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Abstract: Shale gas wastewater is a hypersaline industrial effluent in demand of efficient treatment or
resource recovery. Membrane distillation (MD) is a heat-driven desalination process of high potential
to deal with such streams. However, its application is highly limited by the unsatisfactory hydropho-
bic membranes that involve a trade-off between vapor permeability and fouling/wetting resistance.
Our previous studies highlighted the potential role of an intermediate coating layer of a carbon nan-
otube (CNT) for the superhydrophobic membrane with 1H,1H,2H,2H-perfluorodecyltriethoxysilane
(FAS) grafted to address the trade-off issue against synthetic saline oily wastewater. The work herein
investigated its application performance in the continuous concentration and water recovery of real
shale gas wastewater, with a commercial PVDF membrane as the reference. The modified membrane
recycled 48.2% of the total volume as high-quality water and rejected 99% of feed salinity, achieving a
superior concentration rate and flux recovery rate compared to PVDF. The value of the COD, total
nitrogen, and ammonia nitrogen in the permeate after the modified membrane was less than 50,
20, and 20 mg/L, meeting the local wastewater discharge standard. It was pointed out that the
inorganic fouling for the MD membrane was more of a concern in dealing with a real stream, but the
modified membrane exhibited excellent fouling resistance. The cost associated with the treatment was
estimated at USD 2.2/m3 for a production capacity of 2000 m3/d. The proposed superhydrophobic
membrane has proven to be a feasible alternative from both technical and economic standpoints,
offering the potential to improve MD effluent water quality and mitigate membrane fouling.

Keywords: membrane distillation; shale gas wastewater; carbon nanotube; water recovery; mem-
brane fouling

1. Introduction

Shale gas wastewater is a typical hypersaline industrial stream (total dissolved sub-
stances (TDS) > 10,000 mg/L [1]) coming from the hydraulic fracturing process, containing
a large number of natural or additive organic components, e.g., hydrocarbons, surfactants,
scale inhibitors, or other hard-to-degrade contaminants. The escalating volume of such
streams accounts for up to 80% of the total water consumed in the entire exploitation
process. Considerable attention has been paid to it due to its potential impact on the local
environment considering the high emission of complex compositions [2–5].

Various technologies have been applied to deal with shale gas wastewater separately
or in a hybrid mode. Often, conventional biological treatment lacks robustness due to
the hindered metabolism of microorganisms by the hypersalinity, and chemical treatment
suffers from high chemical dosage and unsatisfactory reaction reactivity. Membrane-based
desalination technology that employs a thin film barrier to recover water resources was
successfully applied in seawater desalination, where similar high salinity yet less organic
substance versus shale gas wastewater was often found [6]. Recently, pressure-driven
membranes (e.g., reverse osmosis) were reported to be susceptible to scaling and fouling
issues dealing with such a stream, exhibiting a rapid decline in water flux [7]. Membrane
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distillation (MD) is considered an alternative membrane-based desalination process since it
utilizes the temperature difference as the driving force, which not only adapts recyclable
energy from solar or waste heat but also shows a less affected vapor flux by the salt content
in the feed [8–11].

Nevertheless, MD faces fouling and wetting problems, especially those caused by
low surface tension foulants (surfactants, grease, etc.) [12–16]. To this end, morpholog-
ical constructions and low-surface-energy material coatings are effective strategies for
enhancing the fouling resistance of hydrophobic membranes [17]. Nanomaterials (e.g.,
nanoparticle silica and nanofiber carbon nanotubes (CNTs)) are usually used for the inter-
facial modification of membranes [2,18–20]. In particular, the trade-off between fouling
resistance and permeability for the modified membranes with silica nanoparticles was
recently reported [21,22]. CNT-modified membranes offer another option to enhance both
the membrane permeability due to its 1D structure and anti-fouling capability due to its
better thermal conductivity, electrical conductivity, and specific surface area [20,23–25].
Our previous studies have pointed out that the CNT intermediate layer contributed to ideal
permeability and excellent fouling/wetting resistance thanks to the superhydrophobicity
and induced slippery interfaces [20]. However, reports on the practical applications of
CNT-modified membranes for actual shale gas wastewater are rarely found. Whether
the desired performance of enhanced fouling/wetting resistance and mitigated flux de-
cline could be achieved in a real stream of complex organic and inorganic compositions
remains unknown.

Hence, in this study, CNT-modified superhydrophobic MD membranes were applied
to desalinate real shale gas wastewater. A multiple-cycle test was conducted with the neat
commercial PVDF membrane as the control. The permeability performance and fouling
behavior of the superhydrophobic membrane were investigated, as well as the water quality
with reference to the local standard for water discharge. The capital expenditure and opera-
tional costs were also determined. This work intends to provide a theoretical basis and the
foundation for the future promotion and application of CNT-modified superhydrophobic
membranes.

2. Materials and Methods
2.1. Materials and Chemicals

Commercial polyvinylidene fluoride (PVDF) membranes (Millipore Sigma, Burlington,
MA, USA) with a pore size of 0.22 µm and thickness of 125 µm were used as the control.
Carbon nanotubes (CNTs) of carboxy-functionalized (XFNANO Co., Ltd., Nanjing, China)
with a length of 0.5−2 µm and a purity >95% were used for the membrane surface modifica-
tion. 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (FAS, C16F17H19O3Si), polyvinyl alcohol
(PVA), glutaraldehyde (GA), mineral oil, and other chemicals were purchased from Aladdin
Co., Ltd., Shanghai, China. All reagents used in this study were analytical grade and used
as received. The real shale gas wastewater was obtained from the Yongye 5-1HF well in the
“Rongchang-Yongchuan” block, Baofeng Town, Yongchuan District, Chongqing, China.

2.2. Superhydrophobic Membranes Based on Surface Modification

This superhydrophobic membrane (hereinafter abbreviated as PVDF-CNT-FAS) was
fabricated by introducing a CNT layer with a hydroxyl-rich surface on a commercial
PVDF substance membrane, followed by FAS grafting. In order to better disperse the
carboxy-functionalized CNT (a COOH content of approximatelt 2 wt%), 0.4 g of carboxy-
functionalized CNT was placed in 500 mL of a 10 M NaOH aqueous solution and stirred at
90 ◦C for 5 h. After cooling, the CNT was washed with DI water until it had a neutral pH,
and the CNT was filtered and dried to obtain the CNT (CNT-COONa) which facilitated
dispersion. Subsequently, the CNT was dissolved in an ethanol solution at a ratio of
0.2 wt% and sonicated for 120 min to disperse the solution uniformly. The obtained
CNT suspensions were sprayed onto commercial PVDF membranes (7.5 × 14 cm2) with a
surface loading density of 0.42 mg/cm2. To prevent the CNT from peeling off the membrane
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surface and to enrich the hydroxyl groups on the membrane surface, a 0.1 wt% aqueous
PVA solution was then sprayed onto the membrane surface. These CNT-coated membranes
were immersed in a mixture of 11.3 g/L of GA cross-linker and 4.4 g/L of HCl catalyst at a
temperature of 70 ◦C for 1 h. The membranes were subjected to a FAS grafting fluorination
reaction by immersing the membranes in an ethanolic solution of FAS at a concentration
of 4 wt% for 24 h, followed by a thorough rinse with DI water. Finally, the prepared
PVDF-CNT-FAS membranes were dried at 105 ◦C for 6 h and stored in ambient conditions
before use.

2.3. Characterization of the Membrane

The morphology of the surface and cross-section of the membrane were investigated
via a scanning electron microscope (SEM, SU8010, Hitachi, Tokyo, Japan). A contact angle
instrument (SDC-100, Shengding, Kunshan, China) was used to define the hydrophobicity
of the membrane. The membrane pore size distribution was determined with a capillary
flow porometer (Porolux 1000, IB-FT GmbH, Berlin, Germany). The fouled membrane was
characterized using electrochemical impedance spectroscopy (EIS, Admira, Squidstat plus,
Phoenix, AZ, USA) to elucidate the fouling/wetting degree.

2.4. Water Quality Monitoring

The mineral element of the shale gas wastewater was analyzed with an inductively
coupled plasma series mass spectrometer (ICP-MS, NexION 5000, Perkinelmer, Waltham,
MA, USA). The zeta potentials were tested with an electrokinetic analyzer (SurPASS,
Anton Paar, Graz, Austria). The organic matter was tested with a steady-state, transient
fluorescence spectrometer (EEM, FLS1000. Edinburgh instruments, Edinburgh, UK) and a
total organic carbon analyzer (TOC, Shimadzu, Kyoto, Japan).

2.5. MD Experiment

The DCMD device used an acrylic plate with an effective membrane area of 38.2 cm2

and a flow channel size of 106 cm × 36 cm × 1 cm in length, width, and thickness for both
the feed and permeation designs. The temperature of the feed and condensation side were
set at 70 and 15 ◦C, respectively, maintained with a temperature circulator. The DCMD unit
operated in staggered flow, and the flow rates were adjusted with peristaltic pumps at 500
mL/min on the feed side and 200 mL/min on the permeate side.

The concentration factor (CF) was calculated using the equation of CF = VF/(VF − Vr),
where VF and Vr were the volume of the feed and the water recovery in the permeate. The
salt rejection rate (SR) was calculated using the equation of SR = 1 − SRP/SRF, where
SRP and SRF were the conductivities of the permeate and feed.

2.6. Characterization of Shale Gas Wastewater

The real shale gas wastewater was taken from a storage tank of the gas gathering
station in local Chongqing, China. The wastewater was turbid with a slightly irritating
odor, and the supernatant was light yellow after standing with a precipitate at the bottom.
The wastewater was shaken well and used for water quality characterization as the raw
wastewater, and the measurement results are listed in Table 1.

Table 1. Water quality characteristics of shale gas wastewater.

Zeta Potential
(mv)

Conductivity
(mS/cm) TDS (g/L) TOC (mg/L) TN (mg/L) COD (mg/L) NH4

+

(mg/L) pH NTU

−4.7 41.4 21.5 372 153 1921 131 7.2 82

Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Ba (mg/L) Fe (mg/L) Mn (mg/L) Cl (mg/L) Si (mg/L)

360,005 778 6749 30,850 4781 14,076 41 30,647 271,206
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The water quality characteristics of shale gas wastewater are summarized as fol-
lows. (1) Hypersaline. The conductivity of the shale gas wastewater was maintained at
41.4 mS/cm, slightly higher than that of seawater, and the TDS was 21.5 g/L. (2) High-
concentration organic contaminants. The pH of this wastewater was neutral at 7.2, and the
COD was 1.9 × 103 mg/L, approximately 18 times the pollutant discharge index of the
wastewater plant, in which the total organic carbon content was also high. (3) High mineral
content. The original content of calcium, magnesium, barium, iron, and manganese was
very high, indicating that the shale gas wastewater may induce severe inorganic scaling.
(4) High ammoniacal nitrogen content. The total nitrogen in this wastewater was 153 mg/L,
of which 85.6% belonged to ammonium, which may damage the water quality of the
permeate side for the MD process due to the potential selective permeate.

3. Results and Discussion
3.1. The Characteristics of the Membrane

Table 2 compares the essential characteristics of the commercial PVDF membrane
and the modified superhydrophobic PVDF-CNT-FAS membrane. The virgin membrane
exhibits a micro-porous structure in the top view (reported as an average membrane
pore size of 0.22 µm [2,20]) and a single homogeneous layer in the cross-section view (a
thickness of 125 µm). The modified membrane was loaded with a dense CNT layer, which
shows a network fiber structure with a thickness of ca.15 µm [20,24,25]. Accordingly, a
denser pore size (approximately 0.18 µm) was found. Another change lies in the surface
hydrophilicity, where the virgin membrane has water and oil contact angles of 124 ± 3◦

and (42 ± 6◦), respectively [26]. In contrast, the PVDF-CNT-FAS membrane possesses a
superhydrophobic (180◦), oleophobic (103◦), and slippery (lower than 5◦) interface [20,27],
indicating the potential anti-fouling and wetting resistance properties due to the metastable
Cassie-Baxter state created by the network fiber structure of the CNT layer [20,28,29].

Table 2. Basic characteristics of the PVDF and PVDF-CNT-FAS membranes.

Characteristic PVDF PVDF-CNT-FAS

Thickness δ (µm) 125 ± 2 140 ± 6
Pore diammater r (µm) 0.22 ± 0.006 0.18 ± 0.003

Slip angle θ0 (◦) >10◦ <5◦

Water contact angle θ1 (◦) 124 ± 3 180
Mineral oil contact angle θ2 (◦) 42 ± 6 103 ± 2

SEM image of the membrane’s
plain surface

Water 2023, 15, x FOR PEER REVIEW 4 of 13 
 

 

Zeta Poten-

tial (mv) 

Conductivity 

(mS/cm) 
TDS (g/L) TOC (mg/L) TN (mg/L) COD (mg/L) NH4+ (mg/L) pH NTU 

−4.7 41.4 21.5 372 153 1921 131 7.2 82 

Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Ba (mg/L) Fe (mg/L) Mn (mg/L) Cl (mg/L) Si (mg/L) 

360,005 778 6749 30,850 4781 14076 41 30,647 271,206 

The water quality characteristics of shale gas wastewater are summarized as follows. 

(1) Hypersaline. The conductivity of the shale gas wastewater was maintained at 41.4 

mS/cm, slightly higher than that of seawater, and the TDS was 21.5 g/L. (2) High-concen-

tration organic contaminants. The pH of this wastewater was neutral at 7.2, and the COD 

was 1.9×103 mg/L, approximately 18 times the pollutant discharge index of the wastewater 

plant, in which the total organic carbon content was also high. (3) High mineral content. 

The original content of calcium, magnesium, barium, iron, and manganese was very high, 

indicating that the shale gas wastewater may induce severe inorganic scaling. (4) High 

ammoniacal nitrogen content. The total nitrogen in this wastewater was 153 mg/L, of 

which 85.6% belonged to ammonium, which may damage the water quality of the perme-

ate side for the MD process due to the potential selective permeate. 

3. Results and Discussion 

3.1. The Characteristics of the Membrane 

Table 2 compares the essential characteristics of the commercial PVDF membrane 

and the modified superhydrophobic PVDF-CNT-FAS membrane. The virgin membrane 

exhibits a micro-porous structure in the top view (reported as an average membrane pore 

size of 0.22 μm [2,20]) and a single homogeneous layer in the cross-section view (a thick-

ness of 125 μm). The modified membrane was loaded with a dense CNT layer, which 

shows a network fiber structure with a thickness of ca.15 μm [20,24,25]. Accordingly, a 

denser pore size (approximately 0.18 μm) was found. Another change lies in the surface 

hydrophilicity, where the virgin membrane has water and oil contact angles of 124 ± 3° 

and (42 ± 6°), respectively [26]. In contrast, the PVDF-CNT-FAS membrane possesses a 

superhydrophobic (180°), oleophobic (103°), and slippery (lower than 5°) interface [20,27], 

indicating the potential anti-fouling and wetting resistance properties due to the metasta-

ble Cassie-Baxter state created by the network fiber structure of the CNT layer [20,28,29]. 

Table 2. Basic characteristics of the PVDF and PVDF-CNT-FAS membranes. 

Characteristic PVDF PVDF-CNT-FAS 

Thickness δ (μm) 125 ± 2 140 ± 6 

Pore diammater r (μm) 0.22 ± 0.006 0.18 ± 0.003 

Slip angle θ0 (°) >10° <5° 

Water contact angle θ1 (°) 124 ± 3 180 

Mineral oil contact angle θ2 (°) 42 ± 6 103 ± 2 

SEM image of the membrane’s 

plain surface  

 
 

Water 2023, 15, x FOR PEER REVIEW 4 of 13 
 

 

Zeta Poten-

tial (mv) 

Conductivity 

(mS/cm) 
TDS (g/L) TOC (mg/L) TN (mg/L) COD (mg/L) NH4+ (mg/L) pH NTU 

−4.7 41.4 21.5 372 153 1921 131 7.2 82 

Na (mg/L) K (mg/L) Ca (mg/L) Mg (mg/L) Ba (mg/L) Fe (mg/L) Mn (mg/L) Cl (mg/L) Si (mg/L) 

360,005 778 6749 30,850 4781 14076 41 30,647 271,206 

The water quality characteristics of shale gas wastewater are summarized as follows. 

(1) Hypersaline. The conductivity of the shale gas wastewater was maintained at 41.4 

mS/cm, slightly higher than that of seawater, and the TDS was 21.5 g/L. (2) High-concen-

tration organic contaminants. The pH of this wastewater was neutral at 7.2, and the COD 

was 1.9×103 mg/L, approximately 18 times the pollutant discharge index of the wastewater 

plant, in which the total organic carbon content was also high. (3) High mineral content. 

The original content of calcium, magnesium, barium, iron, and manganese was very high, 

indicating that the shale gas wastewater may induce severe inorganic scaling. (4) High 

ammoniacal nitrogen content. The total nitrogen in this wastewater was 153 mg/L, of 

which 85.6% belonged to ammonium, which may damage the water quality of the perme-

ate side for the MD process due to the potential selective permeate. 

3. Results and Discussion 

3.1. The Characteristics of the Membrane 

Table 2 compares the essential characteristics of the commercial PVDF membrane 

and the modified superhydrophobic PVDF-CNT-FAS membrane. The virgin membrane 

exhibits a micro-porous structure in the top view (reported as an average membrane pore 

size of 0.22 μm [2,20]) and a single homogeneous layer in the cross-section view (a thick-

ness of 125 μm). The modified membrane was loaded with a dense CNT layer, which 

shows a network fiber structure with a thickness of ca.15 μm [20,24,25]. Accordingly, a 

denser pore size (approximately 0.18 μm) was found. Another change lies in the surface 

hydrophilicity, where the virgin membrane has water and oil contact angles of 124 ± 3° 

and (42 ± 6°), respectively [26]. In contrast, the PVDF-CNT-FAS membrane possesses a 

superhydrophobic (180°), oleophobic (103°), and slippery (lower than 5°) interface [20,27], 

indicating the potential anti-fouling and wetting resistance properties due to the metasta-

ble Cassie-Baxter state created by the network fiber structure of the CNT layer [20,28,29]. 

Table 2. Basic characteristics of the PVDF and PVDF-CNT-FAS membranes. 

Characteristic PVDF PVDF-CNT-FAS 

Thickness δ (μm) 125 ± 2 140 ± 6 

Pore diammater r (μm) 0.22 ± 0.006 0.18 ± 0.003 

Slip angle θ0 (°) >10° <5° 

Water contact angle θ1 (°) 124 ± 3 180 

Mineral oil contact angle θ2 (°) 42 ± 6 103 ± 2 

SEM image of the membrane’s 

plain surface  

 
 

SEM image of the membrane’s
cross-section

Water 2023, 15, x FOR PEER REVIEW 5 of 13 
 

 

SEM image of the membrane’s 

cross-section  

  

3.2. Performance with Simulated Saline Oily Wastewater 

The result of the salt rejection rate is confusing for the indication of the membrane 

wetting phenomenon under the challenge of real shale gas wastewater [30]. In order to 

detect the anti-fouling/wetting performance of the PVDF-CNT-FAS and PVDF mem-

branes, the synthetic saline oily wastewater containing sodium dodecyl sulfate (SDS) was 

used to promote membrane wetting. Figure 1 compares the performance of two mem-

branes, concentrating on the simulated saline oily wastewater. Initially, similar fluxes of 

23.8 and 23.2 kg/(m2∙h) were found for the virgin and modified membranes, respectively. 

Then, both membranes exhibited a gradually declined flux, which was clearer for the com-

mercial one, producing final data of 90%, 80%, and 60% of the initial flux at the end of 

each cycle, respectively. In addition, the salt rejection of the PVDF membrane was system-

atically lower than the PVDF-CNT-FAS membrane in each cycle, indicating an occurrence 

of membrane wetting. Such a finding was consistent with the behavior of the MD mem-

brane dealing with simulated shale gas wastewater, which was ascribed to the pore wet-

ting caused by the continuous addition of surfactants [30]. As shown in Figure 1, the mem-

brane flux did not recover after rinsing for both the PVDF-CNT-FAS and PVDF mem-

branes. Here, the decrease in flux was speculated to be a membrane pore blockage caused 

by the accumulation of emulsified oil droplets, which was difficult to remove by hydraulic 

cleaning because of the hydrophobic interaction between the membrane surface and the 

foulants. Considering the current objective lies just in checking the membrane’s robust-

ness, we did not perform a cleaning analysis in detail in terms of chemical cleaning. In 

contrast, the overall flux drop was limited (<20%), and the salt rejection was maintained 

well (>99%) for the PVDF-CNT-FAS membrane. Our results indicated that the CNT net-

work successfully served as a barrier such that the prepared membrane was prevented 

from severe membrane fouling/wetting. 

 

Figure 1. The normalized flux and salt rejection rate in the treatment of simulated shale gas 

wastewater. The MD experiments were conducted using simulated wastewater (1 M NaCl, 0.05 mM 

SDS with 160 ppm mineral oil) in cycles of 20 h. The membrane was rinsed with water at the end of 

each cycle until the washing solution conductivity of both the feed and permeate side dropped to 

10 μS/cm. 

3.3. Flux and Concentration Factor with Real Shale Gas Wastewater 

The variation of the normalized flux and concentration factor over time for the PVDF 

and PVDF-CNT-FAS membranes are illustrated in Figure 2 with continuous concentra-

tions of real shale gas wastewater. In the first cycle, the flux of both membranes started to 

Water 2023, 15, x FOR PEER REVIEW 5 of 13 
 

 

SEM image of the membrane’s 

cross-section  

  

3.2. Performance with Simulated Saline Oily Wastewater 

The result of the salt rejection rate is confusing for the indication of the membrane 

wetting phenomenon under the challenge of real shale gas wastewater [30]. In order to 

detect the anti-fouling/wetting performance of the PVDF-CNT-FAS and PVDF mem-

branes, the synthetic saline oily wastewater containing sodium dodecyl sulfate (SDS) was 

used to promote membrane wetting. Figure 1 compares the performance of two mem-

branes, concentrating on the simulated saline oily wastewater. Initially, similar fluxes of 

23.8 and 23.2 kg/(m2∙h) were found for the virgin and modified membranes, respectively. 

Then, both membranes exhibited a gradually declined flux, which was clearer for the com-

mercial one, producing final data of 90%, 80%, and 60% of the initial flux at the end of 

each cycle, respectively. In addition, the salt rejection of the PVDF membrane was system-

atically lower than the PVDF-CNT-FAS membrane in each cycle, indicating an occurrence 

of membrane wetting. Such a finding was consistent with the behavior of the MD mem-

brane dealing with simulated shale gas wastewater, which was ascribed to the pore wet-

ting caused by the continuous addition of surfactants [30]. As shown in Figure 1, the mem-

brane flux did not recover after rinsing for both the PVDF-CNT-FAS and PVDF mem-

branes. Here, the decrease in flux was speculated to be a membrane pore blockage caused 

by the accumulation of emulsified oil droplets, which was difficult to remove by hydraulic 

cleaning because of the hydrophobic interaction between the membrane surface and the 

foulants. Considering the current objective lies just in checking the membrane’s robust-

ness, we did not perform a cleaning analysis in detail in terms of chemical cleaning. In 

contrast, the overall flux drop was limited (<20%), and the salt rejection was maintained 

well (>99%) for the PVDF-CNT-FAS membrane. Our results indicated that the CNT net-

work successfully served as a barrier such that the prepared membrane was prevented 

from severe membrane fouling/wetting. 

 

Figure 1. The normalized flux and salt rejection rate in the treatment of simulated shale gas 

wastewater. The MD experiments were conducted using simulated wastewater (1 M NaCl, 0.05 mM 

SDS with 160 ppm mineral oil) in cycles of 20 h. The membrane was rinsed with water at the end of 

each cycle until the washing solution conductivity of both the feed and permeate side dropped to 

10 μS/cm. 

3.3. Flux and Concentration Factor with Real Shale Gas Wastewater 

The variation of the normalized flux and concentration factor over time for the PVDF 

and PVDF-CNT-FAS membranes are illustrated in Figure 2 with continuous concentra-

tions of real shale gas wastewater. In the first cycle, the flux of both membranes started to 

3.2. Performance with Simulated Saline Oily Wastewater

The result of the salt rejection rate is confusing for the indication of the membrane
wetting phenomenon under the challenge of real shale gas wastewater [30]. In order to
detect the anti-fouling/wetting performance of the PVDF-CNT-FAS and PVDF membranes,
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the synthetic saline oily wastewater containing sodium dodecyl sulfate (SDS) was used
to promote membrane wetting. Figure 1 compares the performance of two membranes,
concentrating on the simulated saline oily wastewater. Initially, similar fluxes of 23.8 and
23.2 kg/(m2·h) were found for the virgin and modified membranes, respectively. Then,
both membranes exhibited a gradually declined flux, which was clearer for the commercial
one, producing final data of 90%, 80%, and 60% of the initial flux at the end of each cycle,
respectively. In addition, the salt rejection of the PVDF membrane was systematically lower
than the PVDF-CNT-FAS membrane in each cycle, indicating an occurrence of membrane
wetting. Such a finding was consistent with the behavior of the MD membrane dealing
with simulated shale gas wastewater, which was ascribed to the pore wetting caused by the
continuous addition of surfactants [30]. As shown in Figure 1, the membrane flux did not
recover after rinsing for both the PVDF-CNT-FAS and PVDF membranes. Here, the decrease
in flux was speculated to be a membrane pore blockage caused by the accumulation of
emulsified oil droplets, which was difficult to remove by hydraulic cleaning because of the
hydrophobic interaction between the membrane surface and the foulants. Considering the
current objective lies just in checking the membrane’s robustness, we did not perform a
cleaning analysis in detail in terms of chemical cleaning. In contrast, the overall flux drop
was limited (<20%), and the salt rejection was maintained well (>99%) for the PVDF-CNT-
FAS membrane. Our results indicated that the CNT network successfully served as a barrier
such that the prepared membrane was prevented from severe membrane fouling/wetting.
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Figure 1. The normalized flux and salt rejection rate in the treatment of simulated shale gas wastewa-
ter. The MD experiments were conducted using simulated wastewater (1 M NaCl, 0.05 mM SDS with
160 ppm mineral oil) in cycles of 20 h. The membrane was rinsed with water at the end of each cycle
until the washing solution conductivity of both the feed and permeate side dropped to 10 µS/cm.

3.3. Flux and Concentration Factor with Real Shale Gas Wastewater

The variation of the normalized flux and concentration factor over time for the PVDF
and PVDF-CNT-FAS membranes are illustrated in Figure 2 with continuous concentrations
of real shale gas wastewater. In the first cycle, the flux of both membranes started to
decrease quickly after 6 h, and the final variation was 60% and 40% for the virgin and
modified membranes, respectively. Meanwhile, a slightly higher concentration factor for
the PVDF membrane compared to the PVDF-CNT-FAS membrane may be related to the
relatively higher initial flux (i.e., 23.6 kg/(m2·h) for the former and 22.92 kg/(m2·h) for
the latter, respectively. After the first rinsing, the fluxes for the PVDF-CNT-FAS and PVDF
membranes were restored to 80% and 60% of the initial values, respectively. The better flux
recovery for the modified membrane was probably due to a smooth superhydrophobic
interface, agreeing with its contact angle result. In such a case, the foulants would have
less time and area to adhere to the membrane interface and thus are more likely to induce
reversible fouling, which was washable via physical rinsing [20–22,31]. Nevertheless,
during the following two-cycle experiments, the flux did not completely recover after
physical rinsing, which could be attributed to the adhesion and accumulation of complex
foulants on the membrane surface. It was reported that the coupling of the membrane
electrochemical reactor and alkaline solution cleaning led to the almost complete removal
of severe irreversible fouling [32]. The CNT-coated membrane developed in this study
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exhibited potential as a membrane electrode, and further study on chemical cleaning could
be worthwhile. Furthermore, the flux and concentration factor of the modified membrane
were both higher than the control, despite the gradual flux decrease. Figure S1 further
compares the volume of desalinated water and the salt rejection data for the two membranes
after each cycle. An acceptable salt retention ratio (>99%) found at the end of each cycle
suggested a low wetting occurrence for both membranes.
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Figure 2. The normalized flux and concentration coefficient of the concentration of the real shale gas
wastewater in MD, with initial fluxes of 23.6 and 22.92 kg/(m2·h) for the PVDF and PVDF-CNT-FAS
membranes, respectively.

Obviously, vapor permeability loss increased when the real stream was treated,
whereas the salt rejection loss was negligible for both membranes, according to the data
in Figures 1 and 2. The more complex compositions in the real stream (higher organic
substances and more types of ionic species) likely resulted in the server flux’s decline. In
line with reports dealing with real shale gas wastewater, the accumulation of inorganic or
organic foulants on the membrane surface was responsible for the flux decline described
herein [21,22]. The fouling deposit may further prevent salt permeation and increase the
mass transfer resistance in such a concentration-dependent manner [22]. The recovered
water volume by the modified membrane was gradually higher than the control. Overall,
the PVDF-CNT-FAS and PVDF membranes demonstrated 48.2% and 20.5% concentrations
for the total volume of the real stream. Such a superior performance for the CNT-modified
membrane highlighted its potential in achieving the minimization of shale gas wastewater.

To sum up, the flux and salt retention rate as well as the concentration factor or
volume of recovered water for the PVDF-CNT-FAS membrane were all better than the
control during the multiple-cycle experiments. The superior flux recovery with a water
rinse for the PVDF-CNT-FAS membrane highlighted the importance of the engineered
superhydrophobic interface for fouling/wetting resistance.

3.4. Permeate Quality with Real Shale Gas Wastewater

Figure 3 analyzes the quality of the permeate water collected at the end of each cycle
in MD. Figure 3a shows that the COD value gradually increased with the cycle number
of the experiment for both membranes, and their retention rates were above 95%. The
final highest value was found to be less than 50 mg/L, which meets the local standard
for wastewater discharge of GB8978-2006. The performance of the two membranes in
terms of COD retention was not distinct. Then, as shown in Figure 3b, the TOC content
in the permeate (ca. 35 mg/L) was found to exceed the standard value (20 mg/L), and
the final removal rate was decreased to less than 90% for the PVDF membrane, which was
clearly inferior to the performance of the PVDF-CNT-FAS membrane (the TOC content
was ca. 10 mg/L and the removal rate was over 97%). The TOC is considered a more
straightforward representation of the organic matter than the COD in water monitoring
because several reductive substances, whether organic or inorganic, could induce high COD
values [3,33]. Thus, the TOC data in Figure 3b, regarded as a better indicator in this work,
suggested that modified membranes could retain the mass transfer of organic substances
well since the salt rejection rates of both membranes were nearly satisfactory. Indeed,
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previous reports have shown that small amounts of benzene, PAHs, and humic organic
matter were found in shale gas wastewater, which could result in membrane wetting and
fouling [3,5,34]. Considering only a slight leakage of organic compounds (rejection > 90%),
we assumed that only some volatile organic compounds were probably transported across
these hydrophobic membranes.
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Figure 3. Permeate water quality at the end of each cycle in terms of the (a) COD, (b) TOC, (c) TN, and
(d) ammonia. The dashed line denotes the corresponding limit value for each parameter according to
the local standard (GB8978-2006).

Figure 3c,d demonstrates a decreasing concentration of the total nitrogen and ammonia
after each cycle of the experiment, respectively. Meanwhile, both membranes exhibited
similar concentration levels with retention rates higher than 80%. Table 1 shows that ca.
85.2% of the nitrogen compounds in the real shale gas wastewater were mainly in the form
of ammonia nitrogen, which is highly volatile and could easily reach the permeate side of
the MD system [35]. As the MD concentration experiment progressed, the concentration of
ammonia in the permeate decreased in each case, suggesting more water vapor transfer
than ammonia during this experiment. We further speculated that fouling layer formation
on the membrane surface possibly hindered the ammonia transfer process and caused a
decrease in ammonia flux [35]. The retention rate of ammonia and the total nitrogen with
the PVDF-CNT-FAS membrane (80–90%) were better than the PVDF membrane at any
concentration level. This suggested that the dense CNT layer facilitated the interception
of various pollutants in the wastewater. Nevertheless, ammonia, as a potentially valuable
resource, possibly became more volatile under proper conditions (e.g., pH) and had more
chance to permeate across the MD membrane. The potential low-impact valorization
processes could be considered for its removal or recovery [36,37].

Furthermore, the three-dimensional fluorescence spectroscopy analysis for the feed
and permeate was performed, and this data is shown in Figure 4a–c. As shown in Figure 4a,
the characteristic fluorescence peak at Ex 325/Em 400 nm indicates that the hydrochloric
acid humates were the dominant organic matter in the real stream [4]. Then, in the permeate
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after three cycles of MD experiments (Figure 4b,c), the fluorescence peak of tryptophan at
Ex 325/Em 275 nm was found, likely as a product of the microbial metabolism process [4].
We assumed that this finding (that the peak of tryptophan was visible not in the feed water
but in the permeate) was probably due to a masking effect from the stronger fluorescence
of humic acids [38]. It was also expected that the humic substances had less mobility
toward the hydrophobic membrane, possibly owing to a lowered wetting potential or
larger size such that they were easily intercepted, whereas only a small permeance of a
protein-like substance (tryptophan) was present after the membrane barrier [39]. Then, the
higher fluorescence intensity of tryptophan in the permeate with the control membrane
compared to the modified one indicated an increased transfer of organic matter or, in
other words, a severer wetting issue for the PVDF membrane. This result was consistent
with the higher TOC content for the same membrane type (Figure 3b). In summary, better
permeate water quality was achieved with the PVDF-CNT-FAS membrane dealing with
shale gas wastewater.
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Figure 4. Three-dimensional fluorescence analysis for the (a) real shale gas wastewater and permeates
from the (b) PVDF membrane and (c) PVDF-CNT-FAS membrane.

3.5. Membrane Fouling with Real Shale Gas Wastewater

To further explore the foulant, SEM-EDS was used to characterize the morphology and
remaining elements on the membrane’s surface, as shown in Figure 5. The cleaned PVDF
membrane surface was completely covered with particulates. According to the surface
elemental analysis (Figure 5c,d, and Figure S3), the PVDF membrane, ideally composed
of 38% C and 59% F [21], was completely covered by foulants consisting of O and Si and
inorganic elements such as Ca and Fe. In contrast, the mesh structure of the CNT fiber
for the PVDF-CNT-FAS membrane was highly visible, despite the fact that the membrane
was also wrapped by particulates. The EDS analysis monitored the elements of C, F, O,
and Si originally present in the PVDF-CNT-FAS membrane. Moreover, the presence of Ca,
Fe, Na, and Ba on the modified membrane (0.28%, 3.63%, 0.64%, and 2.03%, respectively)
was found to be less than those on the PVDF membrane, with the elements of K and Mn
not detected. Furthermore, the potential organic foulants on the two hydrophobic mem-
branes were washed using acid and ultrasonication and then characterized and analyzed
with fluorescence spectroscopy (Figure S2). The results show that the organic fouling of
tryptophan was slightly more obvious on the PVDF membrane than that on PVDF-CNT-
FAS. Nevertheless, organic fouling seemed weak on both membranes. Hence, our fouling
characterization suggested that the inorganic membrane fouling degree was the major
concern in dealing with the real shale gas stream, and the PVDF-CNT-FAS membrane again
exhibited better resistance to inorganic foulants than the PVDF membrane. This slippery
interface on the CNT layer may lead to a short residence time for the foulants to adhere to
the membrane surface, as stated previously in our papers [20,24]. To sum up, benefiting
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from the introduction of the CNT intermediate layer, the PVDF-CNT-FAS membrane has a
better fouling/wetting resistance and permeability.
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Figure 5. SEM-EDS images of the (a,c) PVDF and (b,d) PVDF-CNT-FAS membranes. The top-inserted
image refers to the virgin membrane.

3.6. Cost-Effectiveness Analysis

Following the above findings, the total water production cost (WPC) of the PVDF-
CNT-FAS membrane in treating real shale gas wastewater was estimated by considering
the process design and project evaluation. The fixed production capacity and plant avail-
ability factors were 2000 m3/d and 90%, respectively. The other parameters and analytical
methods are listed in the supplementary materials. As shown in Figure 6, the WPC was
divided into two main components, namely, the annual fixed charges (AFCs) and the
annual operating cost (AOC). The AFC was USD 0.83/m3, dominated by the cost of the
membrane, pump, and heat exchanger. Specifically, the cost of the heat exchanger and
membrane accounted for 67.96% of the AFC at USD 0.1 and 0.47/m3, respectively (Table S2).
Compared with the reference data (an AFC of USD 0.29–0.51/m3), the AFC in this work is
slightly higher. As illustrated in Figure 6, consistent with the studies of MD in drinking
water treatments [40,41], seawater desalination [42], and hypersaline industrial stream
treatments [43], our calculated AOC reaches USD 1.36/m3, which is composed mainly of
the cost of the heat energy consumption (80.3%). If low-cost waste heat is used instead
of steam [40], this value may be further reduced to USD 0.31/m3. Specifically, the cost of
membrane replacement accounts for 8.60% of the AOC, with a membrane replacement
rate of 20%. In summary, the WPC of USD 2.2/m3 agrees with reported values in the
range of USD 0.61–5.7/m3 [10,42], proving the economic feasibility of the PVDF-CNT-FAS
membrane in MD applications. The proposed new membrane may compete in the open
market in view of better fouling/wetting resistance and permeate quality.
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Figure 6. The annual fixed cost (AFC), annual operating cost (AOC), and total water production
cost (WPC, sum of the AFC and AOC) estimated for the shale gas wastewater treatment using the
PVDF-CNT-FAS membrane in this study, including a section for the membrane, heat exchange or
thermal energy, and other expenses. The cost analysis for the PVDF membrane is not provided
considering its deteriorated permeate quality compared with the local standard.

4. Conclusions

Our experiments validated the potential of the PVDF-CNT-FAS membrane to treat real
shale gas wastewater in terms of both the permeate side of water quality improvement and
membrane fouling alleviation. The PVDF-CNT-FAS membrane achieved 48.2% effluent
reduction and 99% salt retention after three cycles of wastewater concentration experiments
and 80% flux recovery after the first rinse. In contrast, only 20.5% of the wastewater
volume could be reduced by the PVDF membrane, with a lower concentration factor
and flux recovery. The permeate with the modified membrane exhibited superior water
quality, including a TOC of 10 mg/L, a COD of less than 50 mg/L, and total nitrogen and
ammonia nitrogen of less than 20 mg/L, which met the requirements of local wastewater
discharge standards well (GB8978-2006). Lower amounts of tryptophan-like contaminants
in the permeate were found in both cases, probably due to the volatile property of the
organic substances. Nevertheless, the inorganic scaling issue was a concern deserving more
attention. Unlike the PVDF membrane, the surface of which was completely covered by
particulates of varying inorganic elements, the PVDF-CNT-FAS membrane maintained
its fiber network structure of much fewer deposits than the control. Finally, the cost-
effectiveness was highlighted for the proposed PVDF-CNT-FAS membrane by analyzing its
economic feasibility in potential MD applications. In summary, compared to the control, the
CNT-modified membranes increased the permeate quantity and improved water quality,
mitigating the fouling and scaling issues thanks to the superhydrophobic and slip-coating
layer. The superior performance in dealing with real shale gas wastewater than commercial
membranes implied the future potential of this simple modification methodology. Studies
further tailoring the materials and verifying their long-term feasibility in concentrating
complex wastewater are suggested.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15030439/s1, Figure S1: Water recovery volume and salt retention
rate on the permeate side after concentration during the three cycles in MD; Figure S2: Cleaning of
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