
Citation: Qiu, H.; Hu, T.; Zhang, S.;

Xiao, Y. Deriving Operating Rules of

Hydropower Reservoirs Using

Multi-Strategy Ensemble Henry Gas

Solubility Optimization-Driven

Support Vector Machine. Water 2023,

15, 437. https://doi.org/10.3390/

w15030437

Academic Editor:

Aonghus McNabola

Received: 3 January 2023

Accepted: 16 January 2023

Published: 22 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Deriving Operating Rules of Hydropower Reservoirs Using
Multi-Strategy Ensemble Henry Gas Solubility
Optimization-Driven Support Vector Machine
Hongya Qiu, Ting Hu *, Song Zhang and Yangfan Xiao

China Three Gorges Corporation, Yichang 443133, China
* Correspondence: hu_ting@ctg.com.cn

Abstract: Hydropower is an important clean renewable energy that plays a key role in coping with
issues such as global energy security, environmental protection, and climate change. In order to
improve the optimal operation ability of hydropower reservoirs in the context of forecast runoff
with limited accuracy and prediction period, there has been a growing interest in deriving operating
rules of hydropower reservoirs. Reasonable operation decision is very important for safe operation
of reservoirs and efficient utilization of water resources. Therefore, a novel method of operation
rules derivation is proposed in this study. Optimal operation model of hydropower reservoir is
established and support vector machine (SVM) is used to derive operation rules based on the optimal
operation results. In order to improve the performance of SVM, the Henry gas solubility optimization
(HGSO) is used to optimize its hyperparameters for the first time. Meanwhile, multiple strategies
are applied to overcome the drawbacks of HGSO. The multi-verse optimizer (MVO) is used to
enhance the exploration capability of basic HGSO. Quadratic interpolation (QI) is used to improve
the exploitation ability of HGSO. In this study, the Xiluodu and Xiangjiaba hydropower reservoirs
in the upper Yangtze River of China were selected as a case study. First, the improved HGSO
called MVQIHGSO was tested on 23 classical benchmark functions. Then, it was employed to
optimize hyperparameters of SVM model for deriving operation rules. The results and statistical
studies indicate that the improved HGSO outperforms the comparison algorithms in exploration and
exploitation. The obtained results imply that the novel method named MVQIHGSO-SVM can provide
a new practical tool to deriving operation rules for hydropower reservoirs, which is conducive to the
safe and efficient utilization of water resources.

Keywords: clean renewable energy; hydropower reservoirs; operation rules derivation; henry gas
solubility optimization; support vector machine

1. Introduction

Climate change has undoubtedly emerged as the great challenging global problem
facing humanity in this era, which significantly threatens the human life, industrial produc-
tion, and ecological environment [1–4]. The main reason of increased climate change is the
large amount and rapid growth of non-renewable energy consumption over the past several
decades, mainly fossil fuels [5,6]. In response to climate change, global warming will be
limited to “well below 2 ◦C” before the level of industrialization, and efforts will be made to
control it at 1.5 ◦C [7]. Meanwhile, clean renewable resources including hydropower, solar
energy, wind energy, geothermal energy, biomass energy, and tidal power have attracted
widespread attention from policy-makers and academics in all developed and developing
countries of the world to deal with the problem of ecological deficit [8,9]. Particularly,
hydropower is the most widely used renewable energy in human society due to its ad-
vantages of low operating cost, stability, and flexible on demand power supply as well as
other comprehensive benefits such as flood control, irrigation, navigation, and ecological
environment protection [10,11]. However, the hydropower utilization is inevitably limited
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by natural conditions such as hydrology, climate, and geomorphology [12]. Actually, to
solve this problem, reservoirs’ optimal operation is able to change the temporal and spatial
distribution of water resources, which is an important mean and tool to realize the rational
allocation and efficient utilization of water resources [13].

Generally, the mathematical programming techniques and meta-heuristic optimiza-
tion methods are the two approaches used for optimal operation of reservoirs based on
the inflow runoff [14–17]. Specifically, the mathematical programming can be divided
into three types: linear programming (LP), non-linear programming (NLP), and dynamic
programming (DP) as well as its many variants such as incremental dynamic programming
(IDP), successive approximation DP (DPSA), discrete differential DP (DDDP), and progres-
sive optimality algorithm (POA) [18]. LP is the most widely used optimization technology
in the field of water resources planning and management due to its simplicity and adapt-
ability; however, it cannot deal with the non-linear constraints of the reservoir optimal
operation [19]. To solve this problem, NLP is applied to optimize the reservoir storage and
release process; however, the application of NLP to large scale reservoirs optimal operation
is limited by the high computational complexity [19,20]. The aim of DP is to overcome
the inherent problems of reservoir operation including non-linear and stochastic features,
which has been the most popular optimization method so far. Nevertheless, it would
suffer from “curve of dimensionality” with the reservoir scales increase [19,21]. Fortunately,
many variants of DP mainly composed of IDP, DPSA, DDDP, and POA were developed
to overcome the dimensionality problem in the past decades [22]. On the other hand,
the emergence of meta-heuristic optimization methods provides a novel and promising
way for solving reservoir optimal operation model, which only requires objective func-
tion information without derivatives or other auxiliary knowledge [23]. Although a large
number of research studies have focused on the application of these method to reservoir
operation, they are rarely applied in the actual reservoir engineering operation due to the
randomness of results and low convergence speed. In addition, the above techniques may
lead to ineffective and inefficient operation under the changing environment conditions.
For example, the operator needs to carry out repeated trial calculations to formulate a better
reservoir operation scheme because of the uncertainties in reservoir operations, leading to
great difficulties to the work of decision makers.

In order to formulate reasonable operation scheme with high efficiency, a simple,
scalable, and adaptable operation rule is important and necessary for operators [24]. Op-
eration diagram and operation function are the two types of operation rules [25]. The
former is a control curve diagram to guide the operation of the reservoir by dividing the
storage capacity of the reservoir into different operation area through some index line
formed by water storage and water supply. The operation diagram is characterized by
simplicity, intuition, and easy operation; however, the application of operation diagram
is often affected by the subjectivity of operators. Therefore, there is still ample room to
improve the economic benefits of the reservoirs. Fortunately, operation function is another
form of operation rule with clearly defined input and output to make operational decisions
considering uncertain conditions [26]. For example, the end water level as decision variable
during a period can be determined by certain input, such as initial water level, inflow
runoff, and other hydrometeorological information. This method has been regarded as the
most promising future lines of research in this field [27–29]. The operation rule derivation
methods based on operation function can be divided into two types: regression analysis
and machine learning technique [30]. The common point of these two methods is that
the optimal operation process of reservoir groups should be obtained according to the
implicit stochastic optimization method [31]. The significant difference between the two
method is that the expression of regression analysis is based on speculation, inspection and
correction, in which the process is complex and greatly affected by human factors; however,
the latter can solve this problem well and obtains the reservoir group operation function
with good adaptability.
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Support vector machine (SVM) is a newly developed machine learning method based
on statistical learning [32,33]. It has the advantages of global optimization and good
generalization performance, and the diversity of kernel functions also solves different types
of data simulation and classification problem in processing small sample data. As we all
know, hyperparameter setting has a direct impact on the performance of SVM. At present,
grid search method and meta-heuristic intelligence algorithms are two commonly used
methods to optimize hyperparameter. In essence, the former is an enumeration procedure
used to determine the combinations of available hyperparameters, which is very time-
consuming [34]. The latter assumes that a good combination of hyperparameters has an
aggregation effect, which is able to find the most suitable hyperparameter combination
in a shorter time [35]. Therefore, the hybrid model combined meta-heuristic optimization
algorithm and machine learning method is applied for the operation rule derivation of
reservoir groups in this study. In order to improve the derivation performance, a new meta-
heuristic optimization algorithm namely Henry gas solubility optimization, short for HGSO,
is introduced to optimize the hyperparameters of SVM for the first time. Unfortunately,
it is found that the basic HGSO algorithm has some disadvantages such as local optima
stagnation and low convergence speed [36]. To handle these drawbacks of the basic
HGSO algorithm, multiple strategies with multi-verse optimizer (MVO) and quadratic
interpolation method (QI) are firstly applied to enhance the exploration and exploitation
ability of basic HGSO, called MVQIHGSO algorithm in the present paper. As a result, the
hybrid model combined MVQIHGSO algorithm and SVM method, called MVQIHGSO-
SVM is proposed to derivate operation rule of hydropower reservoirs to maximize the
hydropower benefits.

A novel operation rule derivation method is proposed based on the improved HGSO
algorithm and SVM. The reminder of this paper is organized as follows. In Section 2, the
process of operation rule derivation using the proposed MVQIHGSO-SVM method was
introduced, including the optimal operation model of hydropower reservoirs, the basic
HGSO algorithm and its improvement strategies as well as the basic principle of SVM.
In Section 3, numerical experiments were carried out to validate the performance of the
MVQIHGSO algorithm. In Section 4, the Xiluodu and Xiangjiaba hydropower reservoirs in
the lower reaches of the Jinsha river of the upper Yangtze river in China were selected as a
case study. In Section 5, the conclusions were drawn.

2. Materials and Methods
2.1. Optimal Operation Model of Hydropower Reservoirs

The objective that is maximizing the total hydropower generation and complex con-
straint set from hydropower reservoirs constitute the optimal operation model of hy-
dropower reservoirs.

2.1.1. Objectives

Please see equation bellow E = max
N
∑

i=1

T
∑

t=1
Pi,t∆t

Pi,t = ki Hi,tQi,t

(1)

where E is the total hydropower generation produced during operation periods; N is the
number of hydropower reservoirs; T is the total operation periods; Pi,t, ki,t, Hi,t, and Qi,t
are power output, efficiency coefficient, water head, and turbine discharge of reservoir i at
period t, respectively; ∆t is the operation interval.
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2.1.2. Constraints

(1) Water balance Equations
Vi,t+1 = Vi,t + (Ii,t −Qtotal

i,t )

Ii,t = qi,t +
Ni
∑

j=1
Oj,t

Oi,t = Qs
i,t + Qi,t

(2)

where Vi,t, Ii,t, Qtotal
i,t , qi,t, and Qs

i,t are the storage volume, total inflow, total outflow, local
inflow, and water spillage of reservoir i at period t, respectively; Ni is the number of
upstream reservoirs directly connected to the reservoir i; Oj,t is the outflow from upstream
reservoir j directly connected to the reservoir i at period t.

(2) Water head Equations

Hi,t =
1
2
(Zi,t + Zi,t−1)− Zd

i,t (3)

where Zi,t and Zd
i,t are the forebay water level and downstream water level of reservoir i at

period t, respectively.
(3) Forebay water level limits

Zmin
i,t ≤ Zi,t ≤ Zmax

i,t (4)

where Zmin
i,t and Zmax

i,t are the minimum and maximum forebay water levels of reservoir i at
period t, respectively.

(4) Forebay water level fluctuation limits

|Zi,t − Zi,t−1| ≤ ∆Zmax
i (5)

where ∆Zmax
i is the acceptable maximum fluctuation of forebay water level of reservoir i

allowed for a timestep.
(5) Turbine discharge limits

Qmin
i,t ≤ Qi,t ≤ min(Qmax

i,t , Qc
i,t) (6)

where Qmin
i,t , Qmax

i,t , and Qc
i,t are the minimum and maximum turbine discharges as well as

reservoir discharge capacity of reservoir i at period t, respectively.
(6) Total discharge limits

Qtotal,min
i,t ≤ Qtotal

i,t ≤ Qtotal,max
i,t (7)

where Qtotal,min
i,t and Qtotal,max

i,t are the minimum and maximum total discharges of reservoir
i at period t, respectively.

(7) Power output limits

Pmin
i,t ≤ Pi,t ≤ min(Pmax

i,t , Pe
i,t) (8)

where Pmin
i,t , Pmax

i,t , and Pe
i,t are the minimum and maximum power outputs as well as

expected power outputs of reservoir i at period t, respectively.
(8) Total power output limits E = max

N
∑

i=1

T
∑

t=1
Pi,t∆t

Pi,t = ki Hi,tQi,t

(9)
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where Ptotal, min
t and Ptotal, max

t are the minimum and maximum total power outputs of
CHRs at period t.

(9) Initial and target forebay water level limits{
Zi,0 = Zinitial

i
Zi,T = Ztarget

i
(10)

where Zinitial
i and Ztarget

i are the preset initial and target forebay water levels of reservoir i
at period zero and T, respectively.

(10) Non-linear characteristic curves limits

Vi,t = fi,1(Zi,t)
Qc

i,t = fi,2(Zi,t−1)

Zd
i,t = fi,3(Qtotal

i,t )

Pe
i,t = fi,4(Hi,t, Qi,t)

Ztarget
i = f−1

i,1 (Vs
i + Vi,0)

(11)

where fi,1(·), fi,2(·), fi,3(·), and fi,4(·) are the nonlinear stage–storage curve, stage–discharge
capacity curve, stage–downstream water level curve, and stage–discharge-head–output
curve of reservoir i, respectively; Vs

i is the required storage capacity of reservoir i during
operation periods; Vi,0 is the storage volume of reservoir i at period zero.

(11) Storage and release water limits

Vs =
N

∑
i=1

Vs
i (12)

where Vs is the total required storage capacity of multiple reservoir system.
It is noteworthy that the hybrid optimization algorithm combined dynamic program-

ming (DP), successive approximation DP (DPSA) and progressive optimality algorithm
(POA), called DP-POA-DPSA deterministic optimization method is used to solve the estab-
lished optimal operation model of hydropower reservoirs, where penalty function method
is used to deal with constraint violations.

2.2. Summary of Henry Gas Solubility Optimization (HGSO)

Henry’s law is a famous gas law in the field of physical chemistry formulated by
famous chemical scientist Henry in 19th century [37]. Briefly, the law states that the amount
of dissolved gas in a liquid is proportional to its partial pressure above the liquid when
the gas and liquid reach equilibrium in the case of certain temperature. The key concept
to understand Henry’s law is solubility, which changes with variation in temperature and
pressure. Specifically, the increased temperature leads to the lower solubility of gas, con-
versely, increased pressure results in higher solubility of gas. By controlling the two factors
of temperature and pressure, the highest equilibrium state with best gas can be achieved
based on Henry’s law. Inspired by this phenomenon, Henry Gas Solubility Optimization
(HGSO) algorithm was developed to mimic the physical and chemical process described by
Henry’s law [38]. HGSO is a novel physics-inspired metaheuristic optimization algorithm
based on population proposed in recent years and empirical study reveals that HGSO has
a significant merit to balance between exploration and exploitation.

Similar to the majority of the well-known metaheuristic optimization algorithms,
the optimization process of HGSO also includes two phases: the exploration phase and
the exploitation phase. To achieve the balance between exploration and exploitation, the
optimization process can be further divided into four stages: initialization stage, evaluation
stage, updating stage, and termination stage. HGSO is no exception. In the initialization
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stage, the gas population are randomly generated with the population size N, lower bound
vector lb, and upper bound vector ub as input, which can be formulated as follows:

gi = lb + r1,i(ub− lb)i= 1, 2, . . . , N (13)

where gi denotes the gas i; r1,i denotes the random number distributed in range from 0 to
1. It is noteworthy that the gas population are divided into several groups, denoted by l,
with same Henry’s constant value. Then, each gas of the groups in population is evaluated
based on the objective function in evaluation stage. Further, several key parameters such
as Henry’s constant H, partial pressure P, and the ratio of enthalpy of dissolution to gas
constant are randomly generated to update Henry’s coefficient and solubility for next
generation, which can be summarized as follows:

Hl(it + 1) = Hl(it) exp(−Cl(
1

T(it)
− 1

Tθ
)) (14)

Si,l(it) = KHl(it + 1)Pi,l(it) (15)

where Hl(it) = r2c1, Pi,l = r3c2, and Cl = r4c3, in which r2, r3, and r4 are all random
numbers in range from 0 to 1, c1, c2, and c3 are constant values, which are set to 0.05, 100,
and 0.01, respectively; it denotes the number of current iteration; T(it) is the temperature
in current iteration time and T(it) = exp( −it

MaxIt ), in which MaxIt denotes the maximum
number of iterations. Based on these parameters in current iteration, the gas positions of
each group are updated in updating stage according to the following formulation:

gi,l(it + 1) = gi,l(it) + r5γF(Gl(it)− gi,j(it)) + r6αF(Si,l(it)Gl(it)− gi,j(it)) (16)

γ = β exp(− F(it) + ε

Fi,l(it) + ε
) (17)

where gi,l denotes the gas i in group l; r5 and r6 are all random numbers in range from 0 to
1; γ denotes the interaction ability of gases in the same group; α, β, and ε are optimization
parameters and are set to 1, 1, and 0.5, respectively; F denotes the direction parameter
used to control the search direction of gas; Gi,l(it) and Fi,l(it) denote the best gas and its
fitness in group l; F(it) denotes the best fitness value obtained so far. In order to enhance
the exploration capability of HGSO, the inferior gases are reupdated in the same way as
initializing the population as follows:

N′ = N(c4 + r7(c5 − c4)) (18)

g′i,l = lb + r8(ub− lb) (19)

where N′ denotes the number of inferior gases; r7 and r8 are random number in range from
0 to 1; c4 = 0.1 and c5 = 0.1; g′i,l denotes the updated gas corresponding to gas i in group l.
Finally, the HGSO algorithm is stopped when the termination criterion is met.

2.3. The Proposed MVQIHGSO
2.3.1. Multi-verse Optimizer (MVO)

The main inspiration for multi-verse optimizer comes from multi-verse theory, which
has aroused great interest in the field of science, philosophy, and theology. In 2016, multi-
verse optimizer was developed by Mirjalili and Lewis based on three simple yet important
concepts including white holes, black holes, and wormholes to mimic the physic nexus of
multiple universes in multi-verse theory [39]. Specially, in order to formulate the expansion
of the universe, the higher expansion rate of the universe, the higher the probability of the
existence of white holes, conversely, the lower expansion rate of the universe, the higher
the probability of forming black holes.
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The two key components guiding the optimization direction of the algorithm are
white/black hole tunnel mechanism and wormhole mechanism. The former states that
special transmission path can be established to realize the exchange of objects between
different universes, such that the objects form black hole in the universe with low expansion
rate will be replaced by the objects in the universe connected from the other end of the
tunnel. In this manner, the inferior universe has the chance to explore the parallel space
formed by multiple universe to evolve into the one with higher expansion rate. The
mathematical model of white/black hole tunnel can be formulated as follows:

ui,j =

{
uk,j r1 < normr(ui)
ui,j r1 ≥ normr(ui)

(20)

where ui denotes the universe i; ui,j denotes the object j of universe i, wherein j = 1, 2, . . . , D
and D denotes the number of objects in a universe. normr(·) aims to normalize the expan-
sion rate of universe to a length of 1; r1 denotes the random number uniformly distributed
on [0, 1]. It is noteworthy that universe and object correspond to the individual and decision
variable in optimization algorithm, respectively.

Additionally, the wormhole belongs to the universe with highest expansion rate. In
order to share the information of objects in wormhole with other universes, objects in
wormholes have a high probability of being randomly transmitted to other universes. In
this way, the universe diversity is enhanced, avoiding slow expansion or stopping expan-
sion during the process of evolution. The wormhole mechanism can be mathematically
described as follows:

ui,j =


Uj + TDR(lbj + r2(ubj − lbj)) r3 < 0.5 and r4 < WEP
Uj − TDR(lbj + r2(ubj − lbj)) r3 ≥ 0.5 and r4 < WEP
ui,j r4 ≥ 0.5

(21)

where Uj denotes the object j of the best universe; r2, r3, and r4 denote the random number
uniformly distributed on [0, 1], respectively; TDR and WEP denotes travelling distance rate
and wormhole existence probability, respectively, wherein the former is used to control
the transmission range of objects in the best universe and the latter is applied to reflect the
possibility of the existence of wormhole. The detailed information of MVO can be referred
to the original paper [39].

2.3.2. Quadratic Interpolation Strategy (QI)

Quadratic interpolation has been proved to be a commonly and effective method to
improve the exploitation ability of swarm intelligence algorithm [40–42]. QI is essentially a
one-dimensional optimization method, which can easily and quickly discover the optimal
solution in the context of low-dimensional space. Its core idea is to construct a quadratic
curve to simulate the objective function around several candidate solutions, so that the
optimal function value can be calculated in a derivative-free way, which greatly reduces
the cost of solving the local objective value. In other words, QI method tries to find better
promising search agent in the vicinity of individuals evolved so far, leading to improve the
population diversity and enhance the exploitation ability of the algorithm, so that it can
increase the probability of guiding the search agent toward the global optimal region.

Generally, QI method is the last step before evolution into the next generation. In
this step, three individuals will be selected to construct a quadratic curve to simulate the
objective function. In this manner, the extreme point of the approximate objective function
can be easily obtained by quadratic function. For example, sa = (sa,1, sa,2, . . . , sa,j, . . . , sa,D),
sb = (sb,1, sb,2, . . . , sb,j, . . . , sb,D), and sc = (sc,1, sc,2, . . . , sc,j, . . . , sc,D) are the three individu-
als selected to form the quadratic curve, the extreme point sp = (sp,1, sp,2, . . . sp,j, . . . , sp,D)
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of the quadratic, which is also the promising possible solution based on the three selected
individuals, can be formulated as follows:

sp,j =
((sa,j)

2 − (sc,j)
2) f (sb) + ((sc,j)

2 − (sb,j)
2) f (sa) + ((sb,j)

2 − (sa,j)
2) f (sc)

2((sa,j − sc,j) f (sb) + (sc,j − sb,j) f (sa) + (sb,j − sa,j) f (sc))
(22)

where j = 1, 2, . . . , D; f (·) denotes the fitness value of a specific individual. In practice, the
individuals in current iteration are ranked from small to large based on their fitness values.
Then, all three consecutive individuals are selected to perform the QI method. As a result,
for the population with size N where N ≥ 3, the QI method is implemented N-2 times.
Based on the greedy law, if the resulting individual by QI method performs better than the
selected three individuals, the first individual will be replaced.

As can be seen from the above analysis, QI can be regarded as a crossover operator to
an extent. In other words, the potential information hidden in individuals is fully utilized
to improve the performance of inferior solution, so that the promising solution with high
quality can be discovered.

2.3.3. The Proposed Enhanced HGSO Algorithm

In the proposed MVQIHGSO algorithm, the MVO operator and QI strategy are MVO
operator is applied to enhance the exploration capability and improve the balance between
exploration and exploitation of basic HGSO. At the same time, QI strategy is used to find
the promising candidate solution around the search space formed by the current individual.
In other words, the inferior solution is replaced with the solution obtained by QI strategy
to increase the diversity and quality of population, leading to faster convergence rate and
higher exploitation accuracy. The pseudo-code of MVQIHGSO is given in Algorithm 1.

Algorithm 1. Detailed information of MVQIHGSO algorithm.

Pseudocode of the MVQIHGSO
01: Inputs: the population size N; the maximum number of iteration MaxIt; the constant values
including c1, c2, c3 in Equations (2) and (3), c4 and c5 in Equation (6), α, β, and ε in Equatios (4)
and (5); the number of groups l
02: Initialize the gas population within the lower and upper boundary
03: Divide the gas population into specific groups with the same Henry’s constant value
04: Evaluate the gas of each group in the population
05: Obtain the best gas of the whole population and the l best gases corresponding to l groups
06: for it from 1 to MaxIt do
07: Generate random number r within [0, 1]
08: if r smaller than 0.5 do
09: Update the gas position by basic HGSO
10: else do
11: Update the gas position by MVO
12: end if
13: Sort the updated gas population by HGSO and MVO
14: Updating the gas population from 1 to N-2 by QI strategy based on greedy law
15: Evaluate the fitness of the final updated gas population
16: Update the best gas position obtained so far and the l best gases corresponding to l groups
17: end for
18: Outputs: the best global gas position and the corresponding optimal fitness value

2.4. Support Vector Machine

Support vector machine (SVM) is a famous machine learning algorithm based on
statistical learning theory and the principle of structural risk minimization that has received
the most attention. SVM was firstly proposed by Cortes and Vapnik with excellent per-
formance in term of high generalization ability [32]. Recently, there has been a growing
interest from many scholars and researchers in applying SVM in various fields for classifi-
cation and regression analysis such as streamflow forecasting, classification of image, text
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and hypertext categorization, classification of satellite data, and classification of proteins,
which have achieved lots of advances. The main idea of SVM is transforming the nonlinear
input space to a high-dimensional feature space to construct a hyper-plane by nonlinear
mapping [43].

The operation rule derivation belongs to regression problem, so epsilon-insensitive
SVM (ε-SVM) regression is applied in the present study. ε-SVM was designed by Drucker
in 1997 to solve the regression problem [44]. Suppose the truth yet unknown function of
input space x as G(x) and F(x, w) is a family of functions controlled by weight vector w, the
aim of SVM is find a best w denoted as ŵ to minimize a measure of error between G(x) and
a specific approximate function of F(x, w). The optimal value of ŵ depends on the primal
loss function given as follows:

L =

{
0 if |yi − F(xi, ŵ)| < ε

|yi − F(xi, ŵ)| − ε otherwise
(23)

where xi is the input vector of sample point i; yi is the observation value corresponding
to sample point i; F(xi, ŵ) denotes the predicted value of sample point i; ε is defined as a
cube so that the loss is zero in the case of F(xi, ŵ) is within the tube, while the loss is the
magnitude of the difference between F(xi, ŵ) and the radius ε of the tube [44]. In order
to solve the optimization problem in term of the above primal loss function, the slack
variables ξ∗ and ξ are introduced to minimize:

U
( N

∑
i=1

ξ∗i +
N

∑
i=1

ξi

)
+

1
2
(wtw) (24)

where U(·) is the function of ξ∗ and ξ, which emphasizes more on the error when U is
large, and vice versa, it emphasizes more on the norm of the weights resulting in a better
generalization; N is the number of training vectors. The corresponding constraints are
as follows:

yi − (wtvi)− b = ε + ξi
(wtvi) + b− yi ≤ ε + ξ∗i

ξ∗i ≥ 0
ξi ≥ 0

(25)

where vi is the training vector i; b denotes a group of bias. On this basis, the Lagrangian
can be formulated based on the Lagrange multipliers γi and αi as follows:

L = 1
2 (w

tw) + U
(

N
∑

i=1
ξ∗i +

N
∑

i=1
ξi

)
−

N
∑

i=1
α∗i [yi − (wtvi)− b + ε + ξ∗i ]

−
N
∑

i=1
α∗i [(w

tvi) + b− yi + ε + ξi]−
N
∑

i=1
(γ∗i ξ∗i + γiξi)

(26)

As can be seen from Equation (14) that in addition to parameters w, b, and ξi, La-
grangian is also related to the Lagrange multipliers, which makes the direct solution of
the parameters of ε-SVM with respect to w, b, and ξi by taking the partial derivative of the
Lagrangian impossible. Fortunately, the saddle point of L by differentiating with respect to
w, b, and ξi leads to the equivalent maximization of the dual space, which can be formulated
as follows:

W(α, α∗) = −ε
N

∑
i=1

(α∗i + αi) +
N

∑
i=1

yi(α
∗
i − αi)−

1
2

N

∑
i,j=1

(α∗i − αi)(α
∗
j − αj)(vtv + 1)p (27)

with the constraints:
0 ≤ αi ≤ U 0 ≤ α∗i ≤ Ui = 1, . . . , N
N
∑

i=1
α∗i =

N
∑

i=1
αi

(28)
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As a result, the prediction of y(p) corresponding to new input vector x(p) can be
formulated as follows:

y(p) =
N

∑
i=1

(α∗i − αi)(vt
i x

(p) + 1)p + b (29)

In order to effectively and efficiently solve various linear and nonlinear regression
problems, the most critical component of SVM, namely kernel function, is described here.
The application of kernel function ensures that the vector dot product of high-dimensional
space can be directly calculated in low-dimensional space according to the Hilbert–Schmidt
theory [45], greatly reducing calculation complexity and avoiding the curse of dimensional.
In this manner, the performance of SVM either in classification and regression is significantly
improved. The operation of kernel function is as follows:

K(x1, x2) = 〈φ(x1), φ(x2)〉 (30)

where K(·) is the kernel function; φ(x) is a transformation that maps x to a high-dimensional
space; 〈·〉 denotes dot product operator. The commonly used kernel functions in SVM
include linear function, polynomial function, radial basis function (RBF), and sigmoidal
function. Generally, RBF can achieve significant superiority against other kernel functions,
which can be expressed as follows:

KRBF(x1, x2) = exp(−γ‖x1 − x2‖2) γ > 0 (31)

where γ is one hyperparameter of SVM.
It is noteworthy that data processing is needed to standardize the input samples to

eliminate the numerical calculation instability caused by feature dimension and improve
the convergence speed. The standardization of input sample x can be expressed as follows:

x∗ =
x− u

σ
(32)

where x∗ is the standardized sample; u and σ are the mean vector and standard deviation
vector, respectively.

In summarize, the MVQIHGSO and SVM are combined to construct a novel opti-
mal operation rule derivation method, which is called MVQIHGSO-SVM model. The
proposed MVQIHGSO is used to optimize the hyperparameters of SVM, the flowchart
of MVQIHGSO-SVM is shown in Figure 1. Furthermore, several commonly used vali-
dation indices are used to comprehensively evaluate the performance of the proposed
MVQIHGSO-SVM model. The validation indices are composed of coefficient of determina-
tion (R2), root mean square error (RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE). Different indices can validate the performances of the model in
different dimensions. Specifically, R2 is used to characterize the linear correlation between
the observed data and its predicted data; RMSE is adopted to indicate the average degree of
dispersion between the observed data and its predicted data; MAE and MAPE are applied
to quantify the deviation of the predicted data from the observed data. The formulation of
validation indices are as follows:

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(33)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (34)
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MAE =
1
n

n

∑
i=1
|yi − ŷi| (35)

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (36)

Figure 1. Flowchart of MVQIHGSO-SVM method.

It is noteworthy that the smaller these indicators, the better the performance of the
model.

3. Experimental Evaluation and Discussion

In order to verify the performance of the proposed MVQIHGSO algorithm, a com-
prehensive set of benchmark functions including 23 widely used functions in the field of
intelligence algorithm are adopted as test bed. These benchmark function set includes
three types: unimodal (F1–F7), multimodal (F8–F13), and fixed-dimension multimodal
(F14–F23), which are all minimization optimization problems. F1–F7 are used to test the
convergence speed and exploitation accuracy of algorithms because of only one local or
global optima exists in the search space; F8–F13 are used to test the exploration capacity
when facing many local optimal solutions; F14–F23 are used to test the ability of local
optima avoidance and the balance between exploration and exploitation of the algorithms.
More detailed information about these benchmark functions including function expressions,
dim and boundary of decision variables, and the theoretical global optima are presented in
Tables 1–3.
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Table 1. Description of unimodal benchmark functions.

Function Dim Range f min

f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0
f2(x) = ∑n

i=1
∣∣xi

∣∣+ ∏n
i=1
∣∣xi

∣∣ 30 [−10, 10] 0

f3(x) = ∑n
i=1

(
∑i

j−1 xj

)2 30 [−100, 100] 0

f4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0
f5(x) = ∑n−1

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Table 2. Description of multimodal benchmark functions.

Function Dim Range f min

f8(x) = ∑n
i=1−xi sin(

√
|xi |) 30 [−500, 500] −418.9829 × 5

f9(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

f10(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

f12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

f13(x) = 0.1
{

sin2(3πx) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 u(xi , 5, 100, 4)

30 [−50, 50] 0

Table 3. Description of fixed-dimension multimodal benchmark functions.

Function Dim Range f min

f14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6

)−1
2 [−65, 65] 1

f15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] 2 [−2, 2] 3

f19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij(xj − pij)
2
)

3 [1, 3] −3.86

f20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij(xj − pij)
2
)

6 [0, 1] −3.32

f21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

f22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

f23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

In addition, for a general and fair comparison, the proposed MVQIHGSO are compared
with the basic HGSO and several state-of-art metaheuristic optimization algorithms including
particle swarm optimization (PSO) [46], differential evolution algorithm (DE) [47], multi-verse
optimizer (MVO) [36], sine cosine algorithm (SCA) [48], opposition-based sine cosine algorithm
(OBSCA) [49], grey wolf optimizer (GWO) [50], and improved grey wolf optimizer (IGWO) [51].
It is noteworthy that the parameters settings of the comparison algorithms are the same as
those used in the original literature. At the same time, without the loss of generality, for the
specific common parameters, for example, the population size, the dim of decision variables,
and the maximum number of iterations are set to 50, 30, and 1000. Specially, in order to
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reduce the sudden impact of the randomness of the algorithm on the overall performance, all
the optimization algorithms are carried out with 30 runs independently for each benchmark
function to analyze the statistical performance of the algorithms.

3.1. Statistical Results and Analysis

In this subsection, the aforementioned algorithms were run 30 times on each bench-
mark function, such that the statistical results including average and standard deviation
were calculated based on the optimization results. The corresponding statistical results
were recorded and presented in Table 4, where the best statistical results with respect to
average values of algorithm are presented in bold. As shown in Table 4 that MVQIHGSO
is able to provide very competitive results and has the smallest average values on 16 out
of the 23 benchmark functions, more than half of them. More specifically, the analysis of
specific performance is as follows.

For unimodal functions, the proposed algorithm has achieved significant superior-
ity against other well-known algorithms in F1, F2, F3, and F7, indicating the superior
performance of MVQIHGSO in term of finding the global optimum in local search space
during exploitation phase. This is because the quadratic interpolation method is imbedded
into the basic HGSO algorithm, such that the ability of the basic HGSO to exploit the
optimum is enhanced. For multimodal functions, the proposed algorithm also outper-
forms other algorithms in F9, F10, and F11, indicating its good exploration capacity in
the case of a large number of local optima because of the introduced white/black hole
mechanism from MVO algorithm to solve local optima stagnation by sudden change. For
fixed-dimension multimodal functions, the proposed algorithm achieves the best perfor-
mance in all the benchmark functions compared with other algorithms caused by the
incorporated wormhole mechanism with adaptive controlling parameters to balance ex-
ploration and exploitation. The above analysis based on statistical results reveal that the
resulting algorithm has merits with respect to robust and statistically sound in term of
exploration phase and exploitation phase.

3.2. Non-Parameter Test Results and Analysis

Friedman test is a non-parametric statistical test developed by Milton Friedman, which
is often used to detect differences in treatments across multiple test attempts [52,53]. For the
performance comparison of metaheuristic algorithms, it uses rank information based on the
statistical results of several runs to examine significant differences in multiple population
distributions [54]. Therefore, in this subsection, Friedman test was first used to benchmark
the overall performance of MVQIHGSO and other state-of-art algorithms. In this manner,
the average ranks of the algorithms are obtained in Table 5. As shown in Table 5 that the
Friedman rank of the proposed MVQIHGSO is 2.543, which is the smallest value among all
the algorithms. The second-best algorithm is IGWO with the Friedman rank 3.369. These
results show that the overall performance of the proposed algorithm is better in terms of
exploration and exploitation.

Additionally, in order to further explore the performance difference in each run to
exclude the case that superiority and dissimilarity occurs by chance, another non-parameter
test named Wilcoxon singed-rank test [55] was also carried out to determine whether there
is a statistical significant difference between the proposed MVQIHGSO and other state-
of-art algorithms in this subsection. The null hypothesis is that the differences have a
median of zero and the alternative hypothesis that the median is not equal to zero for a
two-sided test or greater (or smaller) than zero for a one-sided test. The results of Wilcoxon
singed-rank test with a significance level of 5% is represented in Table 6. As shown in
Table 6, the proposed algorithm performs significantly better than other algorithms in
the case where the p value is less than 0.05. This can strongly demonstrate the potential
capabilities of the proposed algorithm in coping with the complex optimization problems
in real world.
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Table 4. Statistical results of the proposed MVQIHGSO and other state-of-art algorithms.

Functions Indicator MVQIHGSO HGSO PSO DE MVO SCA OBSCA GWO IGWO

Unimodal

F1 Mean 0.00 1.71 × 10−71 2.33 × 10−40 5.29 × 10−12 1.79 × 10−1 2.74 × 10−3 1.11 × 10−27 2.48 × 10−70 2.57 × 10−71

Std 9.34 × 10−71 0.00 1.04 × 10−39 2.22 × 10−12 5.80 × 10−2 7.88 × 10−3 4.22 × 10−27 7.10 × 10−70 6.07 × 10−71

F2 Mean 4.10 × 10−185 1.25 × 10−43 8.79 × 10−3 4.65 × 10−8 3.55 3.17 × 10−6 4.21 × 10−25 6.67 × 10−41 1.95 × 10−42

Std 6.83 × 10−43 0.00 3.15 × 10−2 1.23 × 10−8 1.81 × 101 4.67 × 10−6 2.18 × 10−24 7.20 × 10−41 3.62 × 10−42

F3 Mean 0.00 1.04 × 10−69 1.09 × 10−1 2.41 × 104 1.83 × 101 2.10 × 103 1.32 × 10−3 7.80 × 10−19 8.61 × 10−13

Std 5.66 × 10−69 0.00 1.28 × 10−1 2.77 × 103 6.90 1.73 × 103 5.17 × 10−3 3.92 × 10−18 4.38 × 10−12

F4 Mean 2.06 × 10−72 1.51 × 10−183 1.09 × 10−1 2.00 6.33 × 10−1 1.36 × 101 1.55 × 10−5 1.15 × 10−17 7.93 × 10−15

Std 1.13 × 10−71 0.00 7.10 × 10−2 2.44 × 10−1 2.77 × 10−1 9.40 2.88 × 10−5 1.69 × 10−17 6.16 × 10−15

F5 Mean 2.85 × 101 2.80 × 101 4.06 × 101 4.65 × 101 3.08 × 102 5.54 × 102 2.79 × 101 2.65 × 101 2.25 × 101

Std 2.70 × 10−1 6.13 × 10−1 2.77 × 101 2.31 × 101 5.98 × 102 2.18 × 103 3.06 × 10−1 7.80 × 10−1 2.79 × 10−1

F6 Mean 1.74 × 10−1 3.44 3.63 × 10−23 4.92 × 10−12 1.66 × 10−1 4.29 4.10 4.13 × 10−1 1.01 × 10−5

Std 6.39 × 10−2 5.26 × 10−1 1.84 × 10−22 1.84 × 10−12 4.89 × 10−2 3.92 × 10−1 2.73 × 10−1 2.57 × 10−1 2.39 × 10−6

F7 Mean 6.76 × 10−5 7.92 × 10−4 9.32 × 10−3 2.59 × 10−2 1.22 × 10−2 2.35 × 10−2 1.47 × 10−3 4.72 × 10−4 8.64 × 10−4

Std 4.35 × 10−4 4.84 × 10−5 4.00 × 10−3 4.70 × 10−3 5.04 × 10−3 2.54 × 10−2 1.03 × 10−3 3.15 × 10−4 3.80 × 10−4

Multimodal

F8 Mean −1.02 × 104 −2.64 × 105 −6.68 × 103 −1.25 × 104 −8.18 × 103 −3.97 × 103 −4.08 × 103 −6.09 × 103 −9.62 × 103

Std 1.08 × 103 6.38 × 105 5.86 × 102 8.39 × 101 7.31 × 102 2.69 × 102 2.26 × 102 7.63 × 102 1.29 × 103

F9 Mean 0.00 0.00 4.67 × 101 6.20 × 101 1.05 × 102 1.29 × 101 0.00 1.78 × 10−1 1.39 × 101

Std 0.00 0.00 1.45 × 101 5.96 3.31 × 101 1.98 × 101 0.00 8.08 × 10−1 6.96

F10 Mean 1.01 × 10−15 1.72 × 10−15 6.36 × 10−1 6.01 × 10−7 7.92 × 10−1 1.11 × 101 1.09 × 10−1 1.26 × 10−14 9.06 × 10−15

Std 1.53 × 10−15 6.49 × 10−16 7.67 × 10−1 1.10 × 10−7 7.47 × 10−1 9.72 5.12 × 10−1 2.97 × 10−15 2.31 × 10−15

F11 Mean 0.00 0.00 1.66 × 10−2 7.82 × 10−11 4.49 × 10−1 1.72 × 10−1 4.67 × 10−11 4.53 × 10−4 1.89 × 10−3

Std 0.00 0.00 2.13 × 10−2 1.51 × 10−10 8.69 × 10−2 2.35 × 10−1 2.56 × 10−10 2.48 × 10−3 4.56 × 10−3

F12 Mean 7.73 × 10−4 3.43 × 10−1 4.49 × 10−2 6.66 × 10−13 8.71 × 10−1 1.17 4.48 × 10−1 3.01 × 10−2 7.46 × 10−7

Std 3.65 × 10−4 1.18 × 10−1 7.04 × 10−2 3.91 × 10−13 8.25 × 10−1 1.89 9.21 × 10−2 2.30 × 10−2 2.44 × 10−7

F13 Mean 2.00 × 10−2 2.49 2.07 × 10−2 3.01 × 10−12 3.78 × 10−2 3.20 2.28 3.05 × 10−1 1.63 × 10−2

Std 8.67 × 10−3 3.23 × 10−1 3.65 × 10−2 1.72 × 10−12 1.87 × 10−2 1.52 1.47 × 10−1 2.03 × 10−1 3.70 × 10−2

Fixed-dimension
multimodal

F14 Mean 9.98 × 10−1 1.14 2.58 9.98 × 10−1 9.98 × 10−1 1.33 1.20 3.22 9.98 × 10−1

Std 1.61 × 10−12 2.87 × 10−1 2.01 0.00 6.12 × 10−12 7.52 × 10−1 6.05 × 10−1 3.54 4.12 × 10−17

F15 Mean 3.08 × 10−4 3.53 × 10−4 3.84 × 10−4 6.49 × 10−4 3.33 × 10−3 9.72 × 10−4 7.45 × 10−4 4.35 × 10−3 3.34 × 10−4

Std 4.16 × 10−8 4.13 × 10−5 2.95 × 10−4 9.37 × 10−5 6.80 × 10−3 4.47 × 10−4 1.14 × 10−4 8.14 × 10−3 1.43 × 10−4

F16 Mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 -1.03 −1.03 −1.03
Std 5.34 × 10−12 2.10 × 10−5 6.78 × 10−16 6.78 × 10−16 4.39 × 10−8 1.50 × 10−5 7.18 × 10−7 2.78 × 10−9 6.78 × 10−16

F17 Mean 0.398 0.399 0.398 0.398 0.398 0.399 0.398 0.398 0.398
Std 1.49 × 10−10 9.22 × 10−4 0.00 0.00 7.35 × 10−8 6.37 × 10−4 2.89 × 10−4 3.25 × 10−7 0.00

F18 Mean 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Std 2.86 × 10−10 1.13 × 10−5 1.50 × 10−15 1.90 × 10−15 6.23 × 10−7 1.51 × 10−5 4.30 × 10−6 3.90 × 10−6 7.14 × 10−16

F19 Mean −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86
Std 1.53 × 10−9 2.17 × 10−3 2.71 × 10−15 2.71 × 10−15 2.67 × 10−7 2.89 × 10−3 1.76 × 10−3 1.30 × 10−3 2.71 × 10−15

F20 Mean −3.32 −3.12 −3.29 −3.31 −3.29 −2.96 −3.16 −3.29 −3.31
Std 3.02 × 10−2 7.03 × 10−2 5.54 × 10−2 1.38 × 10−15 5.56 × 10−2 3.10 × 10−1 4.12 × 10−2 5.20 × 10−2 3.02 × 10−2

F21 Mean −10.2 −4.89 −6.15 −9.96 −7.28 −4.28 −9.30 −9.31 −9.82
Std 1.93 8.91 × 10−2 3.44 1.68 × 10−3 2.79 2.16 1.07 × 10−1 1.92 1.28

F22 Mean −10.4 −4.91 −9.06 −10.0 −8.58 −4.05 −10.2 −10.2 −10.4
Std 1.35 1.15 × 10−1 2.77 5.07 × 10−8 2.90 2.26 1.44 × 10−1 9.63 × 10−1 7.32 × 10−9

F23 Mean −10.5 −4.96 −8.11 −10.5 −9.56 −4.97 −10.4 −10.4 −10.5
Std 2.59 × 10−5 1.02 × 10−1 3.55 1.49 × 10−13 2.25 1.70 1.04 × 10−1 9.79 × 10−1 1.09 × 10−14
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Table 5. Statistical results of the proposed MVQIHGSO and other state-of-art algorithms from
Friedman test.

Algorithms Friedman Ranks Final Ranks

MVQIHGSO 2.543 1
HGSO 4.608 3
PSO 5.652 7
DE 4.608 4

MVO 6.456 8
SCA 7.804 9

OBSCA 5.260 6
GWO 4.695 5
IGWO 3.369 2

Table 6. Statistical results of the proposed MVQIHGSO and other state-of-art algorithms from
Wilcoxon test (p ≥ 0.05).

Compared Algorithms Unimodal Functions Multimodal Functions Fixed-Dimension Functions

MVQIHGSO vs. HGSO 2.5940 × 10−8 0.1012 7.4567 × 10−4

MVQIHGSO vs. PSO 1.4838 × 10−12 4.1333 × 10−10 0.8573
MVQIHGSO vs. DE 6.6342 × 10−19 2.5731 × 10−4 0.0916

MVQIHGSO vs. MVO 1.7618 × 10−32 5.2700 × 10−31 0.0273
MVQIHGSO vs. SCA 9.6394 × 10−27 6.4376 × 10−25 3.2725 × 10−5

MVQIHGSO vs. OBSCA 1.0240 × 10−9 4.1657 × 10−4 0.0227
MVQIHGSO vs. GWO 5.5859 × 10−7 0.0072 0.0654
MVQIHGSO vs. IGWO 7.5243 × 10−5 0.0011 0.0402

From the analysis of Friedman test and Wilcoxon rank sum test, it can be concluded
that the MVQIHGSO is able to avoid local optima stagnation and find the global optimal
solution more accurately. This is due to the introduction of MVO operator and QI strategy
for improving the position updating mechanism of the basic HGSO. In this way, the
convergence speed can also be improved, which can be found in Figure 2. Figure 2 shows
that the convergence speed of MVQIHGSO is significantly higher than other algorithms.

Figure 2. Convergence curves of algorithms for F1, F4, F9, and F11.
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4. Case Study
4.1. Study Region

The main stream of the Jinsha River is the largest hydropower plant planned and
constructed in China. The lower reaches of the Jinsha River (from the Yalong River Estuary
to Yibin) have the richest hydropower resources, with a length of 782 km and a drop of
729 m. Xiluodu and Xiangjiaba (XLD and XJB) hydropower reservoirs, located in the
lower reaches of the Jinsha River, are China’s third and fifth largest hydropower stations
with a total installed capacity of 18,600 MW, equivalent to building a new Three Gorges
hydropower station. The landscape of XLD and XJB hydropower stations are shown in
Figure 3, and the characteristic parameters are given in Table 7.

Figure 3. Location of XLD-XJB cascade reservoirs.

Table 7. Characteristics information of XLD-XJB cascade reservoirs.

Characteristics
Hydropower Stations

Units
Xiluodu Xiangjiaba

Completion date 2013 2012 -
Watershed area 0.45 0.45 million km2

Dead water level 540 370 m
Flood control limited water level 560 370 m

Normal water level 600 380 m
Regulated storage 6.46 0.903 billion m3

The minimum release 1200 1200 m3/s
The minimum output 1000 1000 MW

Installed capacity 12,600 6000 MW
Efficiency coefficient 8.8 8.8 -

4.2. Data Description

The historical inflow of XLD hydropower reservoir is used as the input of the estab-
lished optimal operation model of XLD and XJB hydropower reservoir system. Since the
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first unit of XLD hydropower station was put into operation in July, 2013, the historical
inflow series are from 2014 to 2020. The optimization algorithm combined DP, POA, and
DPSA is used to solve the established optimal operation model. Then the optimal operation
process data of XLD and XJB hydropower reservoir system, including water level and out-
flow, are used as the input of optimal operation rule derivation model MVQIHGSO-SVM.

Specifically, the obtained daily operation data of seven years (from 2014 to 2020) of
XLD and XJB hydropower stations were obtained with a total of 2557 observed sample
data. Five years of the observed sample data from 2014 to 2018 were used as the training
set of SVM model and the remaining data are used as validation set. Specifically, in order to
improve the fitting accuracy, the end water level during a period was selected as decision
variable. At the same time, in the implicit stochastic optimal operation of hydropower
reservoirs, the initial water level and inflow of the period are often used as the input
variables of the operation rules [9,56]. In addition, in order to consider the hydraulic
connection between reservoirs, the initial water level of the same period of the adjacent
reservoirs is also used as an input variables.

4.3. Results and Discussion

In order to verify the performance of the proposed MVQIHGSO-SVM model, other
hybrid models including HGSO-SVM, PSO-SVM, SCA-SVM, and Grid-SVM models were
compared in this study. The different validation indices of all the models are calculated
according to Equations (33)–(36), which are given in Table 8. Table 8 shows that for the
same input data, the proposed MVQIHGSO-SVM model has more accurate results than the
other models. Obviously, the equipped HGSO with multiple strategies cause a reduction in
R2, RMSE, MAE, and MAPE values in the prediction of end water level during a period.
The best model according to the highest values of R2, and the lowest values of RMSE, MAE
and MAPE are the proposed MVQIHGSO-SVM as the best optimum model by a value
of R2 = 0.998, RMSE = 0.340, MAE = 0.126, and MAPE = 0.021% for XLD and R2 = 0.998,
RMSE = 0.164, MAE = 0.075, and MAPE = 0.019% for XJB. This means that the proposed
MVQIHGSO method can find the best hyperparameter combination to improve the ability
of SVM with respect to operation rule derivation. The remaining models, from best to
worst according to RMSE value, are Grid-SVM, SCA-SVM, PSO-SVM, and HGSO-SVM
for XLD and Grid-SVM, SCA-SVM, PSO-SVM, and HGSO-SVM for XJB. The worst model
for XLD and XJB of all hybrid models are HGSO-SVM. The performance of the proposed
model is improved by 17.27% and 14.58% compared with HGSO in term of RMSE value
for XLD and XJB, respectively. The good performance of the proposed model in predicting
data can be attributed to the following two reasons: (1) SVM shows unique advantages in
solving small sample and non-linear problems by using kernel functions; (2) the multiple
strategies including MVO algorithm and QI strategy improve the optimization ability of
the basic HGSO.

Table 8. Validation indices value of different operation rule derivation models on validation set.

Reservoirs Models R2 RMSE MAE MAPE

XLD

MVQIHGSO-SVM 0.998 0.340 0.126 0.021%
HGSO-SVM 0.997 0.411 0.151 0.025%
SCA-SVM 0.997 0.405 0.149 0.025%
PSO-SVM 0.998 0.405 0.150 0.025%
Grid-SVM 0.998 0.357 0.151 0.025%

XJB

MVQIHGSO-SVM 0.998 0.164 0.075 0.019%
HGSO-SVM 0.997 0.192 0.098 0.026%
SCA-SVM 0.997 0.189 0.092 0.025%
PSO-SVM 0.996 0.192 0.096 0.025%
Grid-SVM 0.997 0.187 0.086 0.023%

In order to clearly show the effect of different methods to predict the end water level
during a period, scatter plots of all hybrid models in the validation set are presented in
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Figure 4. Figure 4 shows that there is a significant quantitative correlation trend between
observed and predicted water level process because the plotted points lie closely on a 45
degree straight line through the origin. However, it can be observed that performance of
different hybrid models is slightly different and the proposed MVQIHGSO-SVM has a better
performance than other hybrid models. For example, Figure 4 shows that the prediction
error is small when XLD is at high water levels using MVQIHGSO-SVM, conversely, it is
large using HGSO-SVM, SCA-SVM, and PSO-SVM. For XJB, the water level in the higher
water level interval and the lower water level interval can be accurately predicted using
MVQIHGSO-SVM model.

Figure 4. Scatter plots of all hybrid models in the validation set (unit: m).

In order to further explore the difference in prediction accuracy of different hybrid
models, the comparison of observed and predicted water level process of XLD and XJB
are presented in Figure 5. As shown in Figure 5a for XLD, in the transitional stage from
low water level to high water level, the prediction results of each hybrid model are quite
different. The predicted water level process based on MVQIHGSO is closer to the observed
values, followed by Grid-SVM, SCA-SVM, PSO-SVM, and HGSO-SVM. Here, combined
with the inflow process of XLD from 1 January 2020 to 29 February 2020 in Figure 6, it can
be observed that the inflow of XLD is relatively large after 23 January 2019. Therefore, the
reservoir vacates the capacity in advance, resulting in the decline of the water level from
15 January 2019. From this point of view, the proposed MVQIHGSO-SVM can more accu-
rately store and release floods in order to deal with future large and deterministic inflow
processes. As shown in Figure 5b for XJB, when it is operating at a high water level,
only the predicted water level process by MVQIHGSO-SVM meets the maximum water
level constraint, namely the normal water level 380 m. This shows that the proposed
MVQIHGSO-SVM model can more accurately find the operation rules of hydropower reser-
voirs considering the complex and non-linear constraints and the production experience of
operators than other hybrid models.



Water 2023, 15, 437 19 of 23

Figure 5. Observed and predicted water level process (unit: m).

Figure 6. Inflow process of XLD from 1 January 2020 to 29 February 2020.
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Finally, the predicted water level processes based on all hybrid models are used as the
input data of conventional operation model of XLD and XJB hydropower reservoirs. In
addition, the optimal operation results of XLD-XJB are also calculated. These results are
given in Table 9. Table 9 shows that the highest total hydropower generation is obtained
by optimal operation model, reaching 196.41 TWh. MVQIHGSO-SVM ranks second,
followed by Gird-SVM, SCA-SVM, HGSO-SVM, PSO-SVM, and conventional operation.
The hydropower generation obtained by conventional operation is 193.85 TWh, which is
2.56 TWh less than the optimal operation result. The hydropower generation calculated by
the proposed MVQIHGSO-SVM model is closer to the optimal operation result, and the
hydropower generation increased the most compared to conventional scheduling, reaching
2.23 TWh, increasing by 1.15%. In summary, the operation rule of hydropower reservoirs
derived by the proposed MVQIHGSO-SVM model outperform other hybrid models, which
is able to obtain total hydropower generation closer to the optimal dispatch model.

Table 9. Total hydropower generation based on observed and predicted data as well as optimal
operation.

Reservoirs
Hydropower Generation (TWh)

Observed MVQIHGSO-SVM HGSO-SVM SCA-SVM PSO-SVM Grid-SVM Optimization

XLD 129.82 131.30 131.03 131.03 131.03 131.12 131.41
XJB 64.03 64.78 64.56 64.56 64.56 64.61 65.00

Total 193.85 196.08 195.59 195.58 195.58 195.73 196.41

5. Conclusions

In this study, a novel operation rule derivation method combining improved HGSO
and SVM is proposed. Multiple strategies including MVO operator and QI method are
used to cope with the drawbacks faced by the original HGSO. Then the improved HGSO
called MVQIHGSO is applied to optimize the hyperparameters of SVM model to derive
the operation rules of hydropower reservoirs, forming MVQIHGSO-SVM model. The main
contributions of this paper can be concluded below.

(1) Multiple strategies are equipped into HGSO to improve its performance in exploration
and exploitation. The multi-verse optimizer (MVO) is used to enhance the exploration
capability of basic HGSO and help the inferior agent to escape from local optimal.
Quadratic interpolation (QI) is used to improve the exploitation ability of HGSO.
Finally, the exploration and exploitation are balanced by integrating the multiple
strategies.

(2) MVQIHGSO with multiple strategies is benchmarked by 23 classical benchmark func-
tions. The results demonstrates that MVQIHGSO outperforms most of the well-known
metaheuristic algorithms and has a superior efficacy compared to the competitors
based on the convergence accuracy and speed.

(3) MVQIHGSO-SVM model is used to derive operating rules of hydropower reservoirs.
The XLD and XJB in the upper Yangtze River are selected as a case study. The
results indicate that the proposed MVQIHGSO-SVM model can accurately obtain
the joint operation rules of hydropower reservoirs. The total hydropower generation
calculated by the proposed hybrid model is closer to the optimal operation result, and
the hydropower generation increased the most compared to conventional scheduling,
reaching 22.25 × 108 kWh, increasing by 1.15%.

In the future, the improved HGSO algorithm can be combined with other machine
learning method for deriving operation rules of huge hydropower reservoirs.
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