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Abstract: Wastewater monitoring for SARS-CoV-2 is a valuable tool for surveillance in public health.
However, reliable analytical methods and appropriate approaches for the normalization of results are
important requirements for implementing state-wide monitoring programs. In times of insufficient
case reporting, the evaluation of wastewater data is challenging. Between December 2021 and
July 2022, we analyzed 646 samples from 23 WWTPs in Thuringia, Germany. We investigated
the performance of a direct capture-based method for RNA extraction (4S-method) and evaluated
four normalization methods (NH4-N, COD, Ntot, and PMMoV) in a pooled analysis using different
epidemiological metrics. The performance requirements of the 4S method were well met. The
method could be successfully applied to implement a state-wide wastewater monitoring program
including a large number of medium and small wastewater treatment plants (<100,000 p.e) in high
spatial density. Correlations between wastewater data and 7-day incidence or 7-day-hospitalization
incidence were strong and independent from the normalization method. For the test positivity rate,
PMMoV-normalized data showed a better correlation than data normalized with chemical markers.
In times of low testing frequency and insufficient case reporting, 7-day-incidence data might become
less reliable. Alternative epidemiological metrics like hospital admissions and test positivity data
are increasingly important for evaluating wastewater monitoring data and normalization methods.
Furthermore, future studies need to address the variance in biological replicates of wastewater.

Keywords: COVID-19; SARS-CoV-2; wastewater-based epidemiology; normalization

1. Introduction

The 2019 coronavirus pandemic (COVID-19) has revealed the pivotal role of surveil-
lance instruments in pandemic management and preparedness. Classical epidemiological
metrics, such as cumulative COVID-19 incidence, COVID-19-related hospitalization, and
death rates, have been shown to be affected by testing strategy, accessibility to testing
and healthcare facilities, as well as the performance of local reporting systems [1,2] and
are, therefore, frequently biased. In this context, wastewater monitoring of SARS-CoV-2
has proven to be a precious and complementary instrument with strengths over the
aforementioned epidemiological metrics: (a) it is an objective source of information on
virus prevalence in a population and independent of individual human testing strategies,
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(b) under certain circumstances acts as an early indicator (3–7 days/4–10 days) of rising
trends in reported COVID-19 cases [3–7], and (c) it is a more cost-effective measure than
individual testing [2]. Consequentially, wastewater surveillance programs for SARS-CoV-2
have been implemented globally within the last two years [1,8]. However, reliable and ro-
bust analytical methods are essential for successfully implementing wastewater monitoring
systems. Currently, there is no standard method or approach for detecting SARS-CoV-2
RNA in wastewater [2]. Several methods, primarily based on RT-qPCR or dPCR, are
used to detect SARS-CoV-2 RNA fragments [9–12]. These methods mainly differ in the
concentration procedure (membrane filtration, centrifugation, and PEG precipitation) or
molecular detection, e.g., target sequences, PCR primers, and probes. The choice of method
mostly depends on the availability of resources and the local lab equipment, as well as the
costs of consumables.

A cost-effective and kit-free extraction method that has been widely used is the 4S
method by Whitney et al. [13]. The 4S method has already been successfully applied in
several studies for SARS-CoV-2 wastewater monitoring [9,13–16], SARS-CoV-2 variant
analysis [14,17], and preparation of RNA extracts for genome sequencing [18]. Unlike
many other methods, the 4S method has no explicit concentration step, e.g., by membrane
filtration or precipitation. Concentration is achieved solely by volume reduction during
RNA extraction using silica columns (direct capture). Furthermore, the sample preparation
and RNA extraction are very easily applicable in a microbiological lab equipped as standard.

In addition to different analytical approaches, the informative value of wastewater-
based data is influenced by several other factors: (a) the size of the sewage system and
flow times in the sewer, (b) wastewater composition as well as catchment characteristics
(e.g., amount and type of industrial dischargers), and (c) seasonal variation in wastewater-
quality and -loads, e.g., because of tourism, industrial production, or rainfall [19–23].
Regarding the latter, the normalization of SARS-CoV-2 levels using population markers
may be critical for viral load interpretation. There is a wide variety of normalization
methods documented in the literature [24]. According to the current status, normalization
based on flow measurements is chosen most frequently [25–27]. Furthermore, standard
wastewater parameters such as ammonia (NH4-N), total nitrogen (Ntot), or chemical oxygen
demand (COD) are used as population markers for normalization. Chemical tracers such
as caffeine, carbamazepine, creatinine, and 5-hydroxy indole acetic acid (5 HIAA) might
also be useful for wastewater-based epidemiology [24]. In addition, some studies also
indicate that normalization using biological population markers such as pepper mild mottle
virus (PMMoV) [1,7,16,28,29], cross-assembly phages (crAssPhage) [25,29], or Bacteroides
HF183 [15] may be useful. However, the added value of these biomarkers is discussed
controversially in the literature [7,20,26,30–32]. A central challenge for a comparative
evaluation of different normalization methods is the availability of an appropriate standard
for assessing SARS-CoV-2 prevalence in a population. So far, most studies comparing
different normalization methods are using cumulative incidence data based on individual
human testing [15,16,32,33]. However, as mentioned above, these data might be biased,
especially in those pandemic phases with low test coverage or capacity. A recent report by
the CDC [34] demonstrates that COVID-19 hospital admission rates and the percentage of
positive test results might be suitable additional indicators for monitoring trends in COVID-
19 activity. Consequentially, studies evaluating normalization methods in wastewater
monitoring programs should include theses epidemiological metrics as well.

Only a few studies on wastewater monitoring of SARS-CoV-2 have been published
for Germany [17,29,35–39]. These studies mostly focus on very large wastewater treatment
plants (>150,000 p.e.). In contrast to these studies, we investigated a large number of
medium and small wastewater treatment plants (<100,000 p.e) in high spatial density. Even
so, the European Union recommends focusing on very large wastewater treatment plants
(>150,000 p.e.) [40], as these wastewater treatment plants cover about 43.8% of connected
inhabitants. Studies focusing on medium and small wastewater treatment plants are of
interest because more than 90% of the wastewater treatment plants in the European Union
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are smaller than 100,000 p.e. [40]. In this study, we present data from a German wastewater
monitoring program in the Free State of Thuringia, Germany, and aim to investigate
(A) the performance of the 4S method for a SARS-CoV-2 monitoring program and (B) the
effect as well as the potential of different normalization methods. Between December
2021 and July 2022, we collected 646 samples from up to 23 wastewater treatment plants
(WWTPs) of different sizes. During the monitoring program, samples were analyzed up to
twice a week with an analytical method already described by Wilhelm et al. [17,41]. Besides
regular monitoring, a second analytical approach with the 4S method was used. Once a
week, a sub-sample of the regular monitoring samples was processed using the 4S method
to investigate specific aspects of quality assurance. This study is based on the data collected
with the 4S method. For our analysis, we used the pooled data set from all WWTPs in
the program and applied (I) flow-normalization as well as normalization with chemical
water quality markers: (II) ammonium NH4-N, (III) chemical oxygen demand COD, and
(IV) total nitrogen Ntot. Furthermore, we used the biomarker (V) PMMoV for normalization.
To evaluate the different normalization methods, we used the following epidemiological
metrics for COVID-19 frequency: (1) 7-day incidences per 100,000 inhabitants (county level
and federal state level), (2) 7-day-hospitalized COVID-19 cases per 100,000 inhabitants
(federal state level), and (3) the relative proportion of positive tests from participating
laboratories in the Free State of Thuringia.

2. Materials and Methods
2.1. Sampling Sites, Wastewater Sampling, and Transport

The Free State of Thuringia, with around 2,100,000 inhabitants, has many sparsely
populated rural areas and, in consequence, many small- and middle-sized WWTPs. Up
to 23 WWTPs distributed representatively over the entire federal state were included
in the monitoring program. In Germany, WWTPs are classified according to specific
capacity-describing parameters. As a rule, size classes (GK) are based on the population
equivalent (p.e.). Here, a distinction is made between five size classes (GK 1 = <1000 p.e.;
GK 2 = 1000–5000 p.e.; GK 3 = 5001–10,000 p.e.; GK 4 = 10,001–100,000 p.e.; and
GK 5 = >100,000 p.e.). The number of actual residents served (without industry) was
calculated with data collected from the plant operators. In total, we covered the wastewater
from up to 1,049,996 inhabitants, which corresponds to about 50% of the population of
Thuringia. WWTPs included in the monitoring program are shown in Table 1.

Between 6 December 2021 and 18 July 2022, we analyzed samples from up to
23 WWTPs once a week using the 4S method. The samples were taken as 24 h com-
posite samples in WWTPs influent, usually during the night from Sunday to Monday. At
WWTP ID 19, sampling took place from Wednesday to Thursday, and at WWTP ID 18,
sampling took place from Thursday to Friday. Time-proportional samples (n = 16 WWTPs)
and volume-proportional (n = 7 WWTPs) 24 h composite samples were collected using
automatic sampling devices. Sampling, homogenization, and subsampling were carried
out by trained personnel of the WWTP according to uniformly defined criteria. Deviations
from the specified procedure and abnormalities during sampling were documented in the
sampling protocol. Water quality parameters such as NH4-N, Ntot, and COD were mea-
sured by the WWTP employees in the same 24 h composite samples as used to determine
the SARS-CoV-2 and PMMoV concentrations.

Per treatment plant, 500 mL of wastewater was sent to the laboratory and arrived
within 24 h after sampling. All samples were stored at 4 ◦C during transport and
until analysis.
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Table 1. Sampling sites in the monitoring program.

Site-ID County LK/Urban
District SK Sampling Point Mean Flow Rate

[m3 per d]
Size

Classes
(GK)

Population
Served (without

Industry)
Type of Sampling Sampling

Days

1 SK Weimar After screen 16,747 4 66,500 24 h time proportional 31

2 LK Gotha After grit chamber 3539 4 8900 24 h time proportional 33

3 LK Ilm Kreis After screen 6503 4 28,900 24 h time proportional 33

4 SK Gera After grit chamber 19,741 5 100,638 24 h volume proportional 33

5 LK Ilm Kreis Before screen 8317 5 72,000 24 h time proportional 30

6 LK
Schmalkalden-Meiningen After grit chamber 9509 4 30,000 24 h time proportional 32

7 LK Saale-Holzland-Kreis After grit chamber 2102 4 13,768 24 h time proportional 31

8 LK Saale-Orla-Kreis After grit chamber 4913 4 14,020 24 h volume proportional 31

9 SK Jena After grit chamber 20,708 5 114,024 24 h time proportional 32

10 LK Nordhausen After grit chamber 9551 4 54,000 24 h volume proportional 30

11 LK Eichsfeld After screen 6115 4 14,358 24 h time proportional 30

12 LK Eichsfeld After grit chamber 2585 4 11,103 24 h time proportional 30

13 LK Eichsfeld After screen 4689 4 55,867 24 h volume proportional 28

14 LK Altenburger Land After screen 1922 4 13,550 24 h time proportional 30

15 LK Soemmerda After screen 3941 4 17,000 24 h volume proportional 26

16 SK Erfurt After screen 45,522 5 317,274 24 h time proportional 28

17 SK Suhl After grit chamber 17,872 4 36,000 24 h time proportional 28

18 LK Unstrut-Hainich-Kreis Before screen 2595 3 4569 24 h time proportional 21

19 LK Saale-Orla-Kreis After screen 2335 3 5400 24 h time proportional 26

20 LK
Schmalkalden-Meiningen After grit chamber 811 2 3500 24 h time proportional 24

21 LK Saalfeld-Rudolstadt After screen 5154 4 28,817 24 h volume proportional 22

22 LK Saalfeld-Rudolstadt After grit chamber 7651 4 32,808 24 h volume proportional 23

23 LK Kyffhaeuserkreis After screen 952 3 7000 24 h time proportional 14

2.2. Physicochemical Standard Parameters

The following standard physicochemical parameters were analyzed on-site at the
WWTP according to generally accepted standard methods (ISO standards): pH-value,
temperature, chemical oxygen demand (COD [42–44], total bound nitrogen (Ntot) [45,46],
and NH4-N [47,48].

2.3. RNA Extraction from Wastewater and Quantification using RT-qPCR

Three biological replicates were prepared for each wastewater sample upon arrival
at the laboratory. Each replicate was further analyzed using a volume of 40 mL. The kit-
free “Sewage, Salt, Silica and SARS-CoV-2” (4S) method was used for sample preparation
and RNA extraction [13]: Each 40 mL aliquot of wastewater was mixed with 9.35 g NaCl
(≥99 %, Ph. Eur., USP, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and 400 µL
of a TE buffer at pH 7.2 and shaken. The aliquots were stored overnight at 4 ◦C until
further processing. For pre-treatment, the solution was filtered through a 5 µm PVDF
filter (Durapore®, Merck KGaA, Darmstadt, Germany) using a syringe filter to remove
large particles. Then, 40 mL of 70% EtOH was added to a 40 mL filtrate and homoge-
nized to isolate nucleic acids from the 80 mL wastewater lysate–EtOH mixture and the
sample was filtered over silica gel spin columns via vacuum (Zymo-Spin III; ZYMO Re-
search Europe GmbH, Freiburg, Germany). After washing, nucleic acids were eluted in
200 µL of a ZymoPURETM elution buffer (ZYMO Research Europe GmbH, Freiburg, Ger-
many). The ZymoPURETM elution buffer (ZYMO Research Europe GmbH, Freiburg,
Germany) was previously warmed to 50 ◦C. The total RNA concentration [µg/mL],
A260 nm/A280 nm quotient, and absorbance at 260 nm of the RNA extracts were mea-
sured using a spectrophotometer (Eppendorf BioPhotometer D30, Eppendorf SE, Hamburg,
Germany). For the detection and quantification of SARS-CoV-2-specific RNA sequences,
we used an RT-qPCR cycler (CFX96 Touch Real-Time PCR Detection System, Bio-Rad
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Laboratories GmbH, Feldkirchen, Germany) and the SARS-CoV-2 N1 RT-qPCR Kit for
Wastewater (Promega GmbH, Walldorf, Germany) according to the manufacturer’s proto-
col. All samples were run in technical triplicates. For quantification, each run included a
standard curve (six-point serial dilution in triplicate) using the SARS-CoV-2 RNA standard
(SARS-CoV-2 RT-qPCR Kit for Wastewater, Promega GmbH, Walldorf, Germany) and the
PMMoV RNA Quant standard (SARS-CoV-2 RT-qPCR Kit for Wastewater, Promega GmbH,
Walldorf, Germany) reference material. The limit of quantification (LoQ) for the assay was
10 copies per reaction [49]. The RT-qPCR assays were set up in a reaction volume of 20 µL,
including a 5 µL RNA extract. Cycling conditions for the RT-qPCR assay were as follows:
RT was performed at 45 ◦C for 15 min, followed by polymerase activation at 95 ◦C for
2 min and 40 cycles of denaturation, annealing/extension at 95 ◦C/15 s, then 62 ◦C/60 s,
respectively.

The following quality controls were carried out for verification: triplicate biological
extractions, negative extraction controls per RNA extraction, and triplicate technical RT-
qPCR reactions. The arithmetic mean, standard deviation, and coefficient of variation (CV)
for quantifiable and inhibitor-free replicates were determined for the three biological and
technical replicates. Furthermore, the reproducibility was determined by calculating the
standard deviation of the log-transformed results of the three biological replicates [9].

Extraction recovery efficiency was tested using MS2 bacteriophage based on the
specifications of FA Promega (MS2 RT-qPCR Kit, Promega GmbH, Walldorf, Germany)
and Mondal et al. [50,51]. In 22 samples from different WWTPs, the recovery of MS2
bacteriophage was investigated in duplicate.

Additionally, PMMoV was used as an internal control to monitor the success of RNA
extraction. We applied the following thresholds, which were derived in a study from
Kantor et al. [52], to evaluate our results (Figure S8 in Supplementary Materials): PMMoV
concentration lower than 105 GC/L or missing data (poor data quality) and PMMoV
concentration higher as 2 × 105 GC/L (acceptable data quality). As the 5% percentile in
our data is within the range of the threshold value for acceptable data quality derived by
Kantor et al., we decided to use the same threshold values. The extraction process error [%]
was determined as the proportion of blocked silica columns [52].

To exclude false-positive results, a negative extraction control was included in each
extraction run, and the proportion of positive signals in the negative extraction control
was determined at the end of the sampling. We also used PMMoV as an internal process
control for RT-qPCR (SARS-CoV-2 RT-qPCR Kit for Wastewater, Promega GmbH, Walldorf,
Germany).

Furthermore, the following quality control measures were taken: A no-template
control (NTC) and positive control were analyzed in triplicate in each run to exclude con-
tamination and check the correct performance of the RT-qPCR. Furthermore, an internal
amplification control (IAC) was analyzed in each well to control the RT-qPCR inhibitors
(SARS-CoV-2 RT-qPCR Kit for Wastewater, Promega GmbH, Walldorf, Germany). Accord-
ing to the PCR kit manufacturer’s protocol (SARS-CoV-2 RT-qPCR Kit for Wastewater,
Promega GmbH, Walldorf, Germany), the following exclusion limit was defined: If the CT
value of the internal amplification control (IAC) in a sample well is significantly shifted
against the no-template control (NTC) well (CT ≥ 2), it is assumed that PCR inhibitors are
contained in the experimental sample.

For calibration, we used a six-point serial dilution in triplicate on each qPCR plate.
Samples with CT values ≥ 40 Ct were determined to be negative for SARS-CoV-2 RNA and
PMMoV RNA. For samples with CT values ≤ 40 and >LoQ (calibration standard lowest
concentration), the ½ limit of quantitation (LoQ) (5000 GC/L) was specified). The PCR
amplification efficiency [%] was calculated according to MIQE guidelines [49].
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2.4. Normalization Parameters

For each WWTP, we calculated (a) the virus concentration, (b) the relative SARS-CoV-2
signal related to PMMoV [quotient of GC SARS-CoV-2/24 h and GC PMMoV/24 h], and
(c) the viral load per inhabitant and day.

To transfer virus concentration into virus load per inhabitant and day, we first calcu-
lated the connected inhabitants using the population marker NH4-N, COD, or Ntot. For
the calculation of the population marker-based inhabitants, the daily load of the respective
population marker (NH4-N, COD, or Ntot) per WWTP was divided by the daily load per
inhabitant. For the daily load per inhabitant, we applied the design criteria according to
technical regulation ATV-DVWK-A 198 from the German Association for Water, Wastewa-
ter, and Waste (DWA) [53]: per inhabitant and day, we used 8 g NH4-N [54,55], 120 g COD,
and 11 g Ntot.

By dividing the daily viral load per WWTP by the connected inhabitants (population
marker-based), we obtained the following normalized parameters:

• Inhabitant-weighted (ammonium-based) 24 h virus load per WWTP [GC SARS-CoV-2/
inhabitantNH4 and 24 h] [54,55];

• Inhabitant-weighted (COD-based) 24 h virus load per WWTP [GC SARS-CoV-2/
inhabitantCOD and 24 h];

• Inhabitant-weighted (nitrogen-based) 24 h virus load per WWTP [GC SARS-CoV-2/
inhabitantNtot and 24 h].

Furthermore, we calculated pooled data from all WWTPs in the monitoring program:

• Average concentration per sampling day [GC SARS-CoV-2/L] (flow-normalized viral
load of all sampled WWTPs):

Equation (1): Average SARS-CoV-2 RNA concentration per liter from sampled WWTPs
per sampling day.

average SARS − CoV − 2 RNA conc.
[

GC
L

]
=

∑ 24 h virus loads of sampled WWTP per sampling day [GC SARS − CoV − 2/24h]

∑ Hydraulic loads of sampled WWTPs per sampling day
[ L

24 h

] (1)

• Average inhabitant-weighted 24 h virus load per sampling day (population marker
X = NH4-N, COD, Ntot) [GC SARS-CoV-2/inhabitantx and 24 h]:

For the calculation of the population-marker-based inhabitants, the sum of the load of
the respective population marker (NH4-N, COD, or Ntot) from all sampled WWTPs per
day was divided by the above-mentioned daily load per inhabitant.

Equation (2): Average inhabitant-weighted population marker-based virus load per
day from sampled WWTPs per sampling day.

average
GC SARS − CoV − 2
inhabitantX and day

=
∑ 24 h virus loads of sampled WWTP per sampling day [GC SARS − CoV − 2/24 h ]

∑ population marker based inhabitants of sampled WWTPs per sampling day
(2)

• Average relative signal (PMMoV) per sampling day [(GC SARS-CoV-2/24 h)/(GC
PMMoV/24 h)]:

Equation (3): Average relative signal (PMMoV) from sampled WWTPs per sampling day.

average relative signal = ∑ 24 h SARS − CoV − 2 virus loads of sampled WWTP per sampling day [GC SARS − CoV − 2/24 h]
∑ 24 h PMMoV virus loads of sampled WWTP per sampling day [GC PMMoV/24 h]

(3)

2.5. Epidemiological Metrics

The epidemiological metrics were obtained from the Robert Koch Institute (RKI),
which is the federal public health institute in Germany and responsible for nationwide
health surveillance [56].

• 7-day incidences per 100,000 inhabitants on the federal state level and county/urban
district level;

• 7-day-hospitalized COVID-19 cases per 100,000 inhabitants on the federal-state level;
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• The relative proportion of positive tests (positive test rate) [57]: At the time of our
study, the collection of testing data in Germany was based on data from voluntarily
participating laboratories in this part of the surveillance system. Testing data from
this survey were reported on the federal-state level weekly. The report covers both
detection using PCR and serological diagnostics using antibody detection. At the
time of our study, two laboratories in Thuringia participated voluntarily and reported
20,429,600 testing data to the Robert Koch Institute. We used these data as a proxy for
the positive test rate in the Free State of Thuringia.

2.6. Data Analysis

The parameters used for normalization (PMMoV, NH4-N, Ntot, and COD) were de-
scribed by calculating the coefficients of variation (CVs) in each WWTP [29]. Furthermore,
we pooled the data and examined the temporal variation of the cumulative average con-
centration. As data were not normally distributed (proofed by the Shapiro–Wilk test),
the Spearman rank correlation (r) coefficient was calculated to examine the correlation
(i) between the different normalization methods and (ii) between the virus signal in the
wastewater and the different epidemiological metrics.

Spearman’s r-values were interpreted according to Sperling et al. [58]: strong
correlation (r-value > 0.7); moderate correlation (0.4 < r-value < 0.7); weak correlation
(0 < r-value < 0.4); and no correlation (r-value = 0).

During our study period, Thuringia’s testing policy was changed: On 3 April 2022, a
new infection protection rule came into force. From this point on, a positive rapid test no
longer had to be confirmed using a PCR test. We considered this aspect in our investigation
by performing sensitivity analysis for the different time frames: The pooled data set for the
state of Thuringia were divided into three time series: (1) 6 December 2021–31 March 2022,
(2) 3 April 2022–18 July 2022, and (3) 6 December 2021–18 July 2022 (complete data set). An
overview of the methods and data analyses used can be found in Figure S11.

All graphs were created with SigmaPlot (V15). Microsoft Excel 2019 MSO (Version
1808), Sigma Plot (V15), and RStudio (2022.07.0+548) were used to calculate the data.

3. Results
3.1. Performance of the 4S Method for the SARS-CoV-2 Monitoring Program

A total of 646 samples were analyzed in biological triplicates during the sampling period.
Upon arrival at the laboratory, the filling and homogenization of samples from 23 WWTPs for
overnight treatment was completed by one laboratory worker within 4 h. In collaboration
with two laboratory employees, the pre-treatment of the samples was completed within
2–3 h the following day. The extraction of nucleic acids from all biological replicates was
successfully completed within 4–5 h. We calculated costs for sampling preparation and
RNA extraction of EUR 14.07 per biological replicate (Table S3 in Supplementary Materials).

Approximately 3% of the silica columns used for RNA extraction became clogged and
had to be discarded. Possible cross-contamination of the samples was monitored via the
negative extraction control and the NTC in the RT-qPCR. No positive signal for the N1
assay was detected in any NTC control. Amplification of the negative extraction control of
the N1 assay was rare. One out of 34 negative extraction controls showed amplification
in one out of three technical replicates (CT = 38). As the two other technical replicates
showed no amplification, we did not exclude the samples from the analysis. In individual
biological replicates (n = 102 of n = 1938 preparations; approx. 5%), we found indications
of the presence of PCR inhibitors. A total of 26 samples could not be used for quantitative
evaluation, as all three extracts showed clear evidence of inhibitors. A total of 22 of the
26 samples with inhibition were sampled in the period from 21 March 2022 to 5 May 2022.
The samples were from different WWTPs, and all showed qualitative positive results for
SARS-CoV-2 RNA (CT ≤ 40). After excluding the samples with an indication of inhibition,
the pooled data set for the analysis comprised 620 samples.



Water 2023, 15, 4290 8 of 26

About 10% of the biological replicates (n = 213 of n = 1938) could not be quantified
but had a qualitative positive signal for SARS-CoV-2 N1 assay and were included in data
analysis with a ½ limit of quantification (5000 GC/L).

The recoveries for MS2 bacteriophage in the 22 different wastewater samples ranged
from 2.4 to 13.9%, with a median value of 6.5%. The positive control (matrix: PBS buffer)
showed a recovery of 4.1%. Using PMMoV as an internal control for a successful RNA
extraction, we took thresholds for quality control by Kantor et al. [52]. A total of 1% of the
extracted samples indicated poor quality and were examined in a sensitivity analysis.

All PCR runs had an r2 value of at least 0.98, and the PCR efficiencies averaged 95%
(SARS-CoV-2 N1 assay) and 94% (PMMoV assay). The results of the RT-qPCR evaluation
can be found in the Supplementary Materials (Figures S9 and S10).

3.2. Description of SARS-CoV-2 Concentration and Normalization Parameters

Figure 1 demonstrates the variation of measured concentrations of PMMoV and
SARS-CoV-2 in all biological and technical replicates of our pooled data set. In comparison,
variation in technical replicates was low and almost comparable for both assays, with
maximum coefficients of variations (CVs) of 7.9% for SARS-CoV-2 N1 and 3.5% for PMMoV.
There was a considerably higher variation in biological replicates with CVs of up to 76%
and 119% for SARS-CoV-2 N1 and PMMoV, respectively (Table S2 and standard deviation
in Figures S6 and S7 in Supplementary Materials).
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Figure 1. Coefficient of variation (CV) of the biological (a) and technical replicates (b) for the
SARS-CoV-2 N1 and PMMoV concentration respective CT values in RT-qPCR. Boxplots: median
(black line), 10%, and 90% quantiles as whiskers and possible outliers.

As chemical parameters used for normalization were not available for all 620 samples,
sample sizes for normalization parameters were as follows: ammonia (n = 599), total
nitrogen (n = 465), and COD (n = 565). Figures 2 and 3 show the variation of normalization
parameters PMMoV and ammonia within the 23 WWTPs. The average concentration (mean
of biological replicates) of PMMoV varies more strongly than the average concentration of
the chemical parameter ammonia.
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Figure 2. Variation of PMMoV concentration [GC/L] for the 23 different sampling sites/WWTPs
with size classes (GK) (violet = GK 5; red = GK 4; yellow = GK 3; and green = GK 2); boxplots: median
(black line), mean (gray line), 10%, and 90% quantiles as whiskers and possible outliers; coefficient of
variation (CV).

The median PMMoV concentrations for all 23 sampled municipal WWTPs are in the range
of 5 × 105–2 × 106 GC/L (mean PMMoV concentration: range of 9 × 105–4 × 106 GC/L).
The CVs of the PMMoV concentration range from 0.85 to 1.47 and vary considerably
between the individual WWTPs. A total of 13 out of 23 WWTPs show CVs greater than 1.

In Figure 3, ammonium concentrations of samples for the WWTPs under investigation
are depicted with a median from 11 to 59 mg/L and a mean from 11 to 59 mg/L. CVs
of ammonium are in the range of 0.02–0.46. For COD and Ntot, results are comparable
(Figures S1 and S2 in Supplementary Materials).

The temporal variation of the cumulative mean concentration (which was calculated
as daily load flow-normalized) of NH4-N and PMMoV in the pooled data set is illustrated
in Figure 4. Compared to NH4-N (as well as COD and Ntot, Figure S3 in Supplementary
Materials), PMMoV shows a different pattern over time. PMMoV concentration had a
peak at the end of December and at the end of March/beginning of April. These peaks
could not be observed for NH4-N (also not for COD and Ntot, Figure S3 in Supplementary
Materials). In June and July 2022, concentrations of PMMoV were very low, whereas the
average concentration of NH4-N was relatively high. The CVs for cumulative average
concentrations for NH4-N, COD, and Ntot are as follows: 0.22, 0.18, and 0.17, and 0.78 for
PMMoV (Figure 4 and Figure S3 in Supplementary Materials).
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Figure 4. Investigation of temporal variation. Cumulative mean concentrations (flow-normalized) of
pooled data set of the Free State of Thuringia of average NH4-N concentration [mg/L] and PMMoV
genome copies [GC/L] in comparison.

The Spearman correlation coefficient between the cumulative average concentration
of NH4-N, COD, and Ntot [mg/L] shows a strong correlation (r > 0.8). There was no
correlation between the cumulative average concentration of PMMoV RNA- and NH4-N-,
COD- or Ntot-concentration, respectively (Supplementary Table S1 ).
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3.3. Virus Signal in Wastewater and Epidemiological Metrics
3.3.1. Virus Signal in the Pooled Wastewater Data Set and Epidemiological Metrics on the
Federal Level

Figure 5 shows the pooled virus signal in the wastewater and different epidemiological
metrics on the federal level (7-day incidence, the relative proportion of positive tests, and
7-day hospitalization incidence). Additionally, all epidemiological metrics are illustrated
with a time shift of 7 days, respectively.
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Figure 5. (a) Timeline of pooled average SARS-CoV-2 genome copies/L (N1) concentration,
(b) timeline of relatives SARS-CoV-2 signal (SARS-CoV-2 GC/24 h/PMMoV GC/24h) and of
SARS-CoV-2 genome copies per inhabitantNH4/24 h of sampled WWTPs and different epidemi-
ological metrics for the Free State of Thuringia—with and without a time shift of 7 days.

Until early summer 2022, the three epidemiological metrics show a similar trend.
There was an increase in COVID-19 cases in the spring of 2022, which was first reflected
in the rising proportion of positive tests in January 2022. From the beginning of June
2022, the hospitalization 7-day incidence and the relative proportion of positive tests
showed an increase that was not discernible in the course of the 7-day incidence. The
time courses of the flow-normalized pooled average concentrations of SARS-CoV-2 RNA
and the normalized values with NH4-N, COD, Ntot, and PMMoV show similar courses
until June 2022 (Figure 5, Figures S4 and S5 in Supplementary Materials). The infection
wave in spring 2022 could be clearly observed from the beginning of February. From June
onwards, the PMMoV-normalized signal increased significantly and deviated from the
flow-normalized pooled average concentrations of SARS-CoV-2 RNA, and the pooled data
normalized to NH4-N.
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3.3.2. Virus Signal Per WWTP and Epidemiological Metrics on the Federal Level

Figures 6 and 7 show the inhabitant-weighted (ammonium-based) 24 h virus load per
WWTP and the relative SARS-CoV-2 signal related to PMMoV for each of the
23 investigated WWTPs over the entire sampling period.
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Figure 6. Heatmap. PMMoV-normalized data from the 23 WWTPs with three epidemiological metrics
(7-day incidence, positive test rate, and 7-day hospitalization on the federal-state level). White areas
= no sampling; white patterned areas = values removed due to inhibition; black line areas = PMMoV
data with poor quality (Figure S8).

From February to April 2022, there was an increase in the virus signal at several
WWTPs for all normalization methods. However, the pattern for the ammonia-based
inhabitant-weighted virus load appeared more uniform for the different plants than those
for the relative SARS-CoV-2 signal related to PMMoV. Furthermore, after normalization
with PMMoV, individual WWTPs (ID 9, ID 10, ID 12, ID 13, and ID 16) showed remarkably
higher virus signals by the end of January 2022.

From 11 July 2022, an increase in the relative SARS-CoV-2 signal related to PMMoV
(relative signal SARS-CoV-2 > 0.30) was observed for seven WWTPs. However, individual
WWTPs already showed an increase in June 2022 (e.g., ID 9, ID 10, and ID 12). The increase
could not be observed for inhabitant-weighted 24 h virus load using the ammonium-based
approach.
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Figure 7. Heatmap. Ammonia-normalized data from the 23 WWTPs with three epidemiological
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inhibition.

3.4. Correlation between Epidemiological Metrics and Pooled Viral Signals in the Wastewater

In general, pooled viral signals in the wastewater correlated strongly with the
7-day-COVID 19 incidence (see Figure 8). However, the correlation is influenced by the time
window under investigation. Splitting the data set into a slot before and after the enforce-
ment of the new infection protection law in Thuringia, which went along with a relaxed
testing strategy, demonstrates the stronger correlations within the time slot before 3 April
2022. Comparably strong correlations were found for the cumulative average SARS-CoV-2
concentration (flow-normalized; Equation (1)) and for normalized data (Equation (2)) using
ammonia, Ntot, or COD, respectively (r-value = 0.96 or 0.96, respectively). The relative
SARS-CoV-2 signal related to PMMoV showed a slightly weaker correlation when using
the 7-day incidence in the original timeline (r-value = 0.86). Correlating the wastewater
data with 7-day-incidence data that were registered earlier (5 or 7-day shift) revealed a
slightly better correlation for the PMMoV-normalized virus signal in the wastewater than
for the other approaches (r-value = 0.90 and 0.91). The correlation with 7-day-incidence
data obtained in the time slot after 3 April 2022, with low test coverage, is much weaker in
all cases.
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Figure 8. Rank correlation coefficients (Spearman) between the 7-day incidence with the cumulative
average concentration and population markers (including chemical parameters and PMMoV)—without
time shift of epidemiological metrics and with a time shift of 5 and 7 days. The data set was
categorized into three time series. Lines: threshold for evaluating the correlation (r = 0.4; r = 0.7).

Using the positive test rate (Figure 9), only the PMMoV-normalized SARS-CoV-2 signal
consistently showed strong correlations. Choosing the 7-day hospitalization incidence
(original timeline) as the epidemiological metric for correlation (Figure 10), the PMMoV-
based approach showed lower correlations (r-value = 0.41; moderate correlation) than the
other approaches. However, correlations increased for the PMMoV-normalized signal after
a time-shift of 7 or 14 days (r-value = 0.59 or 0.68).
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Figure 9. Rank correlation coefficients (Spearman) between the relative percentage positive test with
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PMMoV)—without time shift of epidemiological metrics and with a time shift of 7 days. The data set
was categorized into three time series. Lines: threshold for evaluating the correlation (r = 0.4; r = 0.7).
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Figure 10. Rank correlation coefficients (Spearman) between the 7-day incidence hospitalization with
the cumulative average concentration and population markers (including chemical parameters and
PMMoV)—without time shift of epidemiological metrics and with a time shift of 7 and 14 days. Lines:
threshold for evaluating the correlation (r = 0.4; r = 0.7).

4. Discussion

Our study demonstrates that the 4S method is a suitable analytical method that could
be successfully applied to implement a wastewater monitoring program in the Free State
of Thuringia (Germany). Over eight months, our laboratory processed samples from up
to 23 wastewater treatment plants in biological triplicates once a week. To the best of our
knowledge, this study is the first in Germany that (1) used epidemiological metrics (positive
test rate and 7-day incidence hospitalization) other than 7-day incidence or COVID-19
cases—this is an important contribution in periods with low testing frequency [34]—and
(2) investigated a high number of medium and small wastewater treatment plants
(<100,000 p.e.) in high spatial density and therefore makes an important contribution
to improving the database for rural areas without large wastewater treatment plants.

Using a pooled analysis of our data, we have demonstrated that a monitoring program
covering about 50% of the population of the Free State of Thuringia could depict the
infection situation in the entire Free State of Thuringia very well, especially in periods with
low testing frequency, when incidence numbers based on human testing results are not
reliable. Furthermore, our study provides valuable data on variance in biological replicates
and other quality aspects.

In our study, there were only marginal differences in the correlations between nor-
malized wastewater data and most of the epidemiological indicators. However, PMMoV-
normalized data correlated better with the positive test rate than flow-normalized data or
data normalized with a chemical population marker. Test positivity rate data have shown
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to be a valuable early indicator of evolving trends in COVID-19 activity [34] and have
become more important since case or incidence data are less reliable. Thus, our results
indicate that in specific settings and for specific analytical methods, the normalization of
wastewater-based viral signals with PMMoV might be very valuable. Furthermore, our
study stresses the importance of a set of suitable and reliable epidemiological indicators for
the evaluation and optimization of methods in wastewater monitoring.

4.1. Performance of the 4S Method for the SARS-CoV-2 Monitoring Program

Applying cost-effective analytical methods is crucial for successfully implementing
wastewater monitoring programs. Besides sampling, sample preparation and RNA ex-
traction are critical and cost-intensive steps. Using the 4S method, we calculated costs for
sampling preparation and RNA extraction of EUR 14.07 per biological replicate. The costs
are comparable to those reported by Kantor et al. (EUR 12.56 per biological replicate) [52]
and Whitney et al. (EUR 11.64 per biological) (assumption: exchange rate Euro/US dollar
1.05 (EUR/USD) [13]. The slight cost increase can be explained by fluctuating exchange
rates and the fact that discounts were not included. Including personnel costs for two labo-
ratory employees (assuming hourly earnings of EUR 26—average salary level in Germany)
processing a minimum of 70 individual preparations in 6–8 h, we calculated a total cost
of EUR 18.50 to EUR 20 per biological replicate. A European study [40] reported costs of
EUR 50–EUR 550 for the performance of a SARS-CoV-2 measurement in the laboratory
(excluding personnel costs). In this study, the costs were not broken down further; however,
depending on which costs are used as the basis, 2.5% or 28% are attributable to sample
preparation and RNA extraction when using the 4S method. In addition to the general
laboratory equipment, a centrifuge, a vacuum pump, and an EZ-Vac Vacuum Manifold are
required to apply the 4S method. With the EZ-Vac Vacuum Manifold, parallel extraction
of up to 20 preparations is possible. The 4S method proved to be simple and robust in
handling. The clogging of individual silica columns is a potential problem that has already
been addressed by Whitney et al. [13]. The percentage of clogged columns in our study
was 3%.

As wastewater is a very complex matrix, variance is an important aspect to con-
sider in quality assurance. To assess variance in the wastewater data, we investigated
biological triplicates. With regard to statistical procedures, as applied in wastewater-based
epidemiology, biological replicates are often preferable to technical replicates [59]. The
variance in biological replicates was substantially higher than in the technical replicates.
Furthermore, the variance for PMMoV was higher than for SARS-CoV-2. In an inter-
laboratory comparison, Pecson et al. [9] investigated different methods for SARS-CoV-2
quantification in wastewater. The standard deviations of the log-transformed results within
each of the different methods were calculated, and a median standard deviation of 0.15
(minimum = 0.04 and maximum = 0.38) was found. The median standard deviation
(log-transformed data) in our study is lower in comparison (median for SARS-CoV-2 (0.07)
and median for PMMoV (0.11). However, we investigated only three biological replicates,
whereas, in Pecson et al., five replicates were analyzed with each method [9]. Still, the
data indicate the importance of biological replicates to yield more accurate and reliable
data as the base for further modeling in wastewater-based epidemiology. In this context,
the process of sample pre-treatment is pivotal. Automated systems may help enable the
processing of biological replicates, thus contributing to quality assurance. However, as
replicates cause additional costs, the required number of biological replicates is a critical
issue, and there is a need to develop intelligent approaches to address the issue of variance
in biological replicates of wastewater adequately.

Applying the quality criteria of protocols for evaluations of RT-qPCR performance
characteristics for reproducibility [52,60], 90% of the standard deviations of the three technical
replicates for the SARS-CoV-2 (N1 assay) and PMMoV assay fulfilled the requirements for high
data quality (standard deviations below 0.5; Figure S7 in Supplementary Materials). Generally
accepted PCR efficiencies are in the range of 90%–110% (slope ranging from −3.1 to −3.6)
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and an r2 value of at least 0.98 [60–62]. In our study, PCR efficiencies were predominantly
within these limits. However, isolated PCR runs showed lower PCR efficiencies: between 86
and 88% (6% SARS-CoV-2 N1 assay) and 82 and 88% (9% PMMoV assay). Kantor et al. [52]
used PCR efficiencies in the range of 80–120% as a threshold for acceptable data quality [52].
Our results were within these limits.

Recovery efficiency is a significant quality criterion for assessing the performance
of an analytical method. However, up to now, there is no unbiased method to measure
recovery efficiency for SARS CoV-2 in wastewater [60,63,64]. SARS-CoV-2 RNA recovery
efficiency from wastewater samples has shown to be highly variable and is dependent on
the analytical method, the proxy used, and wastewater composition [63]. In most studies,
wastewater is spiked with proxy viruses. For SARS-CoV-2, typically used proxies are the
bovine coronavirus (BCoV), human coronavirus OC43, bacteriophage Phi6, or inactivated
forms of SARS-CoV-2 [9,60]. Using MS2 bacteriophage as a spike, we found recovery rates
between 2.4 and 13.9%, with a median value of 6.5% in this study. In the literature, recovery
rates between 12 and 89% have been documented determined with MS2 bacteriophage
for different sample preparation and extraction methods [36,51,65,66]. However, these
studies did not use the 4S method for RNA extraction. Furthermore, MS2 bacteriophages
are non-enveloped virus surrogates, which are very robust in the environment [67] and
might be more difficult to rupture than the enveloped SARS-CoV-2 viruses. The direct
extraction method used in our study might have had a lower extraction efficiency than
other methods using additional proteases and shear forces generated with, e.g., magnetic
beads. Kantor et al. [52] used BCoV to determine recovery efficiency for the 4S method
and found mainly percentages between 1 and 25%. The authors identified a threshold of
1% or 5% acceptable or good data quality. For wastewater monitoring of SARS-CoV-2, a
correction of results based on recovery is not recommended [52]. In order to check the
consistency of the extraction step, the use of process controls is recommended [15,52,63,64].
We used PMMoV as a qualitative internal process control to monitor the success of RNA
extraction. According to a quality assurance plan proposed by Kantor et al. [52], only 1%
of our results showed poor data quality. For sensitive analysis, we removed the data with
poor quality before analysis; there was no significant change in the relative virus signal.

A total of 10% of the biological replicates in our study could not be quantified as
the results were below the LoQ (10 copies per reaction). Other studies show partially
lower LoQs between 5 and 10 copies per reaction [13,15,51]. As the 4S method has no
explicit concentration step, a subsequent enrichment of RNA extracts might be an option
for optimizing our workflow in low-incidence settings. However, direct capture-based
methods, such as the 4S method, have shown to be more appropriate for SARS-CoV-2
detection in terms of recovery efficiency, expenditure of time, and costs [9,13,68,69]. Other
methods with concentration steps, such as polyethylene glycol (PEG) precipitation or
electronegative membrane filtration, do not always have to be more suitable [70]. There
is indicative evidence that part of the SARS-CoV-2 RNA is not protected within virus
particles but is present in a ribonucleoprotein complex and as free/unprotected viral
RNA in the wastewater [13,71]. It has been shown that after centrifugation (12,000× g
for 1.5 h without brake), SARS-CoV-2 exists almost equally between the supernatant and
pellet fractions [72]. However, in the 4S method, a direct capture method, there is no
centrifugation step before extraction, and thus, most of the SARS-CoV-2 RNA might be
in the liquid phase. The appropriate workflow might depend on local conditions and the
physicochemical properties of wastewater.

Another limitation of the 4S method is the fact that it is an extraction method devel-
oped and optimized for RNA extraction. However, as future applications of wastewater
monitoring will probably not be limited to RNA viruses, pre-treatment and extraction meth-
ods for total nucleic acid extraction will be advantageous when implementing monitoring
programs. However, in the setting of our study, the 4S method showed good performance.
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4.2. Normalization Parameters

Normalization parameters in wastewater monitoring can help to provide a more
accurate picture of the viral load and reduce the impact of influent variations on the
measurements. In our study, we used established chemical population markers for nor-
malization, which have already been used in wastewater monitoring. NH4-N is often
recommended [7,54,55,73] and prioritized over COD and Ntot [55,74]. One of the ad-
vantages of NH4-N is the widespread on-site recording of this parameter in wastewater
treatment plants and the low-cost detection method. Furthermore, this is a well-known,
easy-available surrogate parameter for the complex pollution in wastewater. Most WWTPs
in Germany have a good and reliable database. The mean concentrations of chemical
parameters in our study correspond to the typical values in raw municipal wastewater in
Germany [53]. Compared to concentrations of PMMoV, chemical normalization parameters
in the pooled data set showed almost no fluctuations between the winter months (December
2021 to March 2022), the spring months (March 2022 to June 2022), and the summer month
(July 2022).

Several studies support using PMMoV as an indicator of fecal contamination in river
water, coastal water, and wastewater [75,76]. According to these studies, the following
criteria speak in favor of an indicator function of PMMoV: high prevalence in human
sewage, low seasonal variation, and stability in wastewater [75,76]. However, in wastewater
monitoring, PMMoV is controversially discussed as a population marker [7,26,31]. PMMoV
concentrations in raw sewage samples are usually higher than 104 GC/L, with fluctuations
over time [77]. Average PMMoV concentrations found in our studies were in the range of
105 to 106 GC/L (A minimum of 3 × 105 GC/L and a maximum of 6 × 106 GC/L) for the
pooled data set. However, several other studies showed, on average, 2–3 log levels higher
PMMoV concentrations [29,75,76,78,79] than we found. These studies differ in sample
sizes, sampling period and technique, and size of WWTPs as analytical methods, which
could lead to higher PMMoV concentrations. We observed high average concentrations of
PPMMoV between March and May and low concentrations in the months of June and July
2022 (Figure 4). A comparable pattern has been observed in a Canadian study [78].

The higher fluctuation of PMMoV concentration in the wastewater is considered
a limiting factor in using PMMoV for normalization [15,78]. However, even if fluctua-
tion over time of PMMoV might contribute to higher variability in normalized data, we
think that PMMoV, as a biological, fecal indicator, might behave in a more similar way as
SARS-CoV-2 in the sewer shed than chemical parameters. Currently, no ideal marker
is available for normalizing SARS-CoV-2 signals in the wastewater [78]. Therefore, a
recent review recommends the simultaneous usage of biological and chemical tracers
for normalizing viral load [24]. Recently, it has been shown that different partitioning
conditions (centrifugation with varied durations of spin and centrifugal force, (PEG) pre-
cipitation followed by centrifugation, and ultrafiltration of wastewater) are relevant for
sampling preparation or concentration steps in many analytical procedures [72]. PMMoV
showed a different behavior from SARS-CoV-2. These studies did not investigate the
effects of partitioning conditions on chemical markers like ammonia or COD. Furthermore,
PMMoV RNA has been shown to persist longer in wastewater than SARS-CoV-2 RNA at
different temperatures [80]. Therefore, the use of PMMoV as a fecal indicator to normalize
SARS-CoV-2 signals has been repeatedly questioned [72,80]. This study focuses on parti-
tioning conditions during sample processing. However, the 4S method is a direct-capture
method in which the above-mentioned partitioning conditions are less relevant. This might
be one reason why normalization with PMMoV in our case and in other studies [1,13,29]
that used a direct-capture method brought an added value at least for one epidemiological
indicator (test positivity rate).

4.3. Correlation between Virus Signals in the Wastewater and Epidemiological Metrics

We found mostly strong correlations between SARS-CoV-2 wastewater signals in the
pooled data set and different epidemiological metrics on the federal level with the Spearman
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rank correlation coefficient. However, the strength of the correlation was influenced
by the normalization method, the epidemiological metric, and the time window under
investigation. Before 3 April 2022, when testing efficiency in Thuringia was high, we
found strong correlations between the pooled virus signals in the wastewater and the
7-day incidence. With a time shift from 5 to 7 days, we found r-values up to 0.96. This was
independent of the normalization approach and could also be observed for flow-normalized
data. However, for the whole study period and the period after 3 April 2022, when the
testing policy changed we see, as expected, lower correlations between virus signals in the
wastewater and the 7-day incidence or the positive test rate, respectively.

Several other studies have compared different normalization methods, using correla-
tion coefficients with 7-day-incidence data or COVID-19 cases [15,16,29,32]. Correlation
analysis with the 7-day incidence might not always be an appropriate metric to judge
the effect of normalization, especially in periods when testing and reporting of results
is not reliable. In our study period, a change in testing policy led to less reliable 7-day-
incidence data. Thus, we used different epidemiological metrics to evaluate the effect of
normalization. Only a few studies so far have used alternative indicators of COVID-19
prevalence [1,73,81,82]. However, due to the declared end of COVID-19 as a global public
health emergency affecting testing policy and case reporting, it is mandatory to transfer
surveillance systems to alternative indicators for 7-day-incidence data in the general pop-
ulation. In this context, test positivity and hospital admissions have become important
indicators in surveillance systems [34]. The results of our study implicate that reliable
methods for evaluating wastewater monitoring data have to be developed and used in
future studies. In this context, especially sentinel networks will be of interest as they
have the potential to supply reliable data that might serve as proxies for the COVID-19
spread in a community [1,34]. Sentinel networks should, therefore, be increasingly linked
to wastewater monitoring data. Furthermore, wastewater monitoring programs on the
building level could help to evaluate monitoring systems. Monitoring tourist and medical
facilities might be an especially promising approach [83–85]. Institutions with vulnera-
ble populations, such as hospitals or care homes, could play a key role, as the monitor-
ing of infectious diseases is more closely recorded in these facilities than in the general
population [84,85]. Last but not least, the stringent quality assurance of the whole analyti-
cal workflow (from sampling to data analysis) is mandatory in order to use wastewater
monitoring as a reliable and complementary surveillance tool in the future [52,60]. Using
the positive test rate as a COVID-19 epidemiological metric, the correlation was strongest
for the PMMoV normalized data. It has been shown that test positivity data can indi-
cate changes in trends approximately 4 days earlier than hospital admissions [34]. As
wastewater signals should also act as an early indicator, this high correlation speaks in
favor of normalization with PMMoV. Furthermore, our site-specific results of the individual
WWTPs indicate that in January and June/July 2022, PMMoV-normalized data from several
WWTPs tend to indicate an increase in virus signals earlier than the NH4-N-normalized data
(Figures 6 and 7). These WWTPs have large catchment areas (ID 9 and ID 16) or are located
in spatial proximity (ID 10, ID 11, ID 12, and ID 13).

Our findings for the correlation with the test positivity rate support results of other
studies showing an improvement in the correlation when wastewater data were normalized
using PMMoV [1,29,82,86]. In addition to COVID-19 case numbers/COVID-19 incidence,
these studies also used other data such as positive rapid tests or sentinel samples [1]. With
regard to the 7-day incidence and hospitalization incidence, our data are in line with sev-
eral studies indicating no or only a sporadically improvement in the correlation between
COVID-19 epidemiological metrics and the virus signal in wastewater after normaliza-
tion with PMMoV [7,15,16,32,33,78]. However, these studies used the COVID-19 case
numbers/COVID-19 incidences, which might not be an appropriate prevalence indicator in
our case or periods with weak case reporting. Therefore, we recommend using the test pos-
itivity rate as an additional epidemiological metric for evaluating methods in wastewater
monitoring.
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Our study has some limitations: As we had no information to allocate the incidence
data to the specific catchment areas of the individual WWTPs, we were limited to perform-
ing a pooled analysis. In future studies, an assignment of incident cases to the catchment
areas would allow for a more accurate correlation analysis. Data on 7-day hospitalization
incidence and the positive test rate are only available at the federal-state level. As the
monitoring program covers only about 50% of the population of Thuringia, this leads
to additional uncertainties. We conducted a simple correlation analysis. More complex
methods for trend analysis and modeling would be more informative. However, as sam-
ples analyzed with the 4S method were only taken once a week, a trend analysis was not
purposeful in this case. Future studies should address these limitations and should be
conducted with a higher sampling frequency (several times a week).

5. Conclusions

In conclusion, our study demonstrates that the 4S method could be successfully ap-
plied to implement a state-wide wastewater monitoring program in Thuringia, Germany.
Performance requirements were well met overall. Based on our results, we recommend
the analysis of biological replicates to yield more accurate and reliable data on viral loads
in wastewater. Furthermore, there is a need to address the issue of variance in biological
replicates of wastewater adequately. With regard to future applications, it must be consid-
ered that the 4S method was developed for RNA extraction. Monitoring of DNA viruses
or bacteria requires further development of the method or the implementation of another
method.

Furthermore, we evaluated different methods for the normalization of viral loads
in wastewater. Unlike many other studies, we used different epidemiological metrics as
prevalence indicators. Our pooled data set of 23 wastewater treatment plants demonstrates
that, with regard to 7-day incidence and 7-day hospitalization incidence per
100,000 inhabitants, correlations were mostly strong. This was independent of normalizing
the virus signals. However, as in times of low testing frequency and insufficient reporting
of SARS-CoV-2 cases on community-level incidence data became less reliable, alternative
epidemiological metrics like hospital admissions and test positivity data are becoming
increasingly important in our surveillance systems. With regard to the test positivity rate,
our data indicate that virus signals normalized with PMMoV concentration lead to a better
correlation. Thus, there is a need for further studies using different and reliable prevalence
indicators to evaluate normalization methods for viral loads in wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15244290/s1, Figure S1: Temporal variation of Ntot concentra-
tion [mg/L] for the 23 different sampling sites with size classes (GK) (violet = GK 5; red = GK
4; yellow = GK 3; green = GK 2). boxplots: median (black line), mean (gray line), 10%, and 90%
quantiles as whiskers and all possible outliers. Figure S2: Temporal variation of COD concentra-
tion [mg/L] for the 23 different sampling sites with size classes (GK) (violet = GK 5; red = GK 4;
yellow = GK 3; green = GK 2). boxplots: median (black line), mean (gray line), 10%, and 90% quantiles
as whiskers and all possible outliers. Figure S3: Investigation of seasonal variation. Cumulative
mean concentrations for the total pooled data set of average COD and Ntot concentration [mg/L]
and PMMoV genome copies [GC/L] in comparison. Figure S4: Timeline of SARS-CoV-2 genome
copies per inhabitantCOD/24 h of all sampled WWTPs (see Table 1) and different epidemiological
metrics for the Free State of Thuringia—without time shift of epidemiological metrics and a with a
time shift. Figure S5: Timeline of SARS-CoV-2 genome copies per inhabitantNtot/24 h of all sampled
WWTPs (see Table 1) and different epidemiological metrics for the Free State of Thuringia—without
time shift of epidemiological metrics and a with a time shift. Figure S6: Standard deviation of
biological replicates for the concentration [GC/L] of SARS-CoV-2 and PMMoV. Boxplots: median
(black line), 10%, and 90% quantiles as whiskers and all possible outliers. Figure S7: Standard
deviation of CT-values from the technical replicates for the SARS-CoV-2 N1 and PMMoV assay in
RT-qPCR. Boxplots: median (black line), 10%, and 90% quantiles as whiskers and all possible outliers.
Figure S8: PMMoV as internal extraction control with a threshold of 105 PMMoV GC/L (lower
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values indicated poor quality; dashed line) and 2 × 105 PMMoV GC/L (higher values indicated
acceptable quality; line). Threshold values were used in accordance with Kantor et al. (52). boxplot:
median (black line), 10%, and 90% quantiles as whiskers and all possible outliers. Figure S9: RT-qPCR
Performance Characteristics SARS-CoV-2. Boxplots: median (black line), 10%, and 90% quantiles
as whiskers and all possible outliers. Figure S10: RT-qPCR Performance Characteristics PMMoV.
Boxplots: median (black line), 10%, and 90% quantiles as whiskers and all possible outliers. Figure
S11: Figure providing an overview of the methods and data analyses performed. Table S1: Spearman
Correlation between cumulative average concentration of PMMoV, NH4-N, COD, and Ntot. p-value *
< 0.05; ** > 0.05. Table S2: Minimum and maximum coefficients of variation (CVs) of biological and
technical replicates for SARS-CoV-2 (N1 assay) and PMMoV. Table S3: Cost per biological sample
replicate for RNA extraction (consumables and reagents) within the comparative analyses in the
wastewater monitoring laboratory at Hamm Lippstadt University of Applied Sciences.
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