide is the result of the combined effects of antecedent rainfall and current rainfall
events. However, most physical-based models only address either antecedent or current
rainfall and do not account for both impacts on rainfall-induced landslides. Godt et al. [64]
pointed out that rainfall with high intensity and short duration has a limited effect on the
thickness of the triggered landslides. For the loess area, the rainfall infiltration depth of
the loess is less than 1.5 m [65]; short-term heavy rainfall may only create a change in the
water content of the shallow surface soil, with no impact on the deep groundwater level
of the soil, and the antecedent rainfall is the main factor influencing changes in the deep
groundwater levels.

Previous research found that the rains that cause the slope failure usually occur within
10 days of the landslide [66,67]. Therefore, in this study, the total rainfall within 10 days
of each rainfall event was considered as the early effective rainfall. We evaluated the
impact of four rainfall events on the occurrence of loess landslides using the FSLAM model.
The results showed that the occurrence of loess landslides is more directly related to the
antecedent rainfall. With the increase in Pa, the Pls also gradually increased. There is a
solid linear link between the Pa and Pls based on the fitting relationship, indicating that an-
tecedent rainfall plays a major role in the occurrence of landslides in the region (Figure 16).

At present, previous studies [49,68,69] have mainly considered the spatial distribution
of this extreme-rainfall-induced mass landslide, and few studies have carried out the
quantitative analysis of the rainfall processes and triggering mechanisms for landslide
occurrence associated with this event. We used the FSLAM model to predict the spatial
locations of landslides during the 2013 heavy rainfall event. The four rainfall events were
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used as input data, and the results showed that the trend of the Fs maps obtained from
the four rainfall events was essentially the same. The majority of the low-Fs areas were
found on both sides of the gullies. However, there were significant disparities in the areas
(blue areas) predicted for the four rainfall events as having Fs less than one, and the peak
of the frequency density curve corresponding to the four events decreased, indicating that
the four rainfall events had a different triggering ability on the rainfall-induced landslides
(Figures 11 and 12). By comparing the predicted results of the four heavy rainfall events
with the actual landslides, we can see that while the first and second heavy rainfall events
produced the most precipitation of the four events, they did not predict many landslide
areas. This may suggest that the first two rainfall processes were not the primary cause
of slope failure, merely preparing for the landslides in the later period. The erosion and
rainwater infiltration of the preceding rainfall had a strong impact on the slope body, and
the instability area in the region rapidly increased on the basis of the first two heavy rainfall
events, even though the third and fourth rainfall events were the smallest of the entire
rainfall processes. Due to the hysteresis of rainfall-induced landslides, the formation of
slope failures in the later period should be reflected in the promotion of the second heavy
rainfall event, and the superposition of the fourth and third rainfall events ultimately
determined the spatial distribution characteristics of the landslide induced by the 2013
heavy rainfall event.

6. Conclusions

In this study, in order to compare the impacts of four different heavy rainfall events on
the likelihood of landslides, we conducted the physical-based spatiotemporal prediction of
rainfall-induced landslides based on the FSLAM model. The model was validated using
the actual landslide data of the 2013 rainfall event. The results show that the trend of the Fs
maps obtained from the four rainfall events is the same. The majority of the areas with low
Fs values are spread out on both sides of the gullies, which is relatively consistent with the
actual landslide distribution. However, the areas where the predicted Fs was less than 1
(i.e., blue areas) have significant disparities, and the peak of the frequency density curve
corresponding to the four events decreased, indicating that the four rainfall events had a
different triggering ability on the rainfall-induced landslides. Additionally, we evaluated
the impacts of the four rainfall events on the occurrence of loess landslides using the
FSLAM model. The results showed that the occurrence of loess landslides is more directly
related to the antecedent rainfall, and there was a solid linear link between the Pa and Pls
based on the fitting relationship of Pls = 0.3 Pa − 0.26. By comparing the distribution of
the predicted results of the four heavy rainfall events with the actual landslides, we can
conclude that the first two rainfall processes may not be the main reason for slope failure,
serving only to prepare for the landslides in the later period. Finally, the superposition
of the third and fourth rainfall events is the primary cause of the spatial distribution of
rainfall-induced landslides. This study provides scientific support for understanding the
spatiotemporal distribution and triggering mechanisms of rainstorm-type landslides, as
well as the prediction and early warning of rainfall-induced landslides in the loess area.
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