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Abstract: The problem of environmental water pollution is becoming increasingly important. Inland
rivers and lakes form interconnected water networks with fragile water ecosystems, and urban water
pollution problems occur frequently. Chemical oxygen demand (COD), dissolved oxygen (DO), total
phosphorus (TP), total nitrogen (TN), and ammonia nitrogen (NH3-N) in inland rivers are important
indicators to evaluate water health quality. Timely and accurate reflection of dynamic changes to the
key indices of urban river health status are of vital practical significance to adjust water treatment
policy and ensure the stability of the aquatic environment and people’s health. This study used COD,
DO, TP, TN and NH3-N as typical water quality parameters for a reservoir in Guangxi Province,
China and established a set of standardized processes covering UAV hyperspectral sampling and
ground spectral correction, spectral data preprocessing, and modeling. In combination with machine
learning and statistical analysis, an inversion method for measuring urban inland water pollution
from UAV hyperspectral imaging with different dynamic monitoring parameters was proposed.
And we compared the different combinations of preprocessing algorithm-regression algorithm and
dimensionality reduction algorithm to get a unified model for quantitative estimation of water quality
parameter concentration. We evaluated the performance of the proposed model according to root
mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and coefficient of determination (R2). The experimental results showed that our model was superior
to other algorithms in RMSE, MAE, MAPE, and R2. The MAPE of this model ranged from 0.01 to
0.12 and R2 ranged from 0.84 to 0.98 in all water quality parameters. In general, this study provides
an effective tool for decision-makers to investigate the source and physical mechanism of water
pollution and establish a graded water quality evaluation model.

Keywords: hyperspectral imaging; UAV; inland river; water quality monitoring; model building

1. Introduction

Owing to the influence of natural factors and human activities, the water quality of
many inland rivers has been severely degraded, which leads to the need for water quality
monitoring technology. Traditional water quality monitoring uses manual sampling and
testing methods, which are low in monitoring efficiency and consume substantial human
and material resources. In addition, isolated monitoring points cannot accurately describe
the water quality of the whole water area, nor can they obtain the spatial distribution of
water quality. These limitations make it difficult to meet the monitoring needs [1] of modern
urban governance systems. Remote sensing of water quality, as an auxiliary to the existing
monitoring system, can obtain multi-scale and multi-temporal information on rivers and
lakes and help track the location of possible pollution sources. Effective monitoring of
water quality changes is important for the protection of urban rivers. In recent years,
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water quality monitoring models using remote sensing technology have been widely used
in the quantitative estimation [2,3] of a variety of water quality parameters, including
chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), total
nitrogen (TN) and ammonia nitrogen (NH3-N). All abbreviations in the text are shown in
Abbreviations Index. The accumulation of these elements leads to water eutrophication,
changes in turbidity, and increases in total suspended matter content. They directly lead
to the rapid accumulation of chlorophyll, which substantially [4] disturbs urban river
ecosystems. Therefore, real-time and accurate monitoring of water quality changes, as well
as determining pollution sources and mechanisms that cause water quality changes, are
crucial to solving the problem of urban inland water pollution and are the basis and priority
for protecting the water environment. In recent years, with the rapid development of
remote sensing technology, inversion of water quality parameter changes using remote
sensing has become a common means of water quality monitoring. Satellite remote sensing
technology can effectively monitor large urban rivers, but most urban rivers are less than
100 m in width and belong to the category of small and medium-sized rivers. Village
and town rivers are usually less than 10 m in width. There is a dense, widely distributed
network of these small and medium-sized rivers, which often have very silted channels with
slow flow rates, and illegal and unplanned discharge from the surrounding environment.
Therefore, the water quality is prone to deterioration, and there is a high incidence of river
pollution. These conditions increase the need for high spatial and temporal resolution
remote sensing data. The existing satellite-borne remote sensing monitoring methods often
cannot meet the monitoring needs of modern urban river and lake water environments. In
terms of analysis, a variety of methods have been used to monitor water quality, including
deep learning methods such as empirical methods, convolutional neural networks (CNN),
deep convolutional generation and adversarial networks, and Bayesian neural networks.
Most of these grade [5–8] water quality according to the concentration of water quality
parameters and achieve relatively good performance. However, the spatial resolution
of the above studies is relatively poor, and the water quality cannot be monitored in a
small range. Therefore, it cannot be applied to the monitoring of water pollution in small
inland water bodies in cities. Some researchers, such as Bonansea et al., have studied
satellite data to monitor the change in water quality parameters through polynomial
regression modeling, using the relationship between spectra. Similarly, Gu et al. used
two GF-5 hyperspectral images to estimate chlorophyll a concentration and suspended
sediment concentration in the Yangtze River Estuary and [9–11] obtained a prediction
accuracy of 0.815. However, this kind of method requires many data sets as training data to
obtain relatively good prediction results, which results in a long data collection period and
limited accuracy. By improving the traditional CNN research for the prediction of COD
concentration using hyperspectral remote sensing and a gated recurrent neural network
(GRNN), WANG et al. achieved good modeling performance [12,13]. However, their data
were simulated in the laboratory which may not have practical significance. In recent
years, researchers have studied the use of low-altitude remote sensing technology from
unmanned aerial vehicles (UAV), and have used UAV to monitor chlorophyll a. Jung Min
Ahn achieved good results in predicting cyanobacteria blooms in controlled rivers using
hyperspectral images combined with machine learning [14–19]. In summary, there are
few studies on inversion methods for UAV hyperspectral dynamic monitoring parameters
for urban inland water pollution in China and elsewhere. And the analysis algorithm
is inefficient. In view of this, remote sensing inversion models of spectral features of
water quality parameters were constructed by taking COD, DO, TP, TN and NH3-N for
five typical water quality parameters in Beihai City, Guangxi Province as research objects
through different pretreatment and regression methods. In this study, the water pollution
index in a reservoir was quantitatively and dynamically monitored by mining the spectral
information in the wavelength range of 400–1000 nm obtained by the UAV hyperspectral
imaging system. And we compared different combinations of pre-processing algorithm,
regression algorithm and dimensionality reduction algorithm, and finally establishes a
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unified model of quantification of the concentration of the water quality parameters to
be used for the effective quantitative estimation of the concentration of water quality
parameters, so as to achieve the quantitative and dynamic monitoring of water pollution
indexes in the water reservoirs.The specific studies were to: (1) obtain the spectral data
of the hyperspectral image in the range of 400–1000 nm; (2) eliminate the interference
from the instrument itself and the surrounding environment by selecting suitable spectral
preprocessing; (3) find different combinations of preprocessing and regression algorithms
for different monitoring indicators, and study ways of evaluating the performance of the
models in the process; (4) through three methods—principal component analysis (PCA),
continuous projection algorithm (SPA) and simulated annealing algorithm (SAA)—to select
the best wavelength combination to optimize the inversion model and improve inversion
efficiency. This approach can achieve the rapid monitoring of water pollution indicators for
COD, DO, TP, TN and NH3-N, to establish a comprehensive analysis model.

2. Materials and Methods
2.1. Study Area Overview

In this study, a reservoir in Guangxi Province was selected as the research area. The
reservoir is a centralized drinking water source at the Beihai level, located on the Sanhe
River, with a normal reservoir capacity of 11.53 million m3 (Figure 1). Analysis of the
reservoir is helpful to understand the ecological environment status of the Beijiao water
plant and provide for the safety of the urban water supply. Hyperspectral images were
taken at multiple points in five different water sections in the reservoir, including the
village on the lower slope, the Poxinling, the Caohualing, the head of the dam, and the
reservoir (Table 1). At the same time, ground spectral data were collected by a micro-optical
fiber spectrometer in the same water area. Water samples were collected using a cup-type
fixed- depth water quality sampler in the experimental area. There were 20 sampling points
in a single experiment, and 500 mL water samples were collected at each point. The samples
were sent to professional institutions for testing according to the national standard, and the
measured data of the detected content of COD, DO, TP, TN and NH3-N were used as the
standard for subsequent spectral modeling.

Figure 1. Map of distribution of sampled waters.
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Table 1. Water quality monitoring at the center point of the reservoir basin.

Serial Number Section Name Latitude (N) Longitude (E)

1 In the library 21.596800900◦ 109.232536650◦

2 Downhill Village 21.607201300◦ 109.237450290◦

3 Caohualing Village 21.60265254◦ 109.240883460◦

4 Slope Heart Ridge 21.612006920◦ 109.230904750◦

5 Dam Head 21.589200229◦ 109.229440652◦

2.2. UAV Hyperspectral Data Acquisition and Preprocessing

In this study, we used an unmanned airborne hyperspectral imaging system integrated
by Hangzhou Hyperspectral Imaging Technology Co., Ltd. (Hangzhou, China) as shown in
Figure 2b. The core spectral module of the system was independently developed by CIOMP.

(a) (b)

Figure 2. Experimental instrument: (a) UAV hyperspectral imaging system, and (b) miniature fiber
optic spectrometer.

The spectral range covered 400–1000 nm, the spectral resolution was better than 3 nm,
and the focal length of the lens (kowa) was 35 mm. The spectral range of the miniature
optical fiber spectrometer covered 200–1100 nm, and the spectral resolution was better
than 1.5 nm. The hyperspectral image of the waters of Niuweiling, Guangxi was collected
in reflection mode, and the spectral curve of the water body was obtained, as shown
in Figure 3. The processing process is shown in Figure 4.

Figure 3. Spectral reflectance curve of the water body.
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Figure 4. Water sample data processing flow.

2.3. ROI Selection and Pretreatment Method

The experiment time was between 10:00 and 14:00 in the day. During the experiment, a
high reflectivity image was obtained by scanning the gradient reflectivity whiteboard, and
the hyperspectral image data of five different water areas in the reservoir were collected.
The reflectivity of the reservoir water was corrected using Formula (1):

IR = (IO − IB)/(IW − IB) (1)

where, IR represents the corrected reflectivity hyperspectral image data, IO represents the
original water body hyperspectral image data, IW represents the reflectivity whiteboard hy-
perspectral image data taken under the same experimental environment, IB represents the
reflectivity dark plate hyperspectral image data taken in the same experimental environment.

The micro-optical fiber spectrometer self-developed by CIOMP was used to correct
the hyperspectral image data according to Formula (2).

R =


r1,1 r1,2 r1,3 · · · r1,n
r2,1 r2,2 r2,3 · · · r2,n
r3,1 r3,2 r3,3 · · · r3,n

...
...

...
. . .

...
rm,1 rm,2 rm,3 · · · rm,4

→


r′1,1 r′1,2 r′1,3 · · · r′1,n
r′2,1 r′2,2 r′2,3 · · · r′2,n
r′3,1 r′3,2 r′3,3 · · · r′3,n

...
...

...
. . .

...
r′m,1 r′m,2 r′m,3 · · · r′m,4

 = R′ (2)

A modified model of UAV reflectance and ground reflectance was established, where n
is the number of bands, m is the number of sample points, and r is the original hyperspectral
reflectance. The processed hyperspectral image is shown in Figure 5.
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Figure 5. Hyperspectral image of the studied water area.

In this study, 50 points in each of the above five regions were selected for water
sampling. Of the data points, 70% were randomly selected as the training set and the
remaining 30% were the prediction set. Before analyzing the ROI , it was necessary to
preprocess the data to eliminate the system noise and the influence of the surrounding
environment. In this study, SNV, MSC, WAVE, MMS and cascade were used for pre-
processing. SNV and MSC can reduce the influence of the scattering on the spectrum owing
to the uneven particle distribution and different particle size. The effects of some of the
different pretreatment methods are shown in Figure 6.

(a) (b)

(c) (d)
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(e) (f)

(g)
Figure 6. Spectral curve of water data: (a) Spectral curve of original data, (b) spectral curve of SNV
pretreatment. (c) Spectral curve after MSC pretreatment, (d) spectral curve after SNV+MSC pretreat-
ment, (e) spectral curve after MSC+SNV pretreatment, (f) spectral curve after WAVE pretreatment,
(g) spectral curve after MMS pretreatment.

3. Analytical Model and Evaluation Criteria
3.1. Modeling Methods for the Full Spectrum Regression Model

In this study, LR, SVR, PLSR and RFR regression algorithms were used to model
and analyze the COD, DO TN, TP, and NH3-N content and spectral reflectance data in a
reservoir water body. LR is used where the relationship between variables is simple. SVR is
carried out by finding an optimal curve or hyperplane in the data set, that is, by minimizing
the training error and maximizing the effective edge [20,21]. SVR regression uses a kernel
function to deal with nonlinear problems, which makes it easier to separate input samples.
It has strong nonlinear fitting ability and robustness, and only calculates the support vector
in the prediction. This greatly reduces the computation process. For the training data set,
D = (x, y), where xi is the n-dimensional and yi the scalar predicted value, the relaxation
variable sum is introduced to minimize the objective function as follows: ξi ξ∗i

F = min
1
2
‖ω‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (3)

where: C is the penalty coefficient; w and b are the coefficient and intercept of the model
respectively. Kernel functions commonly introduced include Gaussian kernel, polynomial
kernel and sigmoid kernel function. Here, the Gaussian kernel function was selected for
modeling in the study, as shown in Equation (4):

K(xi, xj) = exp(−‖xi − xj‖2)/(2σ2) (4)

where: σ is a hyperparameter. PLSR is a regression modeling method for multi-dependent
variables to multi-independent variables. The final model contained all the original in-
dependent variables, and had good model interpretability [22,23]. RFR is composed of
multiple regression trees, and there is no correlation between each decision tree in the forest.
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The final output of the model is determined by all decision trees in the forest, which has
strong anti-interference ability and anti-overfitting ability [24–30].

In this study, the root-mean-square error(RMSE), mean absolute error (MAE) and
determination coefficient (R2) were used to evaluate the effect of the regression analysis
model. In general, the smaller the RMSE and MAE error and the closer the R2 is to 1, the better
the prediction performance of the model. The specific parameters are calculated as follows:

RMSE =

(
1
m

m

∑
i=1

(yi − ŷl)
2

)1/2

(5)

MAE =
1
m

m

∑
i=1
|yi − ŷi| (6)

R2 =

m
∑

i=1
(ŷl − ȳl)

2

m
∑

i=1
(yi − ȳl)2

(7)

where, RMSE represents the root mean square error, MAE represents the average absolute
value error, R2 represents the determination coefficient, m represents the number of data
points, yi represents the true value of the key indicator content in the water body data point,
ŷi represents the predicted value of the key data indicators COD, DO, TN, TP, and NH3-N,
content, ȳi represents the average value of the true content of key indicators COD, DO, TN,
TP, and NH3-N in each data point set.

The expected values of the COD, DO, TN, TP, and NH3-N contents of different key
indicators obtained by full-spectrum modeling are shown in Tables 2–6, and the average
absolute error percentage of predicted values of water quality parameters is shown in Figure 7.

A smaller MAPE indicates a better prediction by the model. On the basis of the
above tables and graphs and combining the RMSE and MAE data, we found that the
best prediction model of COD was established by the combination of MSC preprocessing
and the RandomForest regression algorithm, while the best prediction model of DO was
established by the combination of WAVE preprocessing and the SVR regression algorithm.
The best prediction model of NH3-N was established by the combination of MSC+SNV
pretreatment and PLS regression algorithm, while the best prediction model of TP was es-
tablished by the combination of MSC+SNV pretreatment and the RandomForest regression
algorithm. The best prediction model of TN was established by the combination of MMS
pre-processing and the PLS regression algorithm. All these factors provided data input for
the following research.

(a)
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(b)

(c)

(d)
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(e)

Figure 7. Histogram of prediction and evaluation of water quality parameters: (a) MAPE cluster his-
togram of predicted COD, (b) MAPE cluster histogram of predicted DO, (c) MAPE cluster histogram
of predicted NH3-N, (d) MAPE cluster histogram of predicted TP, (e) MAPE cluster histogram of
predicted TN.

Table 2. Prediction results of COD with full spectrum.

Model Preprocessing Regression Model RMSE MAE R2 Predicted

MSC

Linear 0.0877 0.7071 0.8227 0.8921
SVR 0.0980 0.0829 0.7773 0.9448
PLS 0.0742 0.0565 0.8726 0.7037

RandomForest 0.0678 0.0202 0.8930 0.9686

SNV

Linear 0.0849 0.0647 0.8381 0.9022
SVR 0.0980 0.0825 0.7788 0.8944
PLS 0.0735 0.0561 0.8769 0.9244

RandomForest 0.0894 0.0285 0.8154 0.8795

MMS

Linear 0.0574 0.0496 0.9232 0.9051
SVR 0.0975 0.0971 0.7816 0.8796
PLS 0.0728 0.0489 0.8781 0.9063

RandomForest 0.0077 0.0038 0.9985 0.8611

WAVE

Linear 0.0656 0.0514 0.9005 0.9007
SVR 0.0742 0.0643 0.8730 0.8711
PLS 0.0721 0.0484 0.8806 0.7740

RandomForest 0.0100 0.0039 0.9976 0.8825

MSC+SNV

Linear 0.0860 0.0689 0.8292 0.8100
SVR 0.0980 0.0828 0.7771 0.8953
PLS 0.0742 0.0566 0.8727 0.9132

RandomForest 0.0686 0.0199 0.8905 0.9085

SNV+MSC

Linear 0.0825 0.0658 0.8441 0.9430
SVR 0.0980 0.0825 0.7788 0.8944
PLS 0.0735 0.056 0.8769 0.8444

RandomForest 0.0922 0.0288 0.8045 0.9895
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Table 3. DO full spectrum prediction results.

Model Preprocessing Regression Model RMSE MAE R2 Predicted

MSC

Linear 0.2789 0.2308 0.8951 0.8455
SVR 0.4589 0.3604 0.7159 0.8630
PLS 0.2059 0.1611 0.9428 0.5471

RandomForest 0.2462 0.1311 0.9182 0.7813

SNV

Linear 0.2693 0.2221 0.9022 0.8644
SVR 0.4593 0.3612 0.7051 0.8744
PLS 0.2020 0.1571 0.9441 0.7923

RandomForest 0.1931 0.1027 0.9496 0.8443

MMS

Linear 0.1288 0.1071 0.9775 0.8359
SVR 0.1136 0.1021 0.9825 0.8332
PLS 0.1483 0.1072 0.9703 0.8307

RandomForest 0.1778 0.0825 0.9571 0.8128

WAVE

Linear 0.1411 0.1152 0.9731 0.8703
SVR 0.1175 0.1020 0.9813 0.9064
PLS 0.1428 0.1101 0.9724 0.7448

RandomForest 0.1682 0.0748 0.9617 0.8467

MSC+SNV

Linear 0.2766 0.2281 0.8968 0.8622
SVR 0.4587 0.3604 0.7160 0.8741
PLS 0.2059 0.1612 0.9428 0.8934

RandomForest 0.2966 0.1251 0.8812 0.8386

SNV+MSC

Linear 0.2661 0.2199 0.9044 0.8630
SVR 0.4593 0.3612 0.7152 0.8744
PLS 0.2020 0.1571 0.9449 0.7923

RandomForest 0.2078 0.1011 0.9421 0.8538

Table 4. NH3-N full spectrum prediction results.

Model Preprocessing Regression Model RMSE MAE R2 Predicted

MSC

Linear 0.0648 0.0525 0.78 0.7718
SVR 0.0800 0.0687 0.663 0.3485
PLS 0.0539 0.0413 0.8459 0.3131

RandomForest 0.0548 0.0148 0.8529 0.3269

SNV

Linear 0.0632 0.0511 0.7918 0.8148
SVR 0.0775 0.0685 0.663 0.5574
PLS 0.0548 0.0409 0.85125 0.7984

RandomForest 0.0632 0.0197 0.7837 0.6705

MMS

Linear 0.0447 0.0356 0.9079 0.2477
SVR 0.0949 0.097 0.5081 0.3672
PLS 0.0548 0.035 0.859 0.5531

RandomForest 0.0063 0.0035 0.9976 0.6270

WAVE

Linear 0.0447 0.0369 0.8842 0.7128
SVR 0.0707 0.06169 0.7331 0.7967
PLS 0.0548 0.035 0.8604 0.7792

RandomForest 0.0100 0.002 0.9971 0.6951

MSC+SNV

Linear 0.0632 0.052 0.786 0.8300
SVR 0.0775 0.0686 0.6635 0.5616
PLS 0.0548 0.04 0.8461 0.8542

RandomForest 0.0529 0.0135 0.8566 0.6679

SNV+MSC

Linear 0.0632 0.0503 0.7969 0.8128
SVR 0.0775 0.0685 0.6634 0.5574
PLS 0.0539 0.04097 0.8511 0.6984

RandomForest 0.0632 0.021 0.7699 0.6541
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Table 5. TP full spectrum prediction results.

Model Preprocessing Regression Model RMSE MAE R2 Predicted

MSC

Linear 0.0055 0.0042 0.824 0.8513
SVR 0.0141 0.0151 0.436 0.8718
PLS 0.0045 0.0033 0.8769 0.2256

RandomForest 0.0548 0.0012 0.9008 0.7795

SNV

Linear 0.0055 0.0041 0.8343 0.8385
SVR 0.0045 0.0152 0.4361 0.8718
PLS 0.0055 0.0034 0.8768 0.8410

RandomForest 0.0632 0.0018 0.8051 0.8049

MMS

Linear 0.0032 0.0029 0.9216 0.7713
SVR 0.0141 0.0152 0.4361 0.8718
PLS 0.0045 0.0029 0.8782 0.7754

RandomForest 0.0055 0.0003 0.9981 0.7641

WAVE

Linear 0.0045 0.0321 0.9012 0.6872
SVR 0.0141 0.0151 0.4361 0.5718
PLS 0.0042 0.0029 0.8828 0.7067

RandomForest 0.0041 0.0002 0.9938 0.8631

MSC+SNV

Linear 0.0051 0.0041 0.8291 0.8533
SVR 0.0141 0.0151 0.4362 0.8718
PLS 0.0044 0.0039 0.8727 0.8369

RandomForest 0.0041 0.0012 0.8871 0.8949

SNV+MSC

Linear 0.0050 0.0041 0.8392 0.7405
SVR 0.0141 0.0152 0.4362 0.8718
PLS 0.0044 0.0034 0.8769 0.8410

RandomForest 0.0057 0.0017 0.7964 0.7749

Table 6. TN full spectrum prediction results.

Model Preprocessing Regression Model RMSE MAE R2 Predicted

MSC

Linear 0.2755 0.0698 0.8721 0.7200
SVR 0.0990 0.0838 0.8323 0.8838
PLS 0.0755 0.0571 0.9021 0.2605

RandomForest 0.0671 0.0224 0.9228 0.8771

SNV

Linear 0.0849 0.0682 0.8766 0.7819
SVR 0.0990 0.0834 0.8332 0.8648
PLS 0.0742 0.0561 0.9055 0.7024

RandomForest 0.0949 0.0285 0.8241 0.7990

MMS

Linear 0.0600 0.0518 0.9371 0.7924
SVR 0.0949 0.0951 0.8432 0.7671
PLS 0.0742 0.0496 0.9057 0.9210

RandomForest 0.0084 0.0053 0.9981 0.8871

WAVE

Linear 0.0686 0.0541 0.9192 0.5748
SVR 0.0735 0.0638 0.9071 0.7005
PLS 0.0707 0.0564 0.9123 0.7305

RandomForest 0.0063 0.0033 0.9938 0.7862

MSC+SNV

Linear 0.0837 0.0681 0.8731 0.7747
SVR 0.0990 0.0837 0.8324 0.8620
PLS 0.0755 0.0574 0.9024 0.6989

RandomForest 0.0735 0.0185 0.9074 0.7995

SNV+MSC

Linear 0.0837 0.0671 0.8801 0.7833
SVR 0.0985 0.0832 0.8332 0.8638
PLS 0.0742 0.0569 0.9055 0.7024

RandomForest 0.0872 0.0284 0.8709 0.8050
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3.2. Spectrum Dimensionality Reduction

The spectral dimension reduction methods used in this study included SPA, PCA,
and SAA. SPA is one of the commonly used wavelength selection methods, which can select
the shortest collinear wavelength combination. For COD parameter prediction, in this
study, the MSC-RFR analysis model was established with each wavelength group, and the
wavelength combination with the largest determination coefficient was taken to be the
best combination. In this study, a total of 20 characteristic wavelengths were selected
by SPA. The wavelength combination was selected by PCA by extracting the principal
component which contributed the most to the original information and combining the
corresponding principal component load coefficient. In this study, the PCA algorithm was
used to select 15 characteristic wavelengths. SAA is a random combinatorial optimization
algorithm, which considers not only the optimal solution, but also the deteriorating solution
within a certain limit, finds the local optimal solution, and then obtains the global optimal
solution. In this study, SAA was used to select 20 characteristic wavelengths, and the
optimal wavelength combination selected by SPA, PCA, and SAA was used to simplify the
MSC-RFR model. The MSC-SPA-RFR model, MSC-PCA-RFR model, and MSC-SAA-RFR
model were established. The other four water quality parameters were calculated in the
same way, and their specific performance is shown in Table 7.

Table 7. Spectral dimensionality reduction analysis results.

Spectral Dimensionality Reduction Method Predicted MAPE

COD
MSC-SAA-RFR 0.9871 0.0129
MSC-SPA-RFR 0.9412 0.0588
MSC-SPA-RFR 0.9132 0.0868

DO
WAVE-SAA-SVR 0.9291 0.0709
WAVE-SPA-SVR 0.7647 0.2353
WAVE-PCA-SVR 0.9096 0.0904

NH3-N
MSC+SNV-SAA-PLS 0.8746 0.1254
MSC+SNV-SPA-PLS 0.5897 0.4103
MSC+SNV-PCA-PLS 0.5951 0.4049

TP
MSC+SNV-SAA-RFR 0.7230 0.277
MSC+SNV-SPA-RFR 0.8941 0.1059
MSC+SNV-PCA-RFR 0.8000 0.2

TN
MMS-SAA-PLS 0.8871 0.1129
MMS-SPA-PLS 0.8752 0.1248
MMS-PCA-PLS 0.9210 0.079

4. Results and Discussion

Part 3 shows that we were able to establish corresponding preprocessing and full-
spectrum regression modeling methods for the indicators COD, TN, TP, NH3-N, and DO,
as can be seen from Tables 2–6 above. As can be seen from Table 7, for COD, the MSC
method was used to pretreat the hyperspectral reflectance data of reservoir water, and the
MSC-RFR analysis model was established. RMSE, MAE, R2 and MAPE were used to
evaluate the full spectrum analysis model. Then, three different dimensionality reduction
methods were used to reduce the spectral dimension of the reservoir water hyperspectral
reflectance data to establish the MSC-SAA-RFR, MSC-SPA-RFR, and MSC-SPA-RFR analy-
sis models. Comparison of the experimental results showed that the MSC-SAA-RFR model
had a higher R2 value and a lower MAPE value and could better predict the COD content in
water. For DO, the WAVE-SVR full spectrum analysis model was first established, and then
three different dimensionality reduction methods were used to reduce the spectral dimen-
sion of reservoir water hyperspectral reflectance data to establish the WAVE-SAA-SVR,
WAVE-SPA-SVR, and WAVE-PCA-SVR analysis models. The comparative experimental
results showed that the WAVE-SAA-SVR model had a higher R2 value and lower MAPE
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value, which could better predict the DO content in water. For NH3-N, the full spectrum
analysis model of MSC-PLS was first established, and then three different dimensionality
reduction methods were used to reduce the spectral dimension of the reservoir water
hyperspectral reflectance data to establish the MSC+SNV-SAA-PLS, MSC+SNV-SPA-PLS,
MSC+ SNV-PACC-PLS analysis models. The comparison of the three experimental results
showed that the MSC+SNV-SAA- PLS model had a higher R2 value and lower MAPE
value, and could better predict the NH3-N content in water. For TP, the full spectrum
analysis model of MSC-RFR was first established, and then spectral dimension reduction
was performed on the hyperspectral reflectance data of reservoir water by three different
dimensionality reduction methods to establish the MSC+SNV-SAA-RFR, MSC+SNV-SPA-
RFR, and MSC+SNV-PCA-RFR analysis models. Comparing the three experimental results
showed that the MSC+SNV-SPA-RFR model had a higher R2 value and lower MAPE value,
which could better predict the TP content in water. For TN, the full spectrum analysis
model of MMS-PLS was first established, and then three different dimensionality reduction
methods were used to reduce the spectral dimension of the reservoir water hyperspectral re-
flectance data to establish the MMS-SAA-PLS, MMS-SPA-PLS, and MMS-PCA-PLS analysis
models. The comparative experimental results of the three showed that the MMS-PCA-PLS
model had a higher R2 value and lower MAPE value, which could better predict the TP
content in the water body. In addition, we believe that the quality of the evaluation model
was not determined by a single level of R2 and RMSE. Only through the comprehensive
evaluation of R2, RMSE, and MAPE could a more robust water quality parameter analysis
model be obtained.

5. Conclusions

Because the detection indicators of urban river sewage cannot be monitored over a
large area quickly and dynamically, this study used a UAV to collect hyperspectral image
data, which was effective and flexible, with a higher spatial resolution and less medium
interference than satellite collection. Combining machine learning and statistical analysis,
we examined the parameter inversion method for dynamic monitoring of urban inland
water pollution on the basis of UAV hyperspectral imaging technology. At the same time,
we established a set of standardized processes from UAV hyperspectral sampling, ground
spectrum correction, spectral data preprocessing, and modeling. We combined the above-
mentioned models into a unified end-to-end structure. In general, from the perspective of
theoretical significance, this study perfected a set of systematic data collection, physical
and chemical analysis of water samples, spectral preprocessing, and data modeling of
the key indicators of water quality parameters, providing a guideline for subsequent
research. From the perspective of application significance, this method can monitor the
change in urban river water quality in real time which is conducive to the tracking of
pollution sources, and provide a decision-making basis for urban river water environment
management by establishing an early warning system. This will minimize the harm caused
by sewage to people’s lives.

However, this research has some limitations. On the one hand, the data for our study
were collected between 10:00 a.m. and 2:00 p.m. on sunny days, which did not include
monitoring during some extreme bad weather. In the follow-up work, we plan to add
weather and other parameter factors into the model to correct this, further improve the
robustness of the analysis and prepare for all-weather monitoring. On the other hand,
we will conduct experiments in China and other parts of the world to further verify
the effectiveness of the quantitative method of water quality parameter concentration
in this study, and accelerate the construction of and intelligent monitoring system of
water environment.
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Abbreviations
The following abbreviations are used in this manuscript:

COD Chemical Oxygen Demand
DO Dissolved Oxygen
TP Total Phosphorus
TN Total Nitrogen
NH3-N Ammonia Nitrogen
UAV Unmanned Aerial Vehicle
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error
R2 Coefficient of Determination
CNN Convolutional Neural Network
DCGAN Deep Convolutional Generation and Adversarial Network
BNN Bayesian Neural Network
SSC Suspended Sediment Concentration
GRNN Gated Recurrent Neural Network
Chl-a ChlorophylL-A
PCA Principal Component Analysis
SPA Successive Projections Algorithm
SAA Simulated Annealing Algorithm
CIOMP Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
ROI Region of Interest
SNV Standard Normal Variate Correction
MSC Multiplicative Scatter Correction
MMS Min-Max Standardization
WAVE Wavelet Transform
LR LinearRegression
SVR Support Vector Regression
PLS Partial Least Squares Regression
RFR Random Forest Regression
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