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Abstract: Eutrophication is a major environmental issue with many negative consequences, such as
hypoxia and harmful cyanotoxin production. Monitoring coastal eutrophication is crucial, especially
for island countries like the Republic of Cyprus, which are economically dependent on the tourist
sector. Additionally, the open-sea aquaculture industry in Cyprus has been exhibiting an increase
in recent decades and environmental monitoring to identify possible signs of eutrophication is
mandatory according to the legislation. Therefore, in this modeling study, two different types of
artificial neural networks (ANNs) are developed based on in situ data collected from stations located
in the coastal waters of Cyprus. These ANNs aim to model the eutrophication phenomenon based
on two different data-driven modeling procedures. Firstly, the self-organizing map (SOM) ANN
examines several water quality parameters’ (specifically water temperature, salinity, nitrogen species,
ortho-phosphates, dissolved oxygen, and electrical conductivity) interactions with the Chlorophyll-a
(Chl-a) parameter. The SOM model enables us to visualize the monitored parameters’ relationships
and to comprehend complex biological mechanisms related to Chl-a production. A second feed-
forward ANN model is also developed for predicting the Chl-a levels. The feed-forward ANN
managed to predict the Chl-a levels with great accuracy (MAE = 0.0124; R = 0.97). The sensitivity
analysis results revealed that salinity and water temperature are the most influential parameters on
Chl-a production. Moreover, the sensitivity analysis results of the feed-forward ANN captured the
winter upwelling phenomenon that is observed in Cypriot coastal waters. Regarding the SOM results,
the clustering verified the oligotrophic nature of Cypriot coastal waters and the good water quality
status (only 1.4% of the data samples were classified as not good). The created ANNs allowed us to
comprehend the mechanisms related to eutrophication regarding the coastal waters of Cyprus and
can act as useful management tools regarding eutrophication control.

Keywords: data-driven models; eutrophication; coastal water quality; self-organizing map; feed-
forward neural network

1. Introduction

The ocean is responsible for regulating the Earth’s climate and provides humans with
valuable resources, like energy and food [1]. Therefore, the sustainable usage of marine
resources is an emerging concern. Marine environmental pollution related to human
activities is a historically identified problem, but it has only received the necessary attention
in recent years, when the anthropogenic pressure on aquatic ecosystems and organisms
has reached a dangerous ecological threshold [2]. This intense anthropogenic pressure on
the coastal environment is a result of the doubling of the human population and rapid
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industrial development [1]. Some of these anthropogenic activities impacting the coastal
zones are related to inputs of excessive nutrients [3], heavy metals, and other pollutants
originating from the land, like microplastics [4]. It is estimated that globally, about 80%
of marine pollution is land-derived [5]. The environmental degradation of coastal water
results in harmful effects for marine organisms and negatively impacts human wellbeing.

Eutrophication is considered to be a key local stressor for coastal marine ecosystems.
According to a study by Smith [6], which examined 92 coastal ecosystems, the coastal
Chlorophyll-a (Chl-a) production was found to be related to two nutrients, nitrogen (N)
and phosphorus (P). Furthermore, climate change and anthropogenic eutrophication have
resulted in large variations in microalgae assemblage composition globally, like increases
in harmful algal blooms (HABs) or biomass [7]. The main impacts of these changes in algal
composition include hypoxia/anoxia [8] with catastrophic side effects on aquatic organisms
(e.g., declining fishery stocks). Additionally, eutrophication may trigger harmful bacterial
production, which negatively affects corals and other marine organisms [9]. Another
side effect of eutrophication is related to nuisance blooms, which have negative economic
and societal impacts because of water aesthetic degradation, like water discoloration
or foam [10].

The eutrophication of the coastal waters is addressed by several EU Directives, in-
cluding the Water Framework Directive (WFD) 2000/60/EC, the Marine Strategy Frame-
work Directive (MSFD) 2008/56/EC, and the Nitrates Directive 91/676/EEC, as well as
the Regional Sea Conventions, such as the Barcelona Convention for the protection of
the Mediterranean Sea. The assessment of surface water bodies and the examination of
their physicochemical status for the identification of anthropogenic pressure and possible
changes are crucial issues for the associated environmental authorities [11]. Traditional
methodologies include the analysis of data by using statistical methods, such as cluster
analysis and ordination. Modeling studies have demonstrated that the application of
suitable models, like artificial neural networks (ANNs), enables us to examine the as-
sociation/impact of several environmental parameters on water quality problems, like
eutrophication [8].

The majority of ANN-based hydrological modeling studies refer to freshwater applica-
tions compared to maritime studies [12]. Specifically, for the eutrophication phenomenon,
the adaptation of data-driven models like ANNs has a beneficial role for environmental
control and prevention [13]. As stated by Yussef et al. [14], in contrast to some other model-
ing techniques (e.g., statistical methods), ANNs are not affected by nonlinearities or the
complex interdependencies of interlayer connections.

The eutrophication process and the role of the related environmental parameters
can be evaluated by utilizing ANN techniques [15]. The Kohonen Self-Organising Maps
(SOMs), which are unsupervised models [16], have clustering [17] and data mining abilities
regarding dataset analysis [18]. Multivariate analysis is mainly applied for ecological
patterning [19]; however, ANNs are more suitable for this task because of the nonlinear
and complex possible interactions between the various environmental parameters.

Based on the Kohonen SOM model utilization, Lu and Lo [20] created a eutrophication
status classifier and examined the environmental quality of the Fei-Tsui Reservoir. In
another SOM application of Li et al. [21], the SOM model was applied to evaluate the
groundwater quality of spatial data, and based on SOM clustering, several anthropogenic
activities were identified for the related sampling sites.

Another category of ANNs are multilayer feed-forward neural networks, which are
supervised-learning-based ANNs. This type of ANN is capable of predicting Chl-a levels
based on several water quality parameters associated with algal production [22]. These
environmental parameters, which are used as the ANN’s input, may differ among modeling
studies of coastal eutrophication. Salami et al. [23] created a back-propagation ANN for
predicting coastal Chl-a values near Grant Line Canal, California, USA, based on electric
conductivity (EC), water temperature (WT), and pH parameters. Even though only three
monitoring parameters were used as the model’s input, the model calculated the Chl-a
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variable with a satisfactory accuracy rate (75.9%). In another study by Melesse et al. [24],
the coastal Chl-a levels in Florida Bay, USA were also modeled with the use of a super-
vised ANN. Specifically, various combinations of seven candidate input parameters (total
phosphate, nitrite, ammonium, turbidity, WT, dissolved oxygen (DO), and antecedent
Chl-a were examined, and it was concluded that the ANN performed better when all
aforementioned parameters were used as inputs to the ANN.

Data-driven models based on ANN algorithms can be used to support the devel-
opment of eutrophication control management tools since ANNs are able to reveal the
underlying mechanisms associated with algal production and related environmental pa-
rameters [25]. Additionally, as stated by Georgescu et al. [26], the application of artificial
intelligence (AI) methods for water quality modeling saves time and resources in lab analy-
sis, while the generated statistical data are important for the relevant authorities/managers.
Motivated by the above practical reasons, a new feed-forward ANN model, which is suit-
able for regression purposes, is designed to predict Cypriot coastal Chl-a levels at several
locations. Furthermore, a new SOM model is proposed for the first time for Cypriot coastal
waters, which enables us to comprehend to a greater extent possible hidden mechanisms
and interactions between Chl-a and the rest of the eutrophication-related parameters.

This modeling study focuses on the role/interactions of water quality parameters
associated with eutrophication and the impact of anthropogenic activity for several coastal
areas near the Republic of Cyprus. Land uses of the different regions near the sea catchment
area are reflected in the nutrients’ concentrations in the nearby coastal areas, while it is
well-documented that excessive amounts of nutrients in the surface water may lead to
eutrophication [27]. Based on the SOM’s clustering abilities, the association between the
water quality near the sampling stations and the related anthropogenic activities can be
extracted by observing/interpreting the SOM’s results and by making associations among
the water quality parameters, with a focus on the nutrients. In our case, it was found that
the water quality status of Cyprus is good and practically unimpacted by anthropogenic
activities. Nevertheless, the created data-driven models can act as advisory/management
tools for assessing the expected pressure from planned anthropogenic activities or even
environmental changes, like global warming. It is also important to note that no other
similar modeling study based on SOM models exists for the Cypriot coastal waters.

2. Materials and Methods
2.1. Study Area and Data Acquisition

The Republic of Cyprus is an island country, located in the Levantine Basin (Eastern
Mediterranean area). The Levantine Sea is considered as one of the most oligotrophic
seas worldwide [28] and, therefore, Cypriot marine waters have very low primary algal
production due to the limited nutrient availability [29]. In addition, the Levantine Sea has
high temperatures fluctuating annually from 16 ◦C (winter season) up to 26 ◦C (summer
season) [22]. Moreover, the evaporation and salinity are high (yearly average salinity of
Eastern Mediterranean exceeds 37.5 psu, while average salinity of coastal waters of Cyprus
is 39.1 psu). Additionally, freshwater’s inflow is very limited due to extensive damming
and the absence of large rivers [30].

The Department of Fisheries and Marine Research (DFMR) of the Ministry of Agri-
culture, Rural Development and Environment of the Republic of Cyprus, as part of the
implementation of the WFD, MSFD, Nitrates Directive, and the Barcelona Convention,
carries out a monitoring program to collect, among others, water column data. A total of
49 coastal stations are monitored along the Cypriot coastline, some of which are located
near anthropogenic activities such as aquaculture facilities and industrial units (Figure 1).
Water column samples are collected and analyzed, and the data are stored in DFMR’s
“Thetis” database.
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Figure 1. Satellite map of the Republic of Cyprus (where 1cm: 50 km), which is located in the Eastern
Mediterranean region (green colored markers are used to indicate the sampling sites). For more
details, please see the study of Antoniadis et al. [30].

For this modeling study, 1552 in situ samples were collected by the DFMR from sev-
eral monitoring sites, based on which the ANN models were created. The data samples
were collected sporadically (having no regular time intervals) from the 49 coastal stations
between the years 2000 and 2020. The sampling frequency varied from monthly to yearly,
depending on different monitoring programs applied to the 49 coastal stations during
the sampling period. Bad meteorological conditions were also a limiting factor, causing
discontinuities in the sampling process. Specifically, the water quality parameters that were
measured/monitored are (i) nitrogen species (NH4

+, NO2
−, NO3

−); (ii) ortho-phosphates
(PO4

3−); (iii) salinity; (iv) DO; (v) pH; (vi) EC; (vii) WT; and (viii) Chl-a. More infor-
mation/details about the sampling stations and the data monitoring process are in the
technical report of Antoniadis et al. [30]. Table 1 provides a statistical description of the
measured environmental parameters.

Table 1. Statistical description of the measured environmental parameters.

Variable Units Min. Max. Mean ± SD

Salinity psu 0.86 44.05 37.74 ± 2.88
pH - 0.25 8.79 7.88 ± 0.48
Dissolved Oxygen mg/L 1.6 8.61 7.84 ± 0.39
Chlorophyll-a µg/L 0.01 10.80 0.22 ± 0.59
Water Temperature ◦C 21.68 27.69 22.25 ± 0.32
Electrical Conductivity mS/cm 0.8 67.15 56.34 ± 4.79
Orthophosphates µmol/L 0.00 17.77 0.46 ± 0.98
Ammonium µmol/L 0.99 65.39 4.03 ± 3.51
Nitrite µmol/L 0.00 24.21 0.49 ± 1.31
Nitrate µmol/L 0.01 448.74 11.74 ± 24.94

2.2. Multilayer Feed-Forward ANNs

ANNs are inspired by the function of the biological neuron system, where a signal
is received and processed by a neuron, and then an output signal is transmitted to the
other interconnected neurons or nodes [31]. Multilayer feed-forward ANNs are supervised
machine learning models and are capable of processing nonlinear phenomena [14,24].
According to Kohonen and Kaski [32], the multilayer feed-forward ANN is an efficient,
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nonlinear, “general-purpose” function approximator. The multilayer perceptron (MLP)
architecture is a layered feed-forward ANN, in which the neurons are arranged in fully
connected successive layers: the input layer, the hidden layer(s), and the output layer [33].
A synaptic weight is associated with each node/neuron, which is connected with all the
nodes/neurons found in the next layer.

The output value of the k-th neuron (ok) is calculated by using the following equa-
tions [31]:

ok = h(uk) (1)

uk = ∑ wikxi + zk (2)

where h is the transfer function, xi is the input from the k-th node of the immediate previous
layer, wik corresponds to the synaptic weight that connects the input xi with the k-th neuron,
and zk is the term corresponding to the bias. The output of each neuron is computed and
propagated through the next layer until the last layer, and this procedure is repeated until
the calculated output starts to converge to a desired target output [8]. The goal of the
training process is to find a set of synaptic weights that minimizes the loss function.

Data standardization/normalization is an important step before ANN model devel-
opment. The data normalization eliminates dimensional differences among the different
variables [34] since the variables serving as inputs might differ in magnitude [33]. The
ANN’s performance can be calculated using several statistical performance metrics, in-
cluding the root mean square error (RMSE), the mean absolute error (MAE), and Pearson’s
correlation coefficient (R).

The MLP’s sensitivity analysis can be performing using several algorithms. The pertur-
bation sensitivity analysis algorithm, which demonstrates how the trained network reacts
to a small change/perturbation of each input, is one of the most commonly used sensitivity
analysis algorithms. The perturb sensitivity is calculated by using the following [35]:

Sensitivity (%) =
1

Nm

Nm

∑
i=1

(
change in output (%)

change in input (%)

)
i
× 100, (3)

where the parameter Nm corresponds to the number of samples.

2.3. Self-Organizing Map (SOM)

SOM is an unsupervised ANN, which means that no human supervision/intervention
is necessary for its learning process [36]. The characterization “self-organizing” is given to
the SOM because it can learn and organize information without knowing the corresponding
output values of the input data [37]. The SOM is able to project high-dimensional data into
a lower dimension space, usually a two-dimensional space [36].

The SOM has an input layer and an output layer, which are connected with compu-
tational weights [38,39]. The SOM algorithm’s procedure [21,40] is summarized by the
following steps:

1. Initialize the weight vector with random values.
2. Utilize a distance measure (e.g., the Euclidean distance) to calculate the best-matching

unit (BMU).
3. Move closer to the input vector by updating the weight vector of the BMU and the

neighboring neurons.

The Euclidean distance (Dk) calculates the distance measure between the input vector
and the k-th weight vector [39] and is given by the next equation:

Dk =

√√√√ V

∑
j=1

(
pkj − wkj

)2
; k = 1, 2, . . . N, (4)
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where N is the number of output neurons, V is the dimension of the input vectors, pkj
symbolizes the j-th element of the input vector, and wkj represents the j-th element of the
k-th weight vector. The term BMU corresponds to the neuron with the weight vector closest
to the input variable x, i.e., the weight vector that has the shortest distance to the input
vector [41], and is calculated by using the equation:

|x−mc| = min(|x−mk|), (5)

where |·|is the symbol for the distance measure, x corresponds to the input vector, mk
corresponds to a weight vector, and c gives the subscript of the weight vector for the
winning neuron.

A very common rule of thumb for finding the SOM’s optimum map size [38] is the
one proposed by Vesanto and Alhoniemi [42], which uses the following formula:

M ≈ 5
√

n , (6)

where n is the data sample size and M is the number of the SOM’s neurons.
The SOM’s output space is visualized by using a unified distance matrix (U-Matrix).

The U-Matrix calculates distances between neighboring map units (neurons) [40]. The
SOM’s Component Planes (CPs) are an important visual feature of the SOM and are defined
as the values of a single vector component in all map units [43].

The SOM can automatically group (cluster) data according to different properties of
the dataset variables [44]. The data can be clustered either manually as determined with
the U-matrix or automatically by using a clustering algorithm implemented in SOM using
hierarchical (e.g., a dendrogram) and partitive (e.g., k-means algorithm) approaches [42].

3. Results
3.1. SOM’s Results

For the needs of this modeling study, a SOM with 20× 10 neurons was created. The
SOM’s topology, which is associated with the number of SOM neurons, was calculated
after applying Equation (6). The data simulations were based on the SOM Toolbox 2.0
for MATLAB (available by the Laboratory of Information and Computer Science in the
Helsinki University of Technology, Finland) [45]. The created SOM’s U-matrix and the CPs
are visualized in Figure 2.

The CPs revealed a strong positive relationship between EC, pH, and salinity since
they had very similar CPs. Not surprisingly, the CPs for NH4

+, NO2
-, and PO4

3− were
associated with Chl-a, with a strong positive relationship; the highest values of NH4

+,
NO2

−, and PO4
3− parameters corresponded to increased values of Chl-a. This observation

derived from the SOM’s CPs agrees with the eutrophication production mechanism since
eutrophication is associated with an excessive increase in nutrients [46]. Regarding the
other parameters, no clear conclusions can be derived through the CPs. Hence, in an
additional step, to reveal hidden relationships/mechanisms between the parameters, the
SOM’s clusters statistical properties were investigated.

The U-matrix is often used to explore the parameters’ interactions between the SOM’s
formed groups (clusters) [47]. The U-matrix visualization (Figure 2) indicated a tendency
for the data to be grouped into three clusters; however, this was not clearly observed here
(see Figure 2). Therefore, the k-means clustering algorithm was implemented in the SOM
to calculate the optimal number of SOM clusters. The Davies–Bouldin index was used to
compute a minimum value for the SOM’s optimal number of clusters [42]. In our case,
the optimal number of clusters was three, as is shown in Figure 3. The clustering of the
SOM based on the k-means algorithm and the percentage of SOM hits for each cluster are
illustrated in Figure 4.



Water 2023, 15, 4097 7 of 16

Water 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

to calculate the optimal number of SOM clusters. The Davies–Bouldin index was used to 
compute a minimum value for the SOM’s optimal number of clusters [42]. In our case, the 
optimal number of clusters was three, as is shown in Figure 3. The clustering of the SOM 
based on the k-means algorithm and the percentage of SOM hits for each cluster are illus-
trated in Figure 4. 

 
Figure 2. Visualization of SOM’s component planes (CPs) for each environmental parameter, 
where the mapping of the data values is indicated by the colored bars. 

 
Figure 3. Calculation of the optimal number of clusters based on the minimization for the Davies–
Bouldin index when the SOM is clustered using the k-means algorithm. The minimum number of 
the Davies–Boulding index (k = 3) is indicated in a red circle. 

As indicated by the CPs and SOM’s clustering (Figures 2 and 4), Cluster 2 (C2) has 
the worst water quality. The nutrients (except NO3−) and Chl-a have the highest concen-
trations for data belonging to Cluster 2. Regarding Cluster 1 (C1), the parameters NO3−, 
EC, and salinity have a significant influence on the cluster, while pH seems to be associ-
ated but to a lesser extent. Finally, Cluster 3 (C3) has the best water quality since it is 

Figure 2. Visualization of SOM’s component planes (CPs) for each environmental parameter, where
the mapping of the data values is indicated by the colored bars.

Water 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

to calculate the optimal number of SOM clusters. The Davies–Bouldin index was used to 
compute a minimum value for the SOM’s optimal number of clusters [42]. In our case, the 
optimal number of clusters was three, as is shown in Figure 3. The clustering of the SOM 
based on the k-means algorithm and the percentage of SOM hits for each cluster are illus-
trated in Figure 4. 

 
Figure 2. Visualization of SOM’s component planes (CPs) for each environmental parameter, 
where the mapping of the data values is indicated by the colored bars. 

 
Figure 3. Calculation of the optimal number of clusters based on the minimization for the Davies–
Bouldin index when the SOM is clustered using the k-means algorithm. The minimum number of 
the Davies–Boulding index (k = 3) is indicated in a red circle. 

As indicated by the CPs and SOM’s clustering (Figures 2 and 4), Cluster 2 (C2) has 
the worst water quality. The nutrients (except NO3−) and Chl-a have the highest concen-
trations for data belonging to Cluster 2. Regarding Cluster 1 (C1), the parameters NO3−, 
EC, and salinity have a significant influence on the cluster, while pH seems to be associ-
ated but to a lesser extent. Finally, Cluster 3 (C3) has the best water quality since it is 

Figure 3. Calculation of the optimal number of clusters based on the minimization for the Davies–
Bouldin index when the SOM is clustered using the k-means algorithm. The minimum number of the
Davies–Boulding index (k = 3) is indicated in a red circle.

As indicated by the CPs and SOM’s clustering (Figures 2 and 4), Cluster 2 (C2) has the
worst water quality. The nutrients (except NO3

−) and Chl-a have the highest concentrations
for data belonging to Cluster 2. Regarding Cluster 1 (C1), the parameters NO3

−, EC, and
salinity have a significant influence on the cluster, while pH seems to be associated but to a
lesser extent. Finally, Cluster 3 (C3) has the best water quality since it is characterized by
low concentrations of Chl-a and nutrients; however, no clear associations can be inferred
regarding the interactions among the water quality parameters. Nevertheless, it must
be noted that based on the SOM’s clustering, 95% of the samples are grouped into C3
(n3 = 1475), 3.6% of the samples are grouped into C1 (n1 = 56), and 1.4% of the samples are
grouped into C2 (n2 = 21).
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median value, percentile, and outliers) of the data belonging to each of the three formed
SOM groups (C1, C2, C3) and for each SOM’s input environmental parameter.
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Figure 5. Boxplot graphical representation of the SOM’s groups/clusters (Group 1, Group 2, Group 3)
derived from the k-means algorithm for each input environmental parameter (where the red hori-
zontal line denotes the group’s median value; the blue box gives the 25–75% percentile range; the
whiskers give the valid range; and red marks are associated with extreme values/outliers).

The comparison between the data belonging to each group/cluster is enabled by
examining their statistical properties. The NH4

+, NO3
−, EC, salinity, Chl-a, and PO4

3−

parameters have clear differences between the three SOM groups. The rest of the parameters
(DO, pH, WT, NO2

−) seem to have similar statistical properties; however, the smaller
magnitude of their value range should be taken into consideration. From the DO, pH, WT,
and NO2

− parameters, the NO2
- is the only one without overlapped notches of its boxplots,

indicating a clear differentiation between the three SOM groups.
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3.2. Feed-Forward ANN’s Results

For prediction/regression purposes regarding the Chl-a values, a feed-forward ANN
was created. Initially, the variables, before being presented to the ANN, were transformed
using min–max normalization, which projected the data to the range [0, 1], ensuring that
feature variables had similar scales [48]. The ANN’s optimal topology was found to be
9-6-1 after following a trial-and-error procedure. The ANN was trained with the Levenberg–
Marquardt training algorithm since it is considered the most effective for medium-sized
networks [49]. The EC, pH, salinity, NO3

−, NH4
+, NO2

−, PO4
3−, DO, and WT parameters

served as the ANN’s inputs.
The dataset (n = 1552) was divided into a training set and a test set at 80% and 20%,

respectively, while the ANN was evaluated on the test set. The achieved performance
metrics were MAE = 0.0124 and R = 0.97, whilea graphical illustration of the real and the
predicted data of the test set is given in Figure 6. It can be observed that the plots of the
real and predicted Chl-a values are very similar, verifying the ANN’s good performance.
The Chl-a limits for different water quality statuses (namely, high, good, and moderate)
for Cyprus are given in the embedded table in Figure 6. For Chl-a concentrations below
0.4 mg/L (high and good water quality status), the real and predicted data are almost a
perfect match. Regarding the moderate-status Chl-a values, the ANN also managed to
produce good outputs, as can be observed from Figure 6, except for one point corresponding
to the highest measured value of the Chl-a parameter.
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Figure 6. ANN’s predicted values for Chlorophyll-a (Chl-a) levels regarding the test set data vs.
the real Chl-a measurements, where the blue line is associated with the real data and the red line is
associated with the predicted data. The embedded table is describing the Cypriot coastal water status
for different Chl-a concentrations (where S1: high, S2: good, and S3: moderate).

Sensitivity analysis was performed to evaluate the input parameters’ impact on the
modeled Chl-a parameter. For that reason, the input parameters were increased (perturbed)
based on the perturbation sensitivity analysis algorithm by +10%, and similarly decreased
by 10%. The results of the sensitivity analysis are graphically illustrated in Figure 7. In
the case of +10% increase in the input parameters, it was calculated that the nutrients (i.e.,
PO4

3−, NO2
−, NH4

+, and NO3
−) have a positive relationship with the Chl-a production

mechanism. In addition, pH, EC, and salinity are positively related to the Chl-a parameter,
while WT and DO have a negative relationship with the algal production. In the case of
−10% decrease in the input parameters, it was calculated that the Chl-a levels are decreased
for PO4

3−, NO3
−, NH4

+, salinity, EC, and pH, while the Chl-a levels are increased for NO2
−,

WT, and DO. The salinity (when negatively perturbated) and the WT (when positively
perturbated) parameters are the most influential on Chl-a production.
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4. Discussion

The achievement and maintenance of good water quality status is a goal for all the
European Union member countries, including the Republic of Cyprus. For that reason,
as indicated before, several Directives must be implemented, like the Water Framework
Directive (WFD), the Nitrates Directive, and the Marine Strategy Framework Directive
(MSFD). In this modeling study, data-driven modeling techniques were applied, aiming
to model the coastal water quality in several areas of Cyprus. Based on the modeling
outputs, the Chl-a levels can be accurately predicted, while the eutrophication-related
water parameters and their contribution to Chl-a production can be evaluated. Specifically,
two different types of ANNs were utilized for the needs of this modeling study. First, an
unsupervised type of ANN was created, specifically the SOM model. Second, another
type of ANN, the supervised feed-forward ANN, was also developed. By combining the
output information provided by these two types of ANNs, an in-depth investigation of
the eutrophication phenomenon was enabled. In their study, Youssef et al. [14] state that
ANNs have better performance in comparison to other machine learning and statistical
methods. However, their black box nature makes ANNs’ outcomes difficult to interpret and
explain in practice. In our case, the parallel utilization of the SOM’s results and the feed-
forward ANN’s sensitivity analysis enabled us to unravel hidden complex mechanisms
between Chl-a and the rest of the water quality parameters. As stated by Chon [50], the
integration of the SOM and MLP models promotes advanced information extraction from
water quality datasets.

Another useful property of the SOM comes from its clustering capabilities and the heat
maps associated with the CPs, which allow visual qualification of relationships between
input parameters [51]. The utilization of the SOM is very beneficial when the correlation
between the input parameters is nonlinear and/or when dealing with noisy data; under
those conditions, the CPs can reveal relationships between the data that would not be
otherwise detected [52]. In their study, Astel et al. [53] emphasized the SOM’s classification
and visualization ability for large water quality datasets, while the authors also mentioned
the SOM’s suitability for simultaneous observation of water quality parameters and their
spatial and temporal changes based on the CP visualization. Meanwhile, Varbiro et al. [54]
argued in favor of the SOM’s superiority compared to traditional multivariate statistical
methods (like cluster analysis and ordination) because of the SOM’s ability to simplify data’s
complex statistical relationships between the variables into simple geometric relationships
represented into a two-dimensonial space.
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Regarding the second ANN implemented in this modeling study, the feed-forward
ANN was chosen. Feed-forward ANNs are able to model nonlinear complex environmental
systems [55]. Additionally, as stated by Bushra et al. [56], back-propagation ANNs have the
merit of being simple to adapt, and no tuning or learning is required for their parameter
and function features. Furthermore, as it is stated by Brown et al. [57], ANN models give
more reliable outputs in comparison to other machine learning methods (e.g., decision trees
or linear regression) when the number of data measurements is relatively small, like in our
case. Generally, feed-forward ANNs are considered reliable predictors of Chl-a and are
widely used for the prediction of Chl-a levels [8].

As was mentioned above, the created feed-forward ANN model managed to model
the Chl-a levels with high accuracy, while the error between the real and the predicted
data was very small, which can be easily observed from the graphical illustrations. For the
relatively low/medium values of the Chl-a parameter, the ANN produced almost identical
outputs between the real and the simulated data. For the elevated Chl-a values, the ANN’s
error tended to increase; however, the calculated ANN’s values were still near the measured
ones, suggesting the ANN’s good generalization ability. Despite these small errors, the
ANN managed to correctly categorize the trophic status for all data samples.

The perturb sensitivity analysis algorithm was applied and each parameter was fluctu-
ated by ±10%. Based on the results from the sensitivity analysis, the basic trends between
each input parameter and the Chl-a parameter were observed. When the parameters were
increased/fluctuated by +10%, it was concluded that the salinity parameter was the most
influential since the Chl-a levels experienced the biggest modification.

The WT and DO parameters were also found to be significantly influential concerning
Chl-a production. For the WT parameter, it was calculated that the WT and the Chl-a are
negatively associated. This finding agrees with the fact that the coastal Chl-a levels near
Cyprus reach their maximum values during the winter to early spring months, where
cooler temperatures prevail, following the winter mixing and increase in phytoplankton
production [58]. This was also recorded by Fyttis et al. [59] during a monitoring study of 12
consecutive months (January–December 2016), where the maximum coastal Chl-a levels for
Cyprus were recorded during the winter. Regarding the salinity parameter, the Chl-a levels
are significantly decreased when the salinity is decreased and vice versa. The upwelling
phenomenon is suggested to be related to this, since during the upwelling phenomenon,
nutrient-rich water emerges at the surface [60].

The upwelling phenomenon might also explain the strong negative relationship be-
tween DO and Chl-a. In a study by Georgiou et al. [61] in the Amvrakikos Gulf (Greece),
low oxygen levels were reported during winter months. The above authors attribute
the anoxia to the strong winds and the resulting upwelling phenomenon. Therefore, the
wintertime upwelling (and wind speed) is a factor that should be considered for future
water quality modeling studies in Cyprus. As mentioned by Suursaar [62], the wintertime
upwelling is a phenomenon that has been ignored and not given the necessary attention, in
contrast to the summer upwelling.

The rest parameters seem to contribute less to algal production. The feed-forward
ANN captured the relationship between the phosphorus and the Chl-a parameters, where
the increased values of phosphorus are positively related to increased algal production and
vice versa. As stated by Ren et al. [63], the high levels of dissolved inorganic phosphorus,
mainly in the form of phosphate in the water column, could enhance algal production.
Regarding the DIN species, a less important relationship with Chl-a is found, which has
similar behavior to phosphorus. A major source of DIN in coastal waters is associated with
atmospheric deposition. Two main sources of DIN are related to anthropogenic activities,
specifically riverine inputs and atmospheric deposition. In the study of Paerl et al. [64]
conducted along the U.S coast and the eastern Gulf of Mexico, it was estimated that the
nitrogen atmospheric deposition was responsible for a range of values between 10% and
40% of the new nitrogen loadings. According to Droge and Kroeze [65], riverine inputs
are considered the main source of nitrogen for coastal waters and, as estimated by the
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authors based on modeling studies, the DIN export will keep increasing in comparison to
the pre-industrial era.

The development of data-driven models is a precious scientific tool for coastal water
quality modeling. In our case, the integration of a supervised and an unsupervised ANN
proved to be a successful combination, not only for predicting the Chl-a levels but also
for examining the interactions of the eutrophication-related parameters. The sensitivity
analysis revealed the tendencies related to parameters’ fluctuations (increased/decreased)
and the analogous negative/positive impact on the algal production mechanism. At the
same time, the SOM model enabled an in-depth examination of the water quality parameter
dataset. Specifically, in the SOM case, the resulted clustering of the data revealed biological
mechanisms regarding algal production between the groups, which are not apparent if
the dataset is examined as a whole. Furthermore, the SOM’s results revealed hidden
relationships between the water quality parameters, which could not be easily identified
or understood based on other modeling procedures. The visualization ability and the
grouping of the SOM enabled us to make associations for specific value ranges for the
parameters. As highlighted by Duarte et al. [66], complex patterns and interactions between
the input parameters can be interpreted and understood based on the CP visualization.

Regarding the nutrients based on the SOM’s results, the Chl-a parameter and the
NH4

+, NO2
−, and PO4

3− parameters have similar box plots and CPs, suggesting a strong
relationship between Chl-a and the impact of NH4

+, NO2
−, and PO4

3−. Regarding the
NO3

- parameter, its moderate concentrations are associated with the highest Chl-a values.
The SOM’s clustering of the dataset (see Figure 4) verified the good water quality status of
Cypriot coastal water since only 1.4% of the total samples were characterized as problematic
by the SOM results. In their study, Varbiro et al. [67] applied the SOM to evaluate the
Danube’s tributaries based on diatom association, where the authors concluded that the
upper stretch (German–Austrian region) has better water quality than the lower stretch
(Slovakian–Hungarian region). The SOM’s visualization ability, which enables clustering
the data samples and at the same time comparing the parameters’ concentration levels for
each cluster based on the analogous CP region, enables the extraction of conclusions about
the different data sampling stations and their associations with different water quality
statuses. In our case, this finding can provide important information to the local authorities
relating to eutrophication, since it is indicated that not all nutrients must have the same
treatment regarding eutrophication control, as analyzed above based on the box plot results
(Figure 5).

Despite the limiting factor of the relatively small dataset used in this modeling study,
the created ANNs not only managed to perform well but also managed to capture biological
mechanisms/relationships and special characteristics describing the coastal algal produc-
tion in Cyprus, like the winter upwelling phenomenon discussed above. It must be noted
that in a previous modeling study, Hadjisolomou et al. [68] developed a feed-forward ANN
that managed to predict the surface coastal Chl-a levels near Cyprus with a good accuracy
(R = 0.87 for the test). However, the dataset was much smaller (n = 681) in comparison
with the dataset of this modeling study (n = 1552). For that reason, the previous model
was validated by applying the k-fold method, while the topology used for that ANN was
different (9-8-1). As explained by Hadjisolomou et al. [25], the application of the k-fold
method raises some concerns related to the small dataset for testing and, therefore, the
evaluation might become less reliable and robust. Another important detail related to
the nature of the dataset, which was analyzed in Hadjisolomou et al. [68], was that only
one sporadic measurement with an elevated Chl-a value was recorded. As expected, the
current ANN created for the needs of this modeling study has better performance (R = 0.97
for the test set), while differences related to the parameter’s sensitivity analysis results are
also observed. These differences are mainly attributed to the fact that the current ANN
is created based on a dataset that contains a significant number of high/elevated Chl-a
measurements. Therefore, the current ANN, besides the fact that it performs better, can also
generalize better in situations where algal production is increased. Thus, the creation of
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updated ANN models based on denser measurements and a bigger database can provide
information that is even more valuable and could allow us to better understand the algal
production mechanisms.

It is generally accepted that water quality monitoring is a time-consuming and expen-
sive procedure. Utilizing ANNs for the modeling of water quality parameters is considered
the best practice compared to other experimental or monitoring methods, which are usually
costly or take too long for data gathering [69]. In the study by Ahmed et al. [70], the various
methods available for estimating the DO concentration are analyzed and the authors state
that most of these analytical methods are either time-consuming and/or expensive, while
the conventional data processing techniques are inappropriate since they are affected by
nonlinearities. Therefore, the above authors propose using ML data-driven models for
water quality modeling prediction purposes. The ML data-driven models used for predic-
tion are able to overcome modeling limitations related to complex and nonlinear datasets
and, therefore, are widely used in water quality modeling [31,71]. It must be noted that
the eutrophication status can be evaluated directly based on measurable indicators like the
nutrient (nitrogen and phosphorus) content, DO, turbidity, and Chl-a concentrations [72].
Additionally, some very simple modeling techniques dealing with eutrophication exist, for
example, the linear regression method. However, as stated by Hadjisolomou et al. [25], such
methods might be affected by nonlinearities, which commonly appear when examining the
complex eutrophication mechanism and the associated parameters’ interactions. To sum-
marize, based on the results of our study, it is obvious that the utilization of ANNs for the
identification of areas sensitive to eutrophication is of great importance for local authorities
and policy makers, allowing them to apply measures when needed for the protection of
the marine environment, especially in areas where limited scientific knowledge might exist
or because data availability/acquisition is difficult.

5. Conclusions

Two data-driven models were developed for evaluating the impact of eutrophication-
related water quality parameters. The created ANNs managed to capture biological mecha-
nisms/relationships and the special characteristics related to coastal algal production in
Cyprus. The key findings from the ANNs are as follows:

• The feed-forward ANN, based on the sensitivity analysis results, revealed that the
winter upwelling seems to have an important role in the eutrophication phenomenon,
while the cooler WT measurements are associated with higher Chl-a levels.

• Based on the SOM clustering results, the water quality of Cypriot coastal waters is
classified as good and only few data samples (1.4%) are classified as not good.

Therefore, it is recommended that any implementation measures regarding eutroph-
ication control must be assessed based on modeling scenarios since data-driven models
have been proven to be reliable prediction tools. The created ANNs cannot only predict
Chl-a levels but can also extract thresholds for the associated water quality parameters,
like the phosphate and the nitrogen species. Therefore, the ANNs created for the needs of
this modeling study can act as a basis for advisory tools, contributing not only to Cypriot
marine environmental protection but also to the local economy, as well, related to financial
activities like coastal tourism, shipping, and aquaculture.
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