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Abstract: Accurate glacier mapping is crucial for assessing future water security in Andean ecosys-
tems. Traditional accuracy assessment may be biased due to overlooking spatial autocorrelation
during map validation. In recent years, spatial cross-validation (CV) strategies have been proposed
in environmental and ecological modeling to reduce bias in predictive accuracy. In this study, we
demonstrate the influence of spatial autocorrelation on the accuracy assessment of glacier surface
predictive models. This is achieved by comparing the performance of several widely used machine
learning algorithms including the gradient-boosting machines (GBM), k-nearest neighbors (KNN),
random forest (RF), and logistic regression (LR) for mapping nine main Peruvian glacier regions.
Spatial and non-spatial cross-validation methods were used to evaluate the model’s classification
errors in terms of the Matthews correlation coefficient. Performance differences of up to 18% were
found between bias-reduced (spatial) and overoptimistic (non-spatial) cross-validation results. Re-
garding only spatial CV, the k-nearest neighbors were the overall best model across Huallanca (0.90),
Huayhuasha (0.78), Huaytapallana (0.96), Raura (0.93), Urubamba (0.96), Vilcabamba (0.93), and
Vilcanota (0.92) regions, consistently demonstrating the highest performance followed by logistic
regression at Blanca (0.95) and Central (0.97) regions. Our validation approach, accounting for spatial
characteristics, provides valuable insights for glacier mapping studies and future efforts on glacier
retreat monitoring. Incorporating this approach improves the reliability of glacier mapping, guiding
future national-level initiatives.

Keywords: spatial modeling; machine learning; glacier mapping; glacier retreat; climate change;
spatial autocorrelation; spatial cross-validation

1. Introduction

Tropical glaciers are sensitive indicators of climate change [1] and essential dry-season
water sources for drinking, agriculture, and the livelihoods of many dependent communi-
ties [2]. Tropical Andean glaciers are among the fastest shrinking and largest contributors
to the sea level rise on Earth. Over the period from 1975 to 2020, the Southern Peruvian
Andes have receded by ∼32% and are now at less than half their original size [3,4]. Recent
studies indicate a glacier recession in the Cordillera Blanca of approximately 46% from 1930
to 2016 [5]. This has brought effects in spatiotemporal alterations in both the quantity and
quality of mountain water resources [2,6,7] especially since this reliance increases sharply
during drought conditions [8].

Accurate extraction of glacier areas and continuous monitoring of glacier morphology
are fundamental prerequisites for glacier research, as they provide crucial information for
assessing hydrologic risks and facilitating climate change mitigation efforts [9]. Recent
studies on hydrologic modeling in the tropical Andes used multi-temporal glacier area
estimates from remote sensing data to depict the impact of glacier change on water resources
in this region [10,11].
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Due to the arduous, time-consuming, and subjective nature of manually delineating
glacier boundaries, numerous techniques have been devised to automatically delineate
glacier outlines using primarily multispectral imagery [1]; this technique has been proven
to generate equivalent accuracy compared to manual digitization techniques when a large
sample of glaciers is analyzed [12]. Several studies have been carried out to map glaciated
areas on a local and regional scale in Peru using remote sensing techniques [1,6,11,13].
The prevailing and currently operational technique employed for delineating debris-free
glaciers in the Peruvian Andes relies on the utilization of a normalized difference snow
index (NDSI) threshold [12,14]. However, it is important to note that different threshold
values can yield varying results [15]. Although the threshold limit may need to be adjusted
for specific regions [10,13], it is commonly kept constant at approximately 0.35 to 0.55 in
the literature [1] and results are usually validated using multi-spectral optical satellite data
for glacier mapping, an independent validation sample is usually not used, and maps are
validated either manually [5,16,17] or through a comparison with high-resolution satellite
images [18,19]. Machine learning (ML) methods have been used for spatial predictions in en-
vironmental and hydrological contexts [18,20–22]. Particularly, ML has been used for glacier
extent mapping [18,19,22,23]. For example, the KNN is a common classification algorithm
used in remote sensing data mining applications and it has been widely used for mapping
glacier surfaces [18,24], while [25,26] employed random forest (RF) is currently the most
common machine learning method used in diverse geoscientific problems [21,23,26–32].
Other studies like [23] tested different machine learning approaches (i.e., random forest,
support vector machines, and neural networks) for glacier delineation in Switzerland, and
the accuracy estimates were 99.8, 98.7, and 98.0, respectively. However, it is still unclear
which machine learning method is the most suitable for glacier mapping across different
climatic and geographic zones in Peru.

In environmental sciences, observations are often spatially dependent [33,34]. Subse-
quently, they are affected by underlying spatial autocorrelation by a varying magnitude.
Although cross-validation (CV) is a particularly well-established approach for the model
assessment of supervised ML models [16,17,19,35]. There is a consensus that most machine
learning methods in spatial applications often neglect relative location and neighborhood
features. Instead, they tend to analyze pixels without considering their surroundings [36].
Hence, applying machine learning directly to geospatial data without considering poten-
tial spatial autocorrelation may result in biased outcomes. It is clear from many studies
that unattended spatial autocorrelation poses challenges, leading to issues like an overly
optimistic model fit. This occurs due to the similarity between training and test data in a
non-spatial partitioning setup when employing any form of cross-validation for tuning or
validation purposes. Refs. [37,38] have investigated this over-optimistic accuracy estima-
tion, for example [39] found that a spatial validation approach provided robust estimates
of map accuracy across different scenarios while non-spatial validation worked only in
certain situations; [37,40,41] found similar results. Thus, it is recommended to utilize CV
approaches to tackle this issue in any performance evaluation involving spatial data [39,42].
However, these principles have not yet been applied in any glacier delimitation study
in Peru; therefore, it is possible that current glacier inventory validation results could be
overly optimistic.

In essence, the aim of this work is (1) to compare the predictive performance of
machine learning algorithms in glacier mapping in different geographic zones in Peru,
and (2) to evaluate the impact of spatial and non-spatial cross-validation methods on
classification algorithms’ accuracy.

2. Materials and Methods
2.1. Study Area

Peru has the world’s largest concentration of tropical glaciers, covering an estimated
area of 1602.96 km2 [43]. According to [44], the glacierized areas of the Peruvian Andes can
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be divided into three subregions based on their temperature, precipitation, and humidity
characteristics:

• The sub-region situated in the northern wet outer tropics experiences a high mean
annual humidity of 71%, minimal temperature seasonality, and a total annual precip-
itation of 815 mm. Sub-region 1 includes the Cordillera Blanca, Central, Huallanca,
Huayhuash, Huaytapallana, and Raura. Sub-region 2, located in the southern wet
outer tropics, has a moderate mean annual humidity of 59%, annual variability of the
mean monthly temperature of approximately 4 ◦C, and a total annual precipitation of
723 mm. Sub-region 2 includes the Cordillera Vilcabamba, Urubamba, and Vilcanota.
Sub-region 3 is characterized by a low mean annual humidity of 50%, a mean annual
temperature of −4.0 ◦C, and a minimal total annual precipitation of 287 mm. The
three subregions experience a dry season from May to September, coinciding with the
austral winter, and a wet season from October to April, corresponding to the austral
summer [44]. During the wet season, the glaciers predominantly accumulate mass,
while the lower portions of the glaciers experience ablation consistently throughout
the year.

This study focuses on sub-regions 1 and 2 (Figure 1). Nevertheless, to ensure the broad
applicability of our findings, we carefully select Cordilleras that provide a comprehensive
representation of the glacier distribution in Peru, particularly all the selected study areas
span proximally 90% of the glaciated surface of the Cordilleras of Perú [9,43]. Blanca
(40.20%), Central (3.80%), Huallanca (0.47%), Huayhuash (4.75%), Huaytapallana (1.92%),
Raura (2.29%), Urubamba (2.11%), Vilcabamba (9.05%), and Vilcanota (22.96%).
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Figure 1. The geographical location of the selected study areas in this work, Perú. The background is
a JAXA’S ALOS WORLD 3D DEM and references glacier surfaces from the National Inventory of
Glaciers produced in 2017. All the plotting was done in QGIS 3.30.1-’s-Hertogenbosch.

Additionally, the majority of the selected glaciers have been studied in terms of hy-
drology, ablation, and dynamics, especially the Cordillera Blanca and Cordillera Vilcanota
have been intensely studied in recent years [3,11,43,45,46].
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2.2. Data Acquisition
2.2.1. Glacier Inventory

The analysis was conducted using the National Glacier Inventory (NGI) dataset
provided by [47] as the reference data. This dataset consisted of polygonal vector data
representing glacier areas delineated using mostly Sentinel 2 and Landsat data and high-
resolution Google Earth images with field survey studies.

The NGI is a shape file of the 2017–2018 glacier outlines for the main glaciated moun-
tain regions in the Peruvian Andes, covering the entirety of Peru with information concern-
ing their code name, date of acquisition, and remote sensing sensor used for delineation. To
prepare the data for classification, the glacier outlines from the NGI were used to generate
a binary raster mask with values 0/1 corresponding to non-glacier/glacier pixels.

2.2.2. Landsat Data and Processing

The Landsat data for the period 2017–2018 were acquired from Landsat Collection
2 Level 2 and Tier 1 surface reflectance (SR) products [48] at: https://www.usgs.gov/
landsat-missions/landsat-collection-2-surface-reflectance (accessed on 1 July 2023). The
Landsat collections were acquired and handled using the Google Earth Engine (GEE)
platform [49]. For each selected glacier sub-region, a monthly composite was created
using atmospherically corrected and topographic calibrated Landsat 8 OLI reflectance data
imagery from the Tier 1 LANDSAT/LC08/C02/T1_L2 collection [49].

All the available images from 2017 with a cloud cover of less than 80% during the
dry season (May and September) were filtered. This period corresponds to the end of the
ablation period, minimizing the potential confusion caused by transient snow cover, which
could degrade the quality of the data and hinder accurate glacier discrimination [11,50].
For the cloud masking, we used the Band Quality Assessment (QA_PIXEL) information
available in the Landsat Collection 2 Level 2 and Tier 1 surface reflectance (SR) images.
Then we applied a spectral transformation by scale and offset parameters based on [51].
Overall, all the Landsat mosaic composite images cover a total area of 42,135 km2 (Table 1).

Table 1. Properties of each glaciated region.

Cordillera LS8-7 1 Composite
Total Area (km2)

Path/Row Available Scenes 2

Cordillera Blanca 13,963.1 8, 66
8, 67 30

Cordillera Central 5957.4 7, 68 53
Cordillera Huallanca 271.9 8, 67 21

Cordillera Huayhuash 344.5 8, 67 34
Cordillera Huaytapallana 2489.8 6, 68 9

Cordillera Raura 322.3 7, 67 34
Cordillera Urubamba 1818 4, 69 9

Cordillera Vilcabamba 4221.3 5, 69
4, 69 40

Cordillera Vilcanota 6179.7 3, 69
3, 70 52

Total 42,135

Notes: 1 Landsat 8 and Landsat 7. 2 Scenes that meet filtering criteria.

2.2.3. Digital Elevation Model (DEM)

The significance of the topographic characteristics in glacier classification has been
demonstrated, as the distinction between debris-covered and non-covered glaciers based
solely on reflectance properties is practically impossible [12,29,52]. Accordingly, 10 topo-
graphic parameters including elevation, slope, aspect, profile curvature, plan curvature,
longitudinal curvature, cross-sectional curvature, maximum curvature, and minimum
curvature were generated using SAGA GIS [53] using the 30-m resolution JAXA’S ALOS

https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance
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WORLD 3D DEM downloaded from https://opentopography.org/ (accessed on 2 Novem-
ber 2023) through the R package elevator each glacier region under study.

2.3. Data Overlay

Finally, the spectral and DEM covariates and labels were harmonized to UTM Zone
18S and UTM Zone 19S within sub-regions 1 and 2, respectively. This was done before
cropping, resampling to 30 meters, and stacking. With this harmonized dataset, each glacier
area was processed one by one in the main workflow, allowing the implementation of
modeling methods for individual study areas.

2.4. Machine Learning Classifiers

Like previous cross-validation comparison studies [35,37,40], we selected just a small
amount of ML methods for our experiments: random forest, gradient-boosted machines,
weighted k-nearest neighbors, and logistic regression. A detailed explanation of each model
is outside of the scope of this study, but a summary is given for each model with relevant
references for each.

2.4.1. Logistic Regression

Logistic regression (LR) involves a dependent variable represented in binary data,
indicating presence (1) and absence (0), and establishes a linear relationship with the inde-
pendent variable(s) [54]. Through an exponential function (sigmoid function), it computes
the classification probability for each input sample. The formulation for multinomial binary
logistic regression is as follows:

Z = a + ∑n
i=1 bixi (1)

P(Z) =
1

1 + e−Z , (2)

where P(Z) is the probability, Z is a parameter, a is the intercept, bi’s are the coefficients
for independent variables xi’s, and the i index is for each covariate. Usually, a probability
value of 0.5 serves as a classification threshold, aiding in the computation of classification
metrics, such as accuracy.

2.4.2. K-Nearest Neighbors

The weighted k-nearest neighbors (KNN) algorithm is supervised learning that classi-
fies data points by relying on the nearest k samples in the feature space. Using the k-means
algorithm provides significant advantages, such as easy interpretation, high flexibility,
and computational efficiency [36]. In this research, we implemented KNN using the knnn
package for R (https://github.com/KlausVigo/kknn) (accessed on 2 November 2023).

2.4.3. Random Forest

Random forest (RF) belongs to the group of ensemble learners, which builds upon a
large number of basic model structures called decision trees (DT) that are trained in parallel.
The RF integrates the outcomes of these decision trees (DT) to attain a more accurate and
stable prediction compared to a single DT [55]. Currently, the RF is the most common
machine learning method used for geospatial predictions [39,56–63].

To train an RF model, some hyper-parameters should be selected, among others, the
number of individual decision trees (ntree) and the number of features selected at each
split of the trees (mtry). In this study, ntree is kept at a moderate size of 100 to 500. This
balance ensures both efficiency and stability [64].

2.4.4. Gradient-Boosting Machines

Gradient-boosting machines (GBM) were first presented in [65], which is another type
of model based on ensemble learners. To generate the final prediction results, the GBM

https://opentopography.org/
https://github.com/KlausVigo/kknn
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could use weak learners in a sequential learning process, in the form of an ensemble of
weak predictions such as the DT. Unlike the RF, in the GBM, decision tree learners (DT) are
trained sequentially.

All the models were trained using either default hyperparameter values and/or
recommendations from the literature that were specifically tailored to our case data. A
detailed summary of the models and hyperparameters is shown in Table 2.

Table 2. Selected hyperparameter data types and chosen values for each algorithm. Notations of
hyperparameters from the respective R packages were used.

Algorithm Reference Hyperparameter Type Default

Gradient-Boosting
Machines (GBM) 1 [65]

n.trees Integer 100
n.minobsinnode Integer 10

shrinkage Numeric 0.1
distribution Nominal bernoulli

Random Forest (RF) [55]

num.trees Integer 500
mtry Integer Sqrt(p)

min.node.size Integer 1
max.depth Integer 0

Weighted K-Nearest
Neighbors (KKN)

https://github.com/KlausVigo/kknn
(accessed on 2 November 2023)

k Integer 10
distance Integer 2
kernel Nominal gaussian

Logistic Regression (LR) family Nominal binomial

Notes: 1 Algorithm symbols used on result’s analysis.

2.5. Normalized Difference Snow Index (NDSI)

The normalized difference snow index (NDSI) is widely used to distinguish snow
from other land coverages, making it valuable for identifying glacier coverage as well.
Subsequently, the NDSI has been extensively used for glacier mapping [6,9–11,29]. We
computed the NDSI values from each reflectance composite using Equation (3):

NDSI = (ρGreen − ρSWIR)/(ρGreen + ρSWIR) (3)

where ρGreen is the surface reflectance in the green band and ρSWIR is the surface reflectance
in the SWIR band. The use of the NDSI as the only means of glacier detection is a common
approach in glacier mapping generally with acceptable results [50,66,67]. In this work, we
utilized the NDSI both as a covariate for machine learning models and as an independent
method for delineating glacier outlines for comparison.

2.6. Model Evaluation Metrics
2.6.1. Matthews Correlation Coefficient (MCC)

Assessing binary classifications is a crucial task in statistics and machine learning as it
can impact decisions across various domains. To evaluate the accuracy of the models in
binary classification problems, we employ the MCC, Equation (4), as an established and
robust error measurement metric [68]. The MCC is derived from Cramér’s V and is applied
to a 2 × 2 standard confusion matrix, consisting of true positives (TP), true negatives (TN),
false negatives (FN), and false positives (FP):

CC =
TP× TN− FP× FN√

(TP + FN)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

Given the number of experiments we ran in each glacier region, we focused solely on
the MCC for sequent comparative analysis because this was proved to be a balanced, more
reliable summary of binary classification error than accuracy, F1 score, and Kappa [68,69].

https://github.com/KlausVigo/kknn
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We choose not to use the Kappa coefficient as it has proven not to be a reliable measure of
accurate classification and is difficult to interpret [70].

2.6.2. Moran’s I

It is traditionally acknowledged that when applying the standard ML models in a
spatial prediction setting, errors could remain dependent in space due to not considering
spatial dependency or heterogeneity in crucial explanatory variables [61,71,72]. Preferably
the spatial autocorrelation of errors should be minimized or even eliminated [39,40].

Correspondences between predicted and label class data were indicator coded. If the
class of the test sampled pixel matched with that of the prediction class, an indicator code 1
was assigned to that sample pixel. In contrast, a code of 0 was assigned to pixels where the
predicted class differed from the test class. These values were identified as classification
errors and obtained through the 50 repeated 5-fold either spatial or non-spatial cross-
validation and then aggregated through a simple majority vote approach for all repetitions.
Following that, we explored the spatial autocorrelation of the indicator-coded data using
Moran’s I (MI). In all instances, Moran’s I was assessed through the Monte Carlo simulation
and calculated from spatial weights matrices based on k = 5 nearest neighbors using the R
library spdep [28].

2.6.3. Indicator Variograms

Although cross-validation is a well-established approach for model assessment of
supervised machine learning models [16,17,19,35] a particular issue is that spatial autocor-
relation in the data can invalidate model validation approaches [39,40]. Therefore, when
machine learning models are directly applied to spatial data we need to consider if spatial
autocorrelation is present and to what extent [37].

To better understand the effect of spatial autocorrelation in our validation approaches,
we test for spatial autocorrelation on class labels using indicator variogram analysis
(Equation (5)). The indicator semivariogram γI can be inferred from [27,30–32,73]:

γI(Uk; h) =
1

2n(h)

n(h)

∑
i=i

[i(Uk; x)− i(Uk; x + h± ∆h)]2; k = 1, . . . , m− 1 (5)

where {U1, . . . , Um} possible classes exist (in our case two classes for glacier and non-glacier
surface, i.e., m = 2), n(h) is the number of pairs of indicator data that are a distance h± ∆h
apart, and finally the indicator random function or indicator transform i(Uk; x) of N (x) is
defined using Equation (6):

I(Uk; h) =
{

1 if N(x) ∈ {U1, . . . , Uk}
0 if N(x) ∈ {Uk+1, . . . , Um}

; k = 1, . . . , m− 1. (6)

where N(x) denotes the value of the random variable at pixel x, since we already have
binary class labels.

To model the indicator semivariograms for each glacier dataset, we employed various
model specifications including the exponential, spherical, Gaussian, and Matern functions.
Variograms were fitted by weighted least squares using Nj/h2

j as weights, where Nj denotes

the number of points pairs in the j-th lag and h2
j is the corresponding lag distance. The

model that yielded the smallest residual sum of squares when compared to the sample
variogram was selected as the final model. The variogram models were implemented using
the gstat package for R [74,75].

2.7. Model Validation
2.7.1. K-Fold Cross-Validation

While the best method is simply using a completely independent test sample, this
is not always feasible [76,77]. K-fold cross-validation is a resampling-based technique
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for the estimation of a model’s predictive performance [78]. The fundamental concept
behind K-CV is to divide an existing dataset into training and test sets using a user-defined
number of partitions. Initially, the dataset is split into k partitions or folds. The training set
comprises k − 1 partitions, and the test set comprises the remaining partitions. A model is
trained on the training set and assessed on the test partition, each partition serving as a test
set once. In this work, K-fold cross-validation is depicted as non-spatial cross-validation
(NSP-CV).

2.7.2. K-Fold Spatial Cross-Validation

The second strategy, known as spatial K-fold CV (SP-CV), differs from NSP-CV by
considering the spatial dependence of the data when partitioning observations into subsets.
The objective is to group observations into spatially homogeneous clusters beyond the
spatial autocorrelation range, thereby achieving independence between cross-validation
folds. In this work, we adopted the spatial cross-validation approach proposed by [38]
and utilized by [35] which utilizes k-means clustering to mitigate the influence of spatial
autocorrelation. In contrast to non-spatial cross-validation, spatial cross-validation parti-
tions the data into spatially disjoint subsets, reducing the impact of spatial autocorrelation.
As an example, [39,40] employed k-means clustering to divide samples into five folds
according to the locations of sample data. The validity of this procedure was empirically
tested by [35,39,79,80]. They found that the SP-CV better approximates the error obtained
when predicting species distribution and above-ground forest biomass (AGB).

2.8. Experimental Benchmark
2.8.1. Step 1: Independent Data Test Prediction Error

To evaluate the accuracy of various CV methods, it is crucial to include an unbiased
reference prediction error in the benchmarks. Thus, direct implementation of CV methods
on the entire dataset is not viable, the initial stage of the experiments involves the creation
of training and test datasets for each Cordillera [80] (Figure 2).
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Figure 2. Flowchart of the Processing Steps Presented in This Study.

For the test data, we employed simple random sampling to generate 1000 independent
sampled pixels for each glacier region being investigated, which served as the prediction
locations. In contrast, the training samples were selected using a stratified sampling
approach to ensure a balanced distribution of the two classes [76,81]. This was done
because it has been proven that class imbalances in machine learning models can produce
highly biased results [82]. Using randomly independent prediction locations directly as
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the test set ensures that the calculated value of the reference prediction error, MCCref, fully
captures all unbiased performances of the models [34,77].

2.8.2. Step 2: Compute the Prediction Error for Each CV Method

In this stage, we employed two cross-validation strategies to assess the predictive
power of our models and generate the prediction error (MCCCV). The first strategy involved
NSP-CV. The second cross-validation strategy was SP-CV, in this method, spatial partitions
of the sample are created by k-means (k = 5) clustering based on the spatial coordinates,
explained in more detail in [35]. The predicted class labels (glacier and non-glacier) were
used to calculate the MCC in each case.

In all experiments, k was fixed at 5. Both 10 and 5 represent the most frequently
employed values when implementing CV [37]. Then, each CV loop was repeated 50 times
(i.e., 50 repeated five-fold partitioning setting was chosen for performance estimation of
MCCCV for each model). Thus, 250 models were fitted and tested at each glacier region and
the average MCCCV was derived to account for random errors [37]. SP-CV also known as
blocked spatial cross-validation was implemented using Brennings’ sperrorest package [38].

2.8.3. Step 3: Compute Differences in CV Prediction Errors

Upon completing steps 1 and 2, we acquire the reference prediction error MCCref
and the prediction error of every model through our two CV methods (MCCCV). By
comparing them, we can find out which CV method produces overoptimistic classifi-
cation errors. To achieve this, we employ the CV method’s prediction error difference
(dCV = |MCCCV −MCCref|) as a quantitative metric. A value closer to zero suggests that
the CV method produces error metrics resembling the actual independent error [80].

2.9. Satistical Comparison of Model Results

To determine the influence of the two different validation scenarios on model per-
formance, a paired t-test was carried out to see if there were significant differences in
the results between models. The analysis was based on a modified paired t-test [83] con-
sidering as a factor the model and validation strategy used and as a dependent variable
the classification performance measure (i.e., MCC). The null hypothesis establishes that
average differences between models’ results (i.e., MCC) are negligible, and then both
cross-validation approaches behave equally. To analyze the results, we examined the p-
values. Before applying the t-test, a Shapiro–Wilk test was conducted to confirm the normal
distribution of the experimental results, as required by the test as in [84].

2.10. Software

All modeling analyses were conducted using the R programming language version
4.1.0, an open-source statistical software [85]. The algorithm implementations from several
packages were employed, including the gbm (https://github.com/harrysouthworth/gbm
(accessed on 2 November 2023) for the boosted regression trees [65], kknn [86] for the
weighted k-nearest neighbors classification, ranger [87] for the random forest [55] modeling.

3. Results and Discussion
3.1. Classification Performance
3.1.1. Which Models Showed the Best Performance?

Figure 3 shows the results of our experimental benchmark. It is possible to identify
the models that exhibit superior and inferior performance in both scenarios. In the NSP-CV
settings, the KNN consistently showed the best performance in all regions, followed by the
LR and RF. The SP-CV setting generally shows lower MCC values, the KNN remained as
the overall best model in almost all regions, followed by the GBM and LR in the Cordillera
Blanca and Central, respectively. Some studies have found that the KNN shows the
best predictive performance in spatial settings [86,88] although this is generally not the
case [35,89–91].

https://github.com/harrysouthworth/gbm
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Although the SP-CV generally shows lower MCC results than the NSP-CV, this is
not always the case, especially in Cordillera Central, Raura, Urubamba, and Vilcanota.
We hypothesize that these results are connected with the degree of spatial autocorrela-
tion/clustering of the glacier class in these specific Cordilleras. For example, the Cordilleras
Central and Urubamba present almost a pure nugget effect, which could have generated
the mixed response of the MCC to both validation approaches. Hence, it is impossible
to distinguish the effect of the SP-CV from the NSP-CV in the presence of weak spatial
autocorrelation.

Surprisingly, the LR demonstrates good performance in some cases without clear evi-
dence of being surpassed by models such as the RF and GBM in some cases, as commonly
acknowledged in other geospatial contexts [35,56,63]. This outcome emphasizes the signifi-
cance of traditional parametric approaches in spatial modeling, making this algorithm a
reasonable choice, especially when the differences in predictive accuracy compared to the
black-box models are minimal.
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Concerning the poor performance of the RF, the literature generally agrees upon its
general applicability in geospatial contexts as a “go-to” model [35,56,63,66,92]. Since RF
uses “bagging”, as spatial data is correlated, this resampling violates the assumption of
independence [93] provided evidence that these limitations could lead to inferior prediction
performance of the RF under spatial dependence, and this could be the reason for the
observed performance of the RF.

3.1.2. Effect of Spatial and Non-spatial Cross-Validation

There were significant differences in the estimated the MCC between the SP-CV and
NSP-CV approaches (i.e., MCCSP−CV and MCCNSP−CV). Figure 4 shows the results for
both CV methods for each glacier region under study along the reference error refine in red
dotted horizontal lines.

First and foremost, it can be seen that almost in all cases the SP-CV and NSP-CV
methods produced quite different results in terms of MCC, it’s worth noting that the
proposed SP-CV, taking into account the clustered nature of the data, consistently yields
evaluation results closer to the reference prediction MCC than the NPS-CV in nearly all
cases. This suggests that the SP-CV may produce bias-reduced spatial predictions when
using ML models for glacier mapping, especially when training locations are scarce and
highly clustered as is usual in glacier monitoring and mapping. As expected, the SP-CV
results showed high variances for all models.

Upon careful examination of Figure 4, Cordillera Central, Urubamba, and Vilcabamba,
can be found quite high differences between the CV-MCCs and the test MCC (dotted red
lines in Figure 4), regardless of the validation approach. It seems that, in those particular
cases, both the CV methods are incapable of estimating the true error of the models. This
indicates the presence of biased results, even when employing the spatial cross-validation
approach suggested in this study. Although there could be multiple reasons to explain
these results, we hypothesize that they are due to possible overfitting of the models in those
specific areas.

A more detailed analysis can be found in Table 3 which shows the mean MCC grouped
by Cordillera and CV method as well the difference regarding the test reference MCC (in
parenthesis). For example, Cordillera Blanca’s mean MCC for NSP-CV models is 0.949,
while the mean MCC for the SP-CV models is 0.928, and their difference concerning the
reference independent test (i.e., MCCref 0.844) are 0.1054 and 0.0845, respectively.

Table 3. Mean Matthew Correlation Coefficients grouped by Cordillera and CV method.

Glacier Region SP-CV 1 MCC NSP-CV 2 MCC

Cordillera Blanca 0.928 (0.0845) 3 0.949 (0.1054)
Cordillera Central 0.937 (0.446) 0.954 (0.4624)

Cordillera Huallanca 0.877 (0.1201) 0.937 (0.1800)
Cordillera Huayhuash 0.753 (0.0196) 0.830 (0.0576)

Cordillera Huaytapallana 0.904 (0.1979) 0.968 (0.2617)
Cordillera Raura 0.915 (0.0532) 0.931 (0.0699)

Cordillera Urubamba 0.906 (0.3082) 0.930 (0.3317)
Cordillera Vilcabamba 0.891 (0.2067) 0.917 (0.2326)

Cordillera Vilcanota 0.906 (0.0618) 0.929 (0.0847)

Notes: 1 SP-CV: spatial cross-validation, 2: NSP-CV: non-spatial cross-validation, 3: difference regard to the test
reference MCC (MCCC −MCCref) in parenthesis.

Overall, the SP-CV led to a slight decline in the model’s MCC (i.e., about—4%) con-
cerning the NSP-CV method. Likewise, the SP-CV yields a sharp decline in biases (dCV).
compared to the reference MCC evaluated at the test sets (i.e., about—18%). Moreover, the
evaluation results of the SP-CV were significantly closer to the reference prediction error
than the results of the NSP-CV for all glacier regions under study. This illustrates that the
proposed method, taking into account the spatial structure of the data in the evaluation of
the model could indeed provide a reasonable unbiased result. To further strengthen this
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observation, it is important to analyze the individual model’s discrepancy between the
SP-CV and NSP-CV MCC estimates obtained in the benchmark’s settings, which will be
explored in the subsequent section.
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3.1.3. Statistical Comparison of Model Results

We conducted a comparative statistical analysis of the results. Table 4 shows the
t-statistics and the p-values (in parenthesis) of paired t-test comparison for the MCC
results obtained after the 50-repeated 5-fold CV using the two types of cross-validation for
each glacier region (p-values < 0.05 means that there is a significance statistical difference
between cross-validated MCC results and p-value > 0.05 means that both cross-validation
approaches yield equal results).
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Table 4. Modified paired t-test, t-statistics, and the p-values (in parenthesis) of paired t-test compar-
ison for the MCC obtained after the 50-repeated 5-fold CV using two types of cross-validation for
each glacier region.

Glacier Region LR RF GBM KNN

Cordillera Blanca 0.05971 (0.4763) 1.155 (0.1267) 1.678 (0.04711) 1 2.061 (0.02229) 1

Cordillera Central 0.2374 (0.4066) 0.8284 (0.2057) 0.6774 (0.2506) 1.391 (0.08516)
Cordillera Huallanca 1.202 (0.1174) 1.9135 (0.03076) 1 1.4590 (0.07545) 1.366 (0.08895)

Cordillera Huayhuash 1.44537 (0.07735) 1.6833 (0.04933) 1 1.64397 (0.05329) 1.64590 (0.0530)
Cordillera Huaytapallana 1.3271 (0.09530) 1.5579 (0.06284) 1.910303 (0.03092) 1 253.484 (-)

Cordillera Raura 0.76974 (0.2225) 0.34939 (0.3641) 0.4885 (0.3136) 0.3651 (0.3582)
Cordillera Urubamba 1.59805 (0.04823) 1 0.93018 (0.1784) 1.2942 (0.1008) 0.0655 (0.4739)
Cordillera Vilcabamba 0.20655 (0.4186) 1.61089 (0.04681) 1 0.9120 (0.1831) 1.3423 (0.09283)

Cordillera Vilcanota 0.84632 (0.2007) 0.62994 (0.2658) 0.7284 (0.2348) 0.48702 (0.3142)

Notes: 1 Modified paired t-test significance statistical difference between cross-validated MCC results
(p-value < 0.05).

Based on the statistical analysis, considering the results of the paired t-test, it is not
definitively conclusive to assert that SP-CV yields significantly different MCC estimates
compared to NPS-CV in most cases with the exception of remarkable cases that need further
clarification:

For the Cordillera Blanca, only the GBM and KNN models showed significant differ-
ences (p-value < 0.05). For Cordillera Huallanca, Huayhuash, and Vilcabamba the RF was
the only model that showed significant differences. For Cordillera Huaytapallana, only
the GBM showed significant differences. For Cordillera Urubamba, only the LR showed
significant differences.

Some algorithms showed no sensitivity to the cross-validation method (i.e., KNN and
LR). Since the KNN is the best model overall in all cases regardless of the CV method, this
suggests that the KNN can produce more reliable estimates of error and at the same time
the best-performing predictions. On the other hand, some algorithms were quite sensible
to the cross-validation method. The RF showed significant differences between the SP-CV
MCC’s and NP-CV MCC’s. In all those cases, the null hypothesis establishes that average
differences between error models (i.e., MCC) are non-negligible. Therefore, this difference
can be linked to an overly optimistic bias in nonspatial cross-validation estimates due to
spatial autocorrelation [35,37,61,63,80].

However, it should be noted that these results may slightly vary depending on the data
distribution within each fold and the randomization in each repetition, which can impact
the comparison tests [35]. Nonetheless, given the considerable number of repetitions in the
experiments, these results are generally robust.

While our results align with previous studies, such as those by [35,40,94] suggesting
that non-spatial performance estimates tend to be significantly “superior” to spatial per-
formance estimates, it is important to note that our experiments do not allow for such a
definitive statement in all cases. The observed differences in performance between the
spatial and non-spatial estimates in our study may not be as pronounced or statistically
significant regardless of the classification algorithm.

3.2. Spatial Autocorrelation Assessment
3.2.1. Spatial Autocorrelation of Classes

Semivariograms were calculated for the glacier class indicator variable for each glacier
region to confirm the presence of spatial autocorrelation in the datasets.

Figure 5 shows the experimental and fitted indicator variograms for each glacier data
set, the variograms were rescaled to enable comparison across datasets. The parameters of
the variogram models are given in Table 5.
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Table 5. Rescaled Indicator Variogram Parameters Across glacier regions.

Cordillera Model 1 Range (m) C0
2 C 3 Mat-κ 4

Cordillera Blanca Mat 5428.204 3.57 × 10−4 0.0355 0.5
Cordillera Central Exp 371.4613 0 0.00475 -

Cordillera Huallanca Mat 874.5616 1.14 × 10−3 0.0184 1
Cordillera Huayhuash Mat 3160.411 2.54 × 10−3 0.1477 0.3

Cordillera Huaytapallana Mat 1320.108 2.21 × 10−3 0.004013 10
Cordillera Raura Mat 1999.836 1.68 × 10−2 0.07002 0.6

Cordillera Urubamba Mat 684.1284 0 0.00736 10
Cordillera Vilcabamba Mat 5326.374 1.30 × 10−3 0.0264 0.4

Cordillera Vilcanota Mat 3288.231 3.19 × 10−4 0.03816 1.2

Notes: 1: Mat: Matern, M. Stein’s parameterization; Exp: exponential model. 2: C0: Nugget effect, and 3 Sill.
4: κ (kappa) is a range parameter of the Matern parametrization.
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In general, the glacier class presents a significant spatial correlation, the smallest range
of spatial dependence was found for Cordilleras Central, Urubamba, and Huallanca with
ranges from 0.37, 0.68, and 0.87 km, respectively, and the largest range was found for
Cordillera Blanca (5.42 km).

For some glacier regions, the variograms exhibit a substantial nugget effect and a
structure with a short range. (i.e., Central, Huaytapallana, and Urubamba), as well as bigger
kappa parameters, indicating a fairly constant spatial process in those cases. But in general,
relatively larger ranges and smaller nugget effects occur for the majority of other regions.
For instance, in the Cordillera Blanca case, the indicator variogram shows that at a 30 m
resolution km spatial resolution, the glacier class presents a significant spatial correlation
up to 5.42 km (Figure 5). This spatial autocorrelation is notably observable in nearly all
cases, where clusters of homogeneous glacier class values are present. The Cordillera
Blanca region exhibited a larger range due to its considerably larger area (13,963 km2).
The absence of similar range behavior in other areas can be attributed to the substantial
differences in the overall size and extent of each region because glaciers assume a size and
flow rate that are in balance with the local climate [15].

Given the relatively high sampling intensity (and resulting proximity) of glacier
class pixels selected for this work, and the long range of spatial autocorrelation in the
data, it’s evident that any randomly selected test pixel will not be independent from
its neighboring pixels, this circumstance violates the fundamental hypothesis of model
validation, specifically, the assumption of independence between training and test sets.
This result probably doesn’t hold for the regions for which variograms revealed poor spatial
structure like Central, Huaytapallana, and Urubamba Cordilleras. This suggests that a
spatial cross-validation method could be useful in this context [37].

It is worth noting that no stationarity assumptions are needed since the indicator
variograms are simply used as a means to describe the spatial structure of the data, rather
than to perform a model-based inferential spatial prediction of a spatial process.

3.2.2. Spatial Autocorrelation of Errors

Figure 6 shows that regardless of the type of modeling algorithm, there were low MI
values with statistically non-significant p-values, (i.e., p-values greater than 0.05). At first,
it seems that the SP-CV could reduce the spatial dependence of errors compared to the
NSP-CV which shows generally higher MI values (i.e., spatially correlated errors). This,
suggests that in our SP-CV validation method, the spatial structure of errors is eliminated
in all glacier regions but not in the NSP-CV. However, a closer inspection of p-values (not
shown in the figure) suggests that the Null hypothesis should not be rejected, and the
spatial error patterns are almost random in both cross-validation scenarios.

Urubamba was the only exception in terms of significant MI p-values, especially
when the KNN model was applied, indicating the occurrence of spatially correlated errors.
Overall, after either the SP-CV or NSP-CV methods, the errors’ spatial structure was
completely absorbed by almost all the models in all the glacier regions (statistically non-
significant p-values) regardless of the CV approach.

These results suggest that our expectation, wherein the incorporation of spatial infor-
mation in the SP-CV method is expected to better capture the spatial autocorrelation of
errors than the NSP-CV does not hold for glacier classification errors in the Tropical Andes
using machine learning algorithms.
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3.3. Spatial Predictions

Finally, we generated glacier outline maps over all studied regions to visually inspect
and compare the predictions. For predicting glacier class we took the approach of [95]
described in [40]. We used all available pixels of each area to fit the final prediction
models. This approach prioritizes the overall quality of the final predictions rather than
achieving perfect accuracy in error estimates. The advantage lies in utilizing all available
data potentially making it the best predictor, especially for smaller datasets. It has the
drawback that the cross-validated errors no longer apply to the predictions, as they were
made with different datasets. In this case, as the error estimates will be over-optimistic, the
estimated error derived from the SP-CV should be used as the reference error.

To analyze the predictions in greater detail we show a set of predictions on four small
areas within the Cordillera Blanca (Figure 7). Overall, the spatial distribution of the model
predictions is quite similar. Here, the KNN is not clearly the best predictor all around, as
all the outlined maps exhibit a strong agreement with the NGI outline. There are, however,
certain areas showing overestimation and underestimation of glacier surfaces. Notably,
overestimation is noticeable, particularly near the glacier periphery of the NGI in row 3. In
row 2 we observe some areas of underestimation, where glacier areas were misclassified as
non-glacier, especially in the case of the KNN and RF algorithms.
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Figure 7. Maps of the spatial predictions of compared models. NDSI is added as a comparison.
Reference National Glacier Inventory in red contour is overlaid as a reference [14]. Numbers 1–4
represent 4 rectangular zones within Vilcanota region, for sake of visualization.

These classification errors could be attributed, to some extent, to the compositing and
cloud filtering of Landsat 8 images in GEE. This filtering process might lead to the improper
detection of transient snow areas, which are then mistaken for glaciers. Importantly, this
phenomenon is not observed in other prediction areas. This highlights the significance of
the cloud filtering algorithm, as snow pixels can seriously undermine the performance of
machine learning models of glacier classification. Additionally, the spatial resolution of
Landsat imagery used in this study can introduce a substantial number of mixed pixels—
pixels that encompass both the glacier and the surrounding terrain. To address the former
issue, a series of recommended algorithms has been previously suggested [50].

The debris-free outline map generated using the NDSI exhibits a high degree of
similarity with the NGI outlines, although not perfect, probably due to the NDSI being the
current operational method for glacier mapping in Perú [11,47]. Although highly similar,
differences exist because our approach uses Landsat 8 imagery, whereas the NGI uses
Sentinel 2 and Landsat 8 as well.

Prior studies have already concluded that debris-free ice can be accurately mapped
using simple methods, such as the band ratio of the Red/NIR bands of Landsat or S2
data [18–20,45,96]. While our primary objective was to compare the predictive classification
errors of machine learning algorithms using spatially distributed glacier class data, it’s
important to note that the NDSI and band ratio approaches remain robust and widely used
methods in remote sensing-based glacier monitoring. As this research demonstrates, these
methods should not be dismissed. Nevertheless, evaluating the classification errors of
glacier mapping using these approaches requires a proper assessment, typically involving a
comparison with high-resolution satellite images [52,96], a procedure that is highly manual
and inefficient. Therefore, we hope that a statistically sound approach could enhance
current national glacier mapping efforts.

4. Conclusions

In this study, we compared the predictive performance of machine learning algorithms
in glacier mapping. We tested k-nearest neighbors, random forests, gradient-boosting
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machines, and logistic regression in different geographic zones in Peru. Spatial and non-
spatial cross-validation methods were used to evaluate the model’s classification errors
in terms of the Matthews correlation coefficient (MCC). Performance differences of up
to 18% were found between bias-reduced (spatial) and overoptimistic (non-spatial) cross-
validation results. Regarding only spatial CV, the k-nearest neighbors (KNN) was the
overall best model across Huallanca (0.90), Huayhuasha (0.78), Huaytapallana (0.96),
Raura (0.93), Urubamba (0.96), Vilcabamba, (0.93) and Vilcanota (0.92) regions, consistently
demonstrating the highest performance followed by logistic regression at Blanca (0.95)
and Central (0.97) regions. Although the differences in predictive performance are not
statistically significant in all studied regions, we would recommend using spatial CV
instead of non-spatial CV for estimating the prediction performance of machine models
when mapping glacier landcover, as only this ensures the assessment of bias-reduced
predictive performance results, this is especially important when the corresponding results
form the basis of policy making.
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