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Abstract: Harmful algal blooms (HABs) have been deteriorating global water bodies, and the ac-
curate prediction of algal dynamics using the modelling method is a challenging research area.
High-frequency monitoring and deep learning technology have opened up new horizons for HAB
forecasting. However, the non-stationary and stochastic process behind algal dynamics monitoring
largely limits the prediction performance and the early warning of algal booms. Through an analysis
of the published literature, we found that decomposition methods are widely used in time-series
analysis for hydrological processes. Predictions of ecological indicators have received less attention
due to their inherent fluctuations. This study explores and demonstrates the predictive enhancement
for chlorophyll fluorescence data based on the coupling of three decomposition algorithms with
conventional deep learning models: the convolutional neural network (CNN) and long short-term
memory (LSTM). We found that the decomposition algorithms can successfully capture the time-series
patterns of chlorophyll fluorescence concentrations. The results indicate that decomposition-based
models can enhance the accuracy of single models in predicting chlorophyll concentrations in terms
of the improvement percentages in RMSE (with increases ranging from 25.7% to 71.3%), MAE (rang-
ing from 28.3% to 75.7%), and R2 values (increasing ranging from 14.8% to 34.8%). In addition,
the comparison experiment for different decomposition methods might suggest the superiority of
singular spectral analysis in hourly predictive tasks of chlorophyll fluorescence over the wavelet
transform and empirical mode decomposition models. Overall, while decomposition methods come
with their respective strengths and weaknesses, they are undeniably efficient in combination with
deep learning models in dealing with the high-frequency monitoring of chlorophyll fluorescence
data. We also suggest that model developers pay more attention to online data preprocessing and
conduct comparative analyses to determine the best model combinations for forecasting algal blooms
and water management.

Keywords: chlorophyll fluorescence; deep learning; online monitoring; time-series decomposition;
Dianchi Lake

1. Introduction

Harmful algal blooms (HABs) have become a worldwide severe environmental prob-
lem by releasing excess toxins, which can have detrimental effects on aquatic ecosystems
and endanger human health [1]. The timely and high-accuracy prediction of HAB occur-
rence and intensity is essential in controlling their detrimental environmental and public
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health effects [2]. Continuous and high-frequency monitoring technologies are widely
applied in HAB monitoring. For instance, flow cytometry analysis [3], hyperspectral im-
agery [4] and unmanned aerial vehicles [5] could monitor the real-time distribution of HABs.
In particular, chlorophyll-a (Chla) is a crucial parameter for characterizing phytoplankton
communities, making it a commonly employed diagnostic pigment in measurements [2].
Chlorophyll fluorescence sensors can provide fast, cost-effective, and highly temporal revo-
lution data to train the advanced models for HAB predictions [6]. However, high-resolution
time-series data often exhibit stochastic non-stationarity distributions, owing to environ-
mental drivers interactively influencing the formation of HABs [7]. Therefore, additional
modelling efforts are required to overcome the challenges associated with HAB forecasting.

In recent years, data-driven models have gained wider usage for forecasting algal
blooms in inland water [8]. Machine learning algorithms, including neural networks [9],
evolutionary computation [10], support vector machines (SVMs) [11], random forests [12],
and gradient boost machines [13], are well-known to be helpful in predicting HABs. Con-
sequently, the non-linearity and intermittency process behind the algal monitoring data
hinders the performance of machine learning in the accurate forecasting of early-stage
blooms [14]. With evolving artificial intelligence, deep learning (DL) models have received
increasing attention in HAB forecasts [15]. For instance, the independent recurrent neu-
ral network (RNN) [16], long short-term memory (LSTM) [17], and gated recurrent unit
(GRU) [18] have been increasingly used to forecast HABs [19,20]. Some researchers have
also demonstrated the effectiveness of image-based convolutional neural networks (CNNs)
in modelling HABs [21,22]. Nonetheless, deep learning requires large-scale monitoring to
train models. In fact, the online monitoring of HAB sensors often contains abnormal values,
peak values, and error components with irregular random movements, causing inherently
non-linear, complex, and non-stationary algal sequence time series [23]. Therefore, pure
data-driven methodologies prove unsatisfactory in addressing the high variations in algal
dynamics [24]. In this case, choosing an appropriate data preprocessing procedure might
be essential to increase the forecasting accuracy of the predictive algal parameters [25,26].

The decomposition-based frameworks have been demonstrated to extract the dynamic
features of time-series data and enhance models’ predictive performance in an increasing
number of studies [27]. In contrast to conventional time-series models, the decomposition-
based frameworks divide the time series into components of varying frequencies, predicting
each component individually with deep learning models, and summing them to obtain
the predicted results. From the perspectives of decomposition algorithms, the wavelet
transform (WT) and empirical mode decomposition (EMD) methods are two of the most
commonly used decomposition methods [28]. For example, Liu et al. [26] proposed a
hybrid prediction model combining WT and LSTM, which decomposes the original algal
parameters series into multiple sub-series using wavelet transform, and then employs
LSTM on the sub-series components. Zhu et al. [29] reported the hybrid EMD-LSTM with
the attention mechanism model and indicated that empirical mode decomposition (EMD)
can effectively enhance the smoothness of the time series and increase predictive accuracy.
In addition, Luo et al. [30] develop an improved empirical mode decomposition model
(EEMD)–LSTM prediction model to predict water quality. Apaydin et al. [31] investigate the
singular spectral analysis (SSA) with LSTM to increase the monthly streamflow prediction
accuracy. Following that, integrated SSA and genetic-based models have been developed
for river flow forecasting and showed improved accuracy [32]. To date, no reported study
has compared the difference in employing these above-mentioned decomposition-based
methods in dealing with high-frequency water-quality data, especially for chlorophyll
fluorescence monitoring.

In this study, we evaluate and compare the performance of different hybrid approaches
that couple WT, EEMD, and SSA decomposition for extracting the sub-series component
of Chla data, along with the deep learning approaches for predicting HABs. The Chla is
obtained from a substantial volume of in situ multi-sensor monitoring data in Lake Dianchi,
China. Specifically, the goals of this paper are as follows: (1) to obtain better prediction
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performance of the Chla fluorescence by combining the WT, EEMD, and SSA decomposition
approaches; (2) to develop decomposition-based hybrid models and evaluate the prediction
effectiveness of the models; and (3) to further compare the prediction performance of
different decomposition approaches for chlorophyll fluorescence forecasting. This study
demonstrates that the decomposition-based Chla prediction methods could function as a
robust and trustworthy tool for forecasting HABs in water management.

2. Materials and Methods
2.1. Study Sites and Data

The study area is located in Lake Danchi (24◦40′–25◦02′ N, 102◦36′–102◦47′ E), Kun-
ming, Yunnan, in southwest China (Figure 1). Lake Danchi is a famous plateau freshwater
lake with a surface area of 330 km2, and the average depth measures 4.4 m, with a maximum
water depth reaching 6.7 m and a watershed area spanning 2920 km2 [33]. Additionally, an
artificial causeway, Haigeng Dam, divides the lake into two parts—Caohai in the north and
Waihai in the south—covering 286.78 km2 [34]. Over recent decades, this eutrophic lake
has frequently experienced intense HABs and has gradually developed to have some of the
heaviest cyanobacterial blooms in Chinese lakes [35]. Due to the low water flow and high
pollutant concentration, cyanobacterial blooms are a frequent occurrence in Caohai, which
is located closer to the urban area. This study collected the average values of the Chla data
of the Duanqiao and Caohai center sampling sites through continuous monitoring every
four hours from 1 February 2019 to 8 January 2021 (Table 1). The two online monitoring
sites in Caohai, Dianchi Lake, belong to the sections managed by Kunming Municipal
Environmental Monitoring Center, Yunnan, China. The first 50% of the sequence (February
2019–January 2020) was used to train the hybrid models. The remaining data (January
2020–January 2021) were eventually used to test the model performance.
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Figure 1. Overview of the study area in Caohai, Lake Dianchi, and the distribution of sampling
sites. (a) Location of Lake Dianchi in Yunnan, Southwest China. (b) Distribution of Lake Dianchi
and riverway networks in Lake Dianchi Basin. (c) The red pentagon marks the location of the two
sampling sites inside Caohai of Lake Dianchi.
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Table 1. Overview of online monitoring datasets for chlorophyll-a at two monitoring sites.

Location Sample Size Mean Standard Deviation Min Median Max

Duanqiao 4081 8.46 6.19 0.32 6.95 55
Caohai
Center 4081 14.41 9.44 0.49 13 60

2.2. Decomposition-Based Deep Learning Model Development

In this section, we present the multi-decomposition architecture (Section 2.2.1) and
introduce the wavelet transformation analysis (Section 2.2.2), ensemble empirical mode
decomposition (Section 2.2.3), and singular spectral analysis (Section 2.2.4). We further
illustrate convolutional neural networks (Section 2.2.5) and LSTM (Section 2.2.6).

2.2.1. The Multi-Decomposition Architecture

This study established and compared the performance of three decomposition-based
models in forecasting the Chla in the Caohai center and Duanqiao sites of Lake Dianchi. A
technical flowchart of this study is presented in Figure 2. Firstly, the original series data
of the Chla were decomposed into sub-series based on the multi-decomposition process.
Then, the sub-sequences were input into deep learning models to be trained and validated
one by one. Finally, all the individual forecasted sub-series were summed to derive the
predicted results of the sequence of Chla.
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Figure 2. Schematic flow chart of the decomposition-based hybrid deep learning models.

2.2.2. Wavelet Transformation Analysis

The wavelet transformation analysis method (WT) is a useful mathematical tool of
signal analysis theory in physics and engineering [36,37]. By decomposing the original
signal into several sub-components at different time frequency spaces, the WT can analyze
non-stationary data and effectively extract time frequency features of the original time
series simultaneously. The sub-sequences are typically derived from a template referred
to as the “mother wavelet”, and these deconstructed wavelets are scaled and translated
based on the mother wavelet. The advantage of wavelet analysis lies in its capacity for
the adaptable selection of the mother wavelet to match the specific characteristics of the
investigated time series. However, determining scale and translation parameters for every
possible position necessitates significant computational effort when utilizing a continuous
wavelet transformation (CWT).

In contrast, the discrete wavelet transformation (DWT) substantially alleviates the
computational complexities associated with wavelet transformations by adopting dyadic
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scales and positions, typically based on powers of two [26]. The DWT of a time series, f (t),
is typically carried out as follows:

W f (a, b) = ∑a,b∈Z f (t)Ψ∗a,b(t) (1)

Ψ∗a,b(t) = m0
− a

2 Ψ
(
m0
−at− n0b

)
, m0 > 1, n0 > 0 (2)

where the integers a and b represent the decomposition level and translation factor, re-
spectively; the constant m0 is decomposition scale factor; the constant n0 is the position
factor of translation; Ψ∗a,b(t) is the wavelet function; Ψ(t) is the mother wavelet that can
be set as the “Daubechies”, “Haar”, and “Morlet” wavelets; and W f (a, b) are the DWT
coefficients. The discrete wavelet transformation (DWT) employs high-pass and low-pass
filters to decompose the original time series, f (t), into different resolution levels, yielding a
low-frequency approximation sub-sequence (An) and a high-frequency sub-sequence (D1,
D2, . . ., Dn), and finally obtaining detailed coefficients and approximation sub-time series.

2.2.3. Ensemble Empirical Mode Decomposition (EEMD)

Empirical mode decomposition (EMD) is a noise-reduction, signal-adaptive decom-
position algorithm for non-linear and non-stationary data [38]. The original time series
can be decomposed into finite modal components and intrinsic mode functions (IMFs)
that contain only a single instantaneous frequency, and residual (Res) [39]. Nonetheless,
the noise of signal may result in mode aliasing within the IMFs, consequently generating
inaccurate time frequency distributions and diminishing the interpretability of the IMFs. To
mitigate the adverse impact of noise during the decomposition process, Zhaohua and Nor-
den (2009) [40] propose ensemble empirical mode decomposition (EEMD), a data analysis
approach that incorporates white noise into the original time series. The detailed process of
EEMD is as follows:

Given an original series, denoted as f (t), the detailed process of EEMD is described below:

(1) Add random white noise to the original time series, ni(t) ∼
(
0, σ2), where σ is known.

f i(t) = f (t) + ni(t) (3)

where i denotes the count of white noise additions.
(2) The EMD algorithm is employed to decompose the composited sequences, f i(t), with

noise into IMFsi
j(t), (j = 1, 2, . . ., K), and the residual, Resi(t).

f i(t) = ∑K
j=1 IMFsi

j(t) + Resi(t) (4)

where IMFsi
j(t) indicates the j-th IMF component of derived from the decomposition

of the i-th mixed original series.
(3) Repeat the steps described above N times, each time using different Gaussian white

noise, and determine the corresponding IMFs.
(4) Repeat the aforementioned procedure N times, introducing different Gaussian white

noise in each iteration, and obtain each corresponding IMF. Compute the average
of the sum of the corresponding decomposed IMFs over N iterations to mitigate the
impact of the introduced white noise on the original signal. The j-th IMF component
is as follows:

avr
(

f j(t)
)
=

1
N ∑K

j=1 IMFsi
j(t) (5)

(5) Finally, the original series, f (t), are decomposed by EEMD models, which can be
expressed as follows:

f (t) = ∑K
j=1 avr

(
f j(t)

)
+ Resi(t)=

1
N ∑K

j=1 IMFsi
j(t) + Resi(t) (6)

where i = 1, 2, . . ., N.
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2.2.4. Singular Spectral Analysis

Singular spectral analysis (SSA) is a non-parametric method for estimating the spectral
characteristics of time series data, aimed at discerning distinct patterns of variability [41].
The fundamental framework of SSA encompasses data embedding, singular value decom-
position (SVD), eigentriple grouping, and diagonal averaging.

Embedding can be viewed as a transformation that converts a one-dimensional time
series into a trajectory matrix using the selected window length (L), upon which SVD is
performed. The window length is the time step by which the data is further divided to
extract components. The final product of singular value decomposition is feature triples, the
count of which matches the chosen window length. Consider YN = (y1, y2, . . . , yN), which
is not a series with all zeros; let “X” be the trajectory matrix, which can be expressed as

X =


y1 y2 y3 · · · yK
y2 y3 y4 · · · yK+1
y3 y4 y5 · · · yK+2
...

...
...

. . .
...

yL yL+1 yL+2 · · · yN

 (7)

where K = N − L + 1. Note that the resulting trajectory matrix is a Hankel matrix, implying
that all elements along the diagonal, where i + j is a constant, are equivalent.

Secondly, singular value decomposition is applied to the trajectory matrix, X. Let
S = XXT, λ1, λ2, . . ., λL is the eigenvalue of S sorted in descending order (λ1�. . .λL�0),
and U1, · · ·UL are the standard orthonormal vectors of the matrix S corresponding to
these eigenvalues. Let d = rank(X) = max{i, λi > 0} (in practical sequences, usually d = L*,
L* = min(L, K)). Then, the SVD of the trajectory matrix can be written as X = X1 + . . . + Xd,
where Xi =

√
δiUiVi

T .
In the grouping step, we can choose to analyze the periodogram, right eigenvector

scatter plot, or eigenvalue function plot to distinguish between noise and signal. In the
process of reconstructing the signal, there are no specific rules for the way of grouping.
The set of subscripts {1, . . ., d} can be divided into m disjoint subsets according to the
properties of the time series to be reconstructed, i.e., I1, I2, . . ., Im. If I = {i1, . . ., ip}, then
the composite matrix corresponds to X = XI1 + XI2 + . . . + XIM. The final step of SSA
involves transforming each resulting matrix from the grouping into a new sequence of
length N. Let T be a L× K matrix with elements tij, 1 ≤ i ≤ L, 1 ≤ j ≤ K. Set L* = min {L, K},
K* = max {L, K}, and N = L + K − 1. Let tij

* = tij if L < K, and tij
* = tji otherwise. Through the

process of diagonal averaging, matrix T is transformed into a series t1, t2, . . ., tN using the
following formula:

tk =



1
k

k
∑

m=1
t∗m,k−m+1, 1 ≤ k < L∗

1
L∗

L∗

∑
m=1

t∗m,k−m+1, L∗ ≤ k < K∗

1
N−k+1

N−K∗+1
∑

m=k−K∗+1
t∗m,k−m+1, K∗ ≤ k < N

(8)

A single RCt sub-sequence of length N can be obtained according to the formula.
The new X component is the sum of d RCt components and can be expressed as
X∗ = RC1 + RC2 + . . . + RCd.

2.2.5. Convolutional Neural Network

One-dimensional convolution (1D-CNN) can be executed by employing a filter that is
specialized for handling sequential data, allowing for the extraction of sequence features as
the network slides over the data using convolution kernels. A standard 1D-CNN typically
comprises an input layer, multiple interleaved convolutional and pooling layers, a fully
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connected layer, and an output layer, as illustrated in Figure 3. The convolutional and
pooling layers are distinctive components of the convolutional neural network. With a
single-layer 1D-CNN, the output vector Y :

[
y1, · · · , yj, · · · , y m−n+1

t

]
is obtained as follows:

yj =


b
∑

i=1
Ij+i−1ki, j = 1

b
∑

i=1
Ij+i+τ−2ki, 1 < j ≤ a−b+1

t

(9)

where I:[I1, . . ., Ii, . . ., Ia] is an input vector with the size of a, t is the stride, and b stands
for the size of the convolution kernel, k. After y1 is obtained according Equation (3), the
calculation window slides back to It+1 to calculate. This process is repeated until there are
no remaining data from the input.
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2.2.6. Long Short-Term Memory

The LSTM network is variant of a recurrent neural network (RNN) model and is
improved on the basis of recurrent neural networks to make it have a long short-term
memory function. The LSTM effectively captures long-range dependencies, addressing the
problems of gradients exploding and vanishing during backpropagation that are common
in traditional RNNs [17]. Each LSTM block consists of a memory cell and three parts: the
input gate, forget gate, and output gate (Figure 4). The manner in which information from
the previous layer is passed to the current layer is determined by each gate selectively. The
memory cell acts as an accumulator of state information, preserving the hidden details of
the time series. This allows the LSTM to leverage long-term historical context. The specific
content is as follows: In LSTM, the forgetting gate first determines the retention of the state
at the previous moment, and the calculation formula is

ft = σ
(

W f ·[ht−1, xt] + b f

)
(10)
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In this formula, σ is the activation function Sigmoid, W f represents the weights of
forgotten gate weights, and b f represents the bias of the forget gate. The Sigmoid function
maps the input and the state of the previous moment to a value from 0 to 1. The value
of ft is 1 to indicate full retention and 0 to signify complete discarding. The input gate
determines the extent to which the current network input, denoted as xt, is incorporated
into the cell state Ct.

it = σ (Wi·[ht−1, xt] + bi) (11)

C̃t = tanh(Wc·[ht−1, xt] + bc) (12)

Ct = ft × Ct−1 + it × C̃t (13)

Wi and bi are the weights and bias of the input gate; Wc and bc represent the weight
and bias when constructing the candidate vector, determining the proportion of forgetting
by the sigmoid function. Ct of Equation (13) implements the cell state update at moment t.
The output gate needs to determine the output value with the following formula:

ot = σ (Wo·[ht−1, xt] + bo) (14)

ht = ot·tanh(Ct) (15)

where Wo and bo are the weights and bias of the output gate. The current state, Ct, is
multiplied by the output, ot, of the activation function layer after tanh to obtain the output,
ht, at the current moment.

2.3. Model Implementation

In this study, decomposition-based hybrid models are employed for predicting the
concentration of Chla in Dianchi Lake. To appropriately train the deep learning predicting
models, we split the modeling procedure into training and testing. In the training part,
the first 50% of the decomposed sequence (February 2019–January 2020) are input to build
the network. In the testing part, the remaining data (January 2020–January 2021) are
accustomed to estimate the model performance. Based on the training data, to prevent
the influence of varying scales on parameter learning, Chla concentrations are normalized
to a range from 0 to 1 using min–max normalization. Furthermore, we utilize the mean
square error (MSE) as the loss function and implement the adaptive momentum estimation
method (Adam) to optimize the weights. We implemented our deep learning network on
the Keras development platform. In this study, the Daubechies-4 (db4) mother wavelet was
utilized to perform a three-level decomposition of the original time series, a choice popular
for its widespread acceptance and efficient performance [26]. The ensemble number of the
EEMD model was set to 100, and the standard deviation of Gaussian white noise, ni(t), was
0.05 [30]. We set the window length of the SSA to 15 according to the empirical evaluation
of component contributions in the experiment. The WT, EEMD, and SSA were carried
out using the MATLAB R2019b software. For the purpose of conducting an equitable
comparative analysis across various decomposition methodologies, the parameters for the
CNN and LSTM are presented in Table 2.
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Table 2. The hyper-parameters of the CNN and LSTM models.

Parameter Name CNN LSTM

Time Lag 10 10
Hidden Size 16 16

Learning Rate 0.001 0.002
Epoch 100 50

Batch Size 32 32
Activation Function relu relu

Kernel_Size 3 /
Input_size 1 1

2.4. Evaluation Metrics

To comprehensively measure the prediction performance of the decomposed-base
hybrid deep learning models, three different criteria are used, including the RMSE (root
mean square error), mean absolute error (MAE), and the coefficient of determination (R2).
The formulas for calculating these indicators are as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (17)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (18)

where n represents the number of observed data in the test data; yi and ŷi denote the
observed algal parameter values and predicted algal parameter values, respectively. Also,
y displays the mean observed values.

Moreover, the improvement percentage is introduced to facilitate quantitative compar-
isons between the decomposition-base hybrid deep learning model and single models. The
improvement percentage for the RMSE, MAE, and R2 are calculated as follows:

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100% (19)

PMAE =
MAE1 −MAE2

MAE1
× 100% (20)

PR2 =
R2

1 − R2
2

R2
1

× 100% (21)

where RMSE1 and MAE1 denote the errors of the single models, and RMSE2 and MAE2
represent the errors of the decomposition-based models. R2

1 and R2
2 denote the errors of the

decomposition-based and single models, respectively. A substantial positive value indicates
superior accuracy of the decomposition-based models compared to the single models.

3. Results and Discussion

Firstly, we present the decomposition results of the WT, EEMD, and SSA models.
Secondly, we present and discuss the Chla concentration forecasting enhancement by
the hybrid WT-CNN, EEMD-CNN, SSA-CNN, WT-LSTM, EEMD-LSTM, and SSA-LSTM
models compared to the independent CNN and LSTM models. Then, we compare the
performance among those hybrid deep learning models. Finally, we also assess the strengths
and limitations of these decomposition techniques in algal parameter prediction.
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3.1. The Process of Different Decomposition-Based Algorithms for Chlorophyll Fluorescence Data

Due to the intricate non-stationary nature of algal parameter series, the appropriate
decomposition of the original data plays an important role in improving forecasting accu-
racy. After data preprocessing, the Chla concentration algal parameters were decomposed
using the WT, EEMD, and SSA methods. The decomposition results of the algal parameters
at the Duanqiao and Caohai center sites are shown in Figure 5. In detail, the wavelet
decomposition of the hourly original chlorophyll series effectively generated an approxima-
tion low-frequency coefficient (A3) and three detailed high-frequency coefficients (D1–D3) at
the Duanqiao and Caohai center sites, as depicted in Figure 5a,b. Compared to the original
time series, the sub-series A3 extracted the hourly algal series trend and major peaks, while
sub-series levels D1 to D3 captured more subtle and fluctuation components simultaneously.
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The EEMD results of the algal parameters are shown in Figure 5c,d. The hourly original
chlorophyll series were decomposed into four volatility characteristic IMFs with different
frequencies and one residual component. Figure 5c,d show IMFs from high frequency to
low frequency, the residue, and the original algal series sequentially from top to bottom.
Intuitively, it is clear that the EEMD captures the trend of chlorophyll series and volatility
characteristics exactly. Furthermore, the SSA decomposed the algal series into 15 compo-
nents (Figure 5e,f) with a window length setting to 15. The RC1–RC6 components, with a
contribution rate of 97.50%, were reconstructed into the main trend terms. The RC7–RC13
sub-series was chosen as the fluctuation component, and RC14–RC15 was considered as
the noise at the Duanqiao site. In comparison, the top six sub-series (i.e., RC1–RC6) with a
contribution rate of 97.90% were chosen as the main trend components of algal parameters,
and the remaining RC7–RC11 and RC11–RC15 components were considered as the volatility
characteristics and noise into the subsequent model at the Caohai center site. The series of
algal parameters exhibited more prominent trends after reconstruction, suggesting that SSA
can effectively extract the trend, volatility, and noise components, capturing the primary
features of the series.

3.2. Evaluating the Predictive Performance of Deep Learning Based on Multi-
Decomposition Process

In this section, the CNN and LSTM predict each sub-series obtained through the multi-
decomposition methods. We procure the final algal series’ predicted values by summing
up the forecasting results of all the sub-components. To adequately assess the effectiveness
of the hybrid deep learning models, we employ hybrid CNN and LSTM models based on
multi-decomposition, including WT-CNN, EEMD-CNN, SSA-CNN, WT-LSTM, EEMD-
LSTM, and SSA-LSTM. The detailed performance curves of the prediction and observed
values in the train and test datasets are shown in Figure 6. From Figure 6, the fitting curve
obtained by the SSA-based hybrid models (orange lines) closely approximates the observed
values (blue lines), especially pronounced at peak locations. Therefore, it implies that the
performance of SSA-based hybrid models are better than the performance of WT-based
and EEMD-based hybrid models in algal sequence prediction. While individual CNN and
LSTM models demonstrate the ability to forecast the Chla trends, significant errors exist
between observed and predicted values. These models demonstrate inadequate prediction
accuracy in capturing details and sharp peaks. The decomposition-based hybrid models
can more accurately predict the detailed components and significantly enhance the model
performance. All of this evidence convincingly indicates that the decomposition-based
hybrid methods can reliably predict algal dynamics at different sampling sites.
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Figure 6. Predicted and observed time series of Chla concentrations by the decomposition-based
hybrid deep learning models and independent CNN and LSTM approaches in the Lake Dianchi at
(a,b) Caohai Center and (c,d) Duanqiao.

The hybrid decomposition-based deep learning framework and commonly employed
time series individual forecasting methods (CNN and LSTM) are also cross-compared
based on the Caohai center and Duanqiao sites of Lake Dianchi (Figure 7). For the CNN
model, the best predictions were achieved by the SSA-based hybrid model, resulting in
highly satisfactory R2 values (R2 = 0.9652 and 0.9518), which represented a 32.16% increase
for the Caohai center site and a 26.67% increase for the Duanqiao site (Figure 7a,b). When
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compared to the CNN, the prediction accuracy of WT-CNN and EEMD-CNN, as measured
based on the evaluation indicators of R2, showed improvements of 28.02%, 24.99%, 19.18%,
and 14.8% for the two sites, respectively. Furthermore, as for the LSTM approach, which is
consistent with the CNN method, SSA-LSTM outperforms the single LSTM in terms of its
R2 statistic (0. 978 vs. 0.738 in Caohai center, and 0.975 vs. 0. 723 in Duanqiao, respectively).
Additionally, although the WT-LSTM models (R2 = 0.955, 0.944) perform better than EEMD-
LSTM (R2 = 0.857, 0.881) at the two sites, they still exhibit a slightly lower performance
compared to the SSA-LSTM approach. As for the CNN and LSTM approaches, all models
demonstrated the lowest performance among the four cases examined (Figure 7), showing
the limitation of single deep learning models in handling complicated and non-stationary
forecasting tasks of algal dynamics.
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Figure 7. Scatter diagrams of the Chla with one-step prediction lead times at the Caohai center and
Duanqiao stations in Lake Dianchi. Red dots represent the single models, green dots represent the
hybrid EEMD-based models, orange dots represent the hybrid WT-based models, and blue dots
represent the hybrid SSA-based models. (a) Comparison of single model and hybrid CNN-based
models at Caohai center station. (b) Comparison of single model and hybrid CNN-based models at
Duanqiao station. (c) Comparison of single model and hybrid LSTM-based models at Caohai center
station. (d) Comparison of single model and hybrid CNN-based models at Duanqiao station.
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Cross-comparisons between hybrid-based CNN or LSTM and single models show
that the most significant improvement in forecasting HAB dynamics is achieved through
decomposition-based hybrid approaches. These outcomes show that the hybrid deep
learning algorithms based on multi-decomposition can decompose non-stationary time
series into sub-sequences and better detect the main trend, volatility, and noise components
of algal dynamics. In addition, sub-series are fed to the CNN and LSTM models one by one
to improve HAB forecasting further. The hybrid models based on decomposition exhibit
the ability to uncover the peak and extreme values of algal parameters, indicating the
robust resilience and effective signal-smoothing capability of the preprocessing approach.
This is in line with the previous study by Liu et al. [26], who demonstrated that the
decomposition-based hybrid WT-LSTM model could enhance the fitting of abrupt or
extreme data points and improve HAB prediction performance. Likewise, Luo et al. [30]
developed a hybrid EEMD-LSTM model for predicting water quality, and the results
demonstrated that the proposed model outperformed the individual LSTM model in
various evaluation indicators. Cui et al. [42] also discovered that integrating SSA with a
lightweight gradient-boosting machine in a hybrid model led to high-accuracy, real-time
predictions of urban runoff. Interestingly, the advantages of hybrid models integrating
LSTM over CNN-based models become apparent, indicating the benefits of automatically
capturing long-temporal information through LSTM recurrent chains.

3.3. Comparing the Effectiveness of Different Decomposition Approaches in Forecasting HABs

To compare the prediction performance of different decomposition approaches, we
combine common decomposition approaches—namely WT, EEMD, and SSA—with the
CNN and LSTM forecasting techniques to forecast the algal series at two stations. The
results are presented in Tables 3 and 4. Firstly, when combined with the SSA decompo-
sition, the hybrid-based LSTM and CNN prediction methods reach the lowest RMSE
(1.518 µg/L, 1.927 µg/L, 1.092 µg/L and 1.513 µg/L) and MAE values (0.855 µg/L,
1.361 µg/L, 0.702 µg/L, 1.025 µg/L) and the biggest R2 (0.978, 0.965, 0.975, 0.952) at Cao-
hai center and Duanqiao station, respectively. This verifies the superiority of the SSA
decomposition method over other WT and EEMD methods. Secondly, the decomposi-
tion methods demonstrate enhanced effectiveness when combined with a more precise
forecasting technique. In particular, LSTM can achieve significantly improved accuracy
percentages through decomposition compared to the CNN. Specifically, WT decomposition
increases the LSTM improvement percentages of the RMSE from 5.282 to 2.198 by 58.4%,
the MAE from 3.525 to 1.405 by 60.1%, and the R2 from 0.738 to 0.955 by 29.3%; the CNN
improvement percentages of RMSE increase from 5.364 to 2.635 by 50.9%, MAE from 3.538
to 1.742 by 50.8%, and the R2 from 0.730 to 0.935 by 28%. Similarly, the SSA decomposition
method offers a greater performance enhancement for LSTM than the CNN model, while
EEMD decomposition yields similar results for both models. Thirdly, employing the same
WT and SSA decomposition techniques, LSTM typically outperforms the CNN regard-
ing prediction accuracy, while for EEMD decomposition, LSTM is not always superior to
the CNN.
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Table 3. The improvement percentages in the accuracy of the decomposition-based CNN and LSTM
methods compared with single CNN and LSTM approaches for Chla (chlorophyll-a) prediction in
Caohai center station (µg/L). (+∆ represents the improvement percentages in RMSE and MAE for
decomposition-based models compared to single models.)

Models
Training Set Test Set

RMSE (µg/L) MAE (µg/L) R2 RMSE (µg/L) MAE (µg/L) R2

LSTM 3.435 2.324 0.813 5.282 3.525 0.738
EEMD-
LSTM 2.143 (+∆37.6%) 1.475 (+∆36.6%) 0.927 (+∆14.0%) 3.912 (+∆26.0%) 2.383 (+∆32.4%) 0.857 (+∆16.0%)

WT-LSTM 1.255 (+∆63.5%) 0.888 (+∆61.8%) 0.975 (+∆19.9%) 2.198 (+∆58.4%) 1.405 (+∆60.1%) 0.955 (+∆29.3%)
SSA-LSTM 0.740 (+∆78.5%) 0.491 (+∆78.9%) 0.991 (+∆21.9%) 1.518 (+∆71.3%) 0.855 (+∆75.7%) 0.978 (+∆32.5%)

CNN 3.405 2.323 0.816 5.364 3.538 0.730
EEMD-
CNN 2.122 (+∆37.7%) 1.477 (+∆36.4%) 0.929 (+∆13.8%) 3.719 (+∆30.7%) 2.461 (+∆30.4%) 0.870 (+∆19.2%)

WT-CNN 1.499 (+∆56.0%) 1.035 (+∆55.4%) 0.964 (+∆18.1%) 2.635 (+∆50.9%) 1.742 (+∆50.8%) 0.935 (+∆28.0%)
SSA-CNN 1.266 (+∆62.8%) 0.900 (+∆61.3%) 0.975 (+∆19.4%) 1.927 (+∆64.1%) 1.361 (+∆61.5%) 0.965 (+∆32.2%)

Table 4. The improvement percentages in the accuracy of the decomposition-based CNN and LSTM
methods compared with single CNN and LSTM approaches for Chla (chlorophyll-a) prediction
in Duanqiao station (µg/L). (+∆ represents the improvement percentages in RMSE and MAE for
decomposition-based models compared to single models.)

Models
Training Set Test Set

RMSE (µg/L) MAE (µg/L) R2 RMSE (µg/L) MAE (µg/L) R2

LSTM 2.381 1.588 0.739 3.624 2.295 0.723
EEMD-
LSTM 1.281 (+∆46.2%) 0.913 (+∆42.5%) 0.924 (+∆25.1%) 2.378 (+∆34.4%) 1.452 (+∆36.7%) 0.881 (+∆21.8%)

WT-LSTM 0.855 (+∆64.1%) 0.595 (+∆62.6%) 0.966 (+∆30.8%) 1.633 (+∆54.9%) 0.942 (+∆58.9%) 0.944 (+∆30.5%)
SSA-LSTM 0.650 (+∆72.7%) 0.543 (+∆65.8%) 0.981 (+∆32.7%) 1.092 (+∆69.9%) 0.702 (+∆69.4%) 0.975 (+∆34.8%)

CNN 2.444 1.680 0.725 3.436 2.251 0.751
EEMD-
CNN 1.281 (+∆47.6%) 0.931 (+∆44.6%) 0.924 (+∆27.6%) 2.554 (+∆25.7%) 1.614 (+∆28.3%) 0.863 (+∆14.8%)

WT-CNN 1.309 (+∆46.4%) 1.116 (+∆33.6%) 0.921 (+∆27.1%) 1.699 (+∆50.6%) 1.284 (+∆43.0%) 0.939 (+∆25.0%)
SSA-CNN 0.858 (+∆64.9%) 0.691 (+∆58.8%) 0.966 (+∆33.3%) 1.513 (+∆56.0%) 1.025 (+∆54.5%) 0.952 (+∆26.7%)

Table 5 provides a concise comparison of the WT, EEMD, and SSA decomposition
methods employed in this study. It is essential to note that each approach possesses its
distinct strengths and limitations. Specifically, WT is commonly employed as a preprocess-
ing method for predicting water levels [43], algal blooms [26], precipitation [44], rainfall
runoff [45], and river flow [46]. WT is well suited for handling signals with a constant
frequency and near periodicity, but requires presetting the basis function and their order,
significantly impacting the decomposition results. The noise-assisted ensemble empirical
mode decomposition (EEMD) method is utilized to address the issue of mode mixing and is
capable of processing complex and non-stationary time series. EEMD has gained extensive
adoption in enhancing the forecasting performance of precipitation [47], daily runoff [48],
water levels [49], rainfall [50], streamflow [51], river flow [52], and water quality [30].
Singular spectral analysis (SSA) has found widespread applications in the preprocess-
ing of hydrological data, including streamflow [31], rainfall [53], runoff [54], and rainfall
runoff [42] prediction. Previous research has demonstrated that SSA can significantly
enhance the prediction effectiveness of independent deep learning models, highlighting
its potential to enhance forecasting accuracy. Diverse decomposition methods exhibit
distinct applicability conditions. Consequently, selecting the appropriate decomposition
methods based on different applicability ranges can provide a research example for
the prediction of algal blooms. Despite the extensive research on decomposition-based
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hybrid deep learning models, some obstacles still demand additional consideration.
Firstly, the decomposition process includes future unknown data, leading to information
leakage. Secondly, the predictability of individual sub-series can vary, leading to dif-
ferences in the weighting of prediction residuals among them. Thus, selecting suitable
decomposition and prediction methods based on varying application scenarios is of
significance in algal bloom forecasting, thereby contributing to the early warning and
management of algal blooms.

Table 5. The concise comparison of decomposition models for different variable forecasting.

Methods Advantages Disadvantages Variables

Wavelet Transform (WT)
Strict mathematical theory.
Appropriate for steady-frequency
and nearly periodic signals.

Requires the prior specification of
wavelet basis and parameters.
Separates the modes.
Not suitable for highly
non-stationary signals.

Water level [43]
Algal bloom [26]
Precipitation [44]
Rainfall runoff [45]
River flow [46]

Ensemble Empirical Mode
Decomposition (EEMD)

Fully data-driven.
Addresses mode mixing issue.
Suitable for both non-linear and
non-stable signals.
Fully adaptive by originally
introducing the intrinsic mode
functions (IMFs).

Lacks rigorous mathematical theory.
Additional noise is present in the
reconstructed signal.
Needs many computational resources.

Precipitation [47]
Daily Runoff [48]
Water Level [49]
Rainfall [50]
Streamflow [51]
River flow [52]
Water Quality [30]

Singular Spectrum
Analysis (SSA)

Strict mathematical theory.
Decompose a time series into
distinct components.

Parameters must be fine-tuned to isolate
each component.

Streamflow [31]
Rainfall [53]
Runoff [54]
Rainfall runoff [42]

4. Conclusions

To attain high-performance chlorophyll fluorescence forecasting results, hybrid chloro-
phyll prediction models coupling multi-decomposition methods were developed in this
paper. Firstly, wavelet transform (WT), the empirical mode decomposition model (EEMD),
and singular spectral analysis (SSA) are employed on time-series sequences of hourly
chlorophyll data of Lake Dianchi to decompose original sequences into multiple sub-series,
including high-frequency and low-frequency components simultaneously. Moreover, for
individual forecasting, all sub-sequences are fed to deep learning models, namely a con-
volutional neural network (CNN) and long short-term memory (LSTM). Ultimately, the
predicted chlorophyll values are obtained by summing up the results of the forecasting
sub-series. The results illustrate that decomposition methods can precisely capture the
trend, volatility, and noise of chlorophyll fluorescence, overcoming the shortcomings of
the independent deep learning model in processing non-linear chlorophyll sequences.
Furthermore, the chlorophyll prediction results from two test stations indicate that hybrid
deep learning models based on decomposition achieve higher prediction accuracy than
single approaches, with the improvement percentages of the RMSE increasing, ranging
from 25.7% to 71.3%, with MAE improvements ranging from 28.3% to 75.7% and the R2

values increasing by 14.8% to 34.8%. In addition, the results of the comparative experiment
involving various decomposition techniques substantiate SSA decomposition’s superiority
over the commonly employed WT and EEMD methods for chlorophyll forecasting. In
conclusion, the decomposition–prediction framework has the potential for applications in
short-term prediction of HABs by implementing high-frequency monitoring. This allows
for the anticipation of future trends in algal blooms, serving as a foundation for devising
measures to manage the water environment.
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