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Abstract: Metal pollution in rivers from untreated industrial and domestic wastewater is a major
issue in economically developing countries worldwide. The Awash River Basin in Ethiopia is one
of those rivers that faces rising heavy metal concentrations due to poor wastewater management
and loose law enforcement controlling effluent discharge into rivers. In this study, surface water and
wastewater samples were collected within the Awash River Basin, with metals analysis using ICP-MS
techniques. Acute toxicity of water was determined using new molecular biosensor technology based
on engineered luminescent bacteria. A multi-branch Integrated Catchment Model (INCA) for metals,
including Arsenic, Cadmium, Chromium, Copper, Lead, Manganese, and Zinc was applied to the
Awash River Basin to simulate the impact of tannery discharge on the river water pollution levels
and to evaluate a set of treatment scenarios for pollution control. Results show that all samples from
tannery wastewater have high levels of metals, such as Chromium and Manganese with high levels of
toxicities. River water samples from upper Awash near Addis Ababa showed elevated concentrations
of heavy metals due to the untreated wastewater from the dense population and a large number of
industries in that area. The modeling scenarios indicate that improved wastewater management will
reduce the metal concentration significantly. With a 50% reduction in effluent concentrations, the
mean concentrations of heavy metals (such as Chromium) over two years would be able to reach 20
to 50% reduction in river water samples.

Keywords: metal pollution; Ethiopia; tanneries; Awash River; biosensors; toxicity

1. Introduction

Contamination of surface waters from heavy metals in industrial and domestic efflu-
ents is a common feature in many economically developing countries. Human activities,
such as intensive agriculture and irrigation, urbanization, and industrialization create
major issues for pollution control and, if not managed correctly, can cause major harm to
river water quality and ecology and threaten public water supplies [1–7]. Consequently, in
developing nations, water scarcity due to the water pollution of rivers and lakes represents
a major challenge [8]. The UN Sustainable Development Goals (SDG 6.3) directly address
this issue to close the gap on water scarcity, water quality, and pollution in order to protect
the health of people and livestock, as well as to maintain and enhance livelihoods, especially
of poor people, women, and children.
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In Ethiopia, industrialization, urbanization, and human settlement are increasingly
intense, especially around the major cities such as Addis Ababa. The impact on clean water
resources from anthropogenic activities has been growing due to poor wastewater manage-
ment, few monitoring systems, and weak enforcement of pollution control strategies [9–11].
In addition, there are many technical issues, for example, conventional treatment plants are
not generally capable of removing emerging pollutants such as pesticides, pharmaceuticals,
or heavy metal wastes. Heavy metal pollution in rivers is a major threat to stream ecology
and human health due to metal persistence and toxicity [12–16]. Exposure to elevated
concentrations of heavy metals, such as Chromium, Mercury, Lead, Arsenic, Cadmium,
and other trace metals may cause cancer, retard human development, productivity and can
cause severe health and environmental effects and also in extreme cases, death [17–21].

This paper focuses on the Awash River Basin in Ethiopia and, in particular, the upper
reaches of the river where there are major discharges of partially treated or untreated
industrial and domestic wastes. Tannery effluents are of serious concern and are typically
characterized as pollution-intensive industrial complexes that generate widely varying
high-strength wastewater [16,22,23]. Degradation of surface waters due to wastewater is
becoming a serious problem as most of the industries in the basin are situated along the
Awash or its tributaries including Modjo and Akaki Rivers. These then deliver polluting
waters into the main river system, thereby degrading the river water of Awash.

Determination of heavy metals in waters has been a challenging task in Ethiopia, due
to the lack of conventional instruments (ICP-MS, ICP-OES, GC-MS, UV, X-ray absorption
spectroscopy), new technology (biosensors), and skilled professionals. This research pro-
vided the first comprehensive investigation of the Awash River Basin focusing on metals
and water toxicity using ICP-MS and biosensors. In addition, a flow and water quality
model INCA (Integrated Catchment) was applied to assess the metals and toxicity data and
to simulate the Upper and Middle Awash River system. The model was used to investigate
the effects of the tannery discharges, assess impacts on river water quality, and evaluate
the effluent treatment levels required to meet international instream quality standards.

2. Study Area and Methods
2.1. Study Area

The Awash River, 1200 km long, is one of the twelve rivers in Ethiopia (Figure 1). It
originates near Ginichi town, which is located to the west of the capital Addis Ababa, and
flows through the Rift Valley until it reaches Lake Abe on the border shared by Ethiopia
and Djibouti. The Awash River Basin is characterized by highlands escarpments and rift
valley, with an elevation ranging from 3000 to 250 m a.s.l. The entire Awash River Basin
covers a total area of 116,200 km2, with the western catchment comprising 70,800 km2 that
drains into the main Awash River. In contrast, the eastern catchment (45,400 km2) drains
into a desert area and does not contribute flow to the main river course [24]. Thus, the
eastern catchment is not considered in this study.

The recent development in the Awash River Basin such as industrialization, urbaniza-
tion, and small and large-scale farming makes the Awash the most developed river basin in
Ethiopia and the basin accounts for 25% of the agricultural production of the country. The
upper catchment including the national capital, Addis Ababa, is densely populated. The
basin comprises more than 12,500 industries and more than 65% of industries are located
in the upper catchment, upstream of Koka Dam. Given the location of the industries,
sampling collections were mainly focused on the upper catchment and middle valleys
of the Awash River Basin (Figure 1). The modeling effort has been applied to the entire
Awash River Basin so that the impact of the effluent could be assessed immediately after
the discharge points as well as at the downstream sites.
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Figure 1. Locations of sixteen surface water samples (SW1-16) and five industrial wastewater samples
(TA01-02 and TM01-03) in 2020. The numeric numbers in grey indicate INCA modeling catchments.

2.2. Sampling and Metals Analysis

Twenty-one samples were collected from sixteen surface water locations and five
industrial wastewater effluents in 2020 (Figure 1).

After sample collection in the field, they were acidified before analysis, which allowed
equilibrium overnight to permit the re-dissolution of any precipitates or materials adsorbed
to the bottles. Over 30 heavy metals were analyzed by inductively coupled plasma mass
spectrometry (ICP-MS) using a PerkinElmer Nexion 2000B instrument, which was coupled
with an Elemental Scientific prepFAST M5 autosampler at the University of Oxford. The
instrument was calibrated using the method of external calibration where the concentrations
for the measured sample set were extrapolated from linear regressions generated from raw
counts per second data from a series of standards. Specifically, for each element, a six-point
calibration curve was created by measuring the ion count of six known concentrations and
applying linear regression. Two commercial references were used to validate the calibration
curves. Commercial references are commercially available solutions that are independent of
the calibration solutions, with certified concentrations of a range of elements. The detection
limits of each element are given in Table 1.
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Table 1. Metal concentrations at sixteen sites in the river system and five tanneries. Concentrations
are in µg/L (ppb). BDL indicates below the detection limit. The metal detection limits and the World
Health Organization (WHO) drinking water standards were listed at the bottom.

Sample
ID Type Fe Al Rb Sr Cr Mn Co Ni Cu Mo Zn As Li Cd Hg Pb

SW1 River 155.1 121.4 2.1 293.4 0.3 108.1 0.8 1.9 2.0 1.7 4.9 0.5 1.3 BDL BDL 0.1
SW2 River 3896.8 1980.4 35.3 442.4 214.2 2170.4 4.4 9.8 9.3 1.3 72.3 2.8 7.4 0.12 BDL 7.9
SW3 River 2695.0 1455.4 38.6 414.5 138.3 2240.2 5.5 12.1 15.4 1.8 75.7 2.6 7.5 0.10 BDL 9.0
SW4 River 1741.8 1065.0 19.7 314.4 5.4 1455.0 3.8 7.4 5.1 3.2 24.0 2.8 12.4 BDL BDL 2.5
SW5 River 1657.6 1659.8 17.2 319.9 3.0 678.0 5.0 13.4 9.1 3.9 14.0 3.0 8.3 BDL BDL 2.4
SW6 River 1082.7 1256.9 32.7 73.4 2.1 65.1 0.6 2.8 2.7 103.8 10.2 23.0 28.6 0.10 BDL 0.6
SW7 River 1431.5 1560.4 17.3 323.5 2.6 850.5 4.4 12.7 7.0 4.5 11.9 2.9 8.3 BDL BDL 1.7
SW8 River 307.7 386.4 10.1 320.8 0.6 137.6 1.1 5.1 2.6 6.3 13.8 2.3 23.2 BDL BDL 0.4
SW9 River 272.1 314.9 12.0 322.4 139.1 330.2 1.3 4.7 2.2 5.6 8.6 2.7 25.9 BDL BDL 0.4
SW10 River 410.9 382.3 15.6 374.2 69.4 747.1 3.6 12.3 3.1 8.5 9.3 4.1 36.9 BDL BDL 0.6
SW11 River 1003.4 1164.2 3.9 150.3 1.5 57.5 0.8 3.7 3.5 1.9 7.3 0.9 2.9 BDL BDL 0.9
SW12 River 1162.3 1406.2 4.6 151.5 1.6 67.6 0.9 4.3 3.7 2.3 8.5 1.0 4.2 BDL BDL 1.0
SW13 River 1833.0 1908.5 6.7 169.8 2.1 277.4 1.9 5.6 5.1 2.4 11.9 1.7 6.9 BDL BDL 1.6
SW14 River 1014.8 1208.8 32.4 75.9 2.0 67.1 0.6 2.6 3.4 108.7 7.2 25.0 28.0 0.12 BDL 0.6
SW15 River 2158.1 2135.1 10.5 162.4 2.4 370.2 1.7 5.8 4.1 16.1 10.0 5.9 10.1 BDL BDL 1.3
SW16 River 1732.5 1870.2 11.6 173.8 2.0 239.5 1.5 5.5 3.7 19.9 8.4 5.4 10.6 BDL BDL 1.1
TM01 IWW 729.6 2239.6 77.5 469.0 18,038.1 168.3 0.8 17.5 3.2 BDL 31.9 BDL 67.9 BDL BDL 0.6
TM02 IWW 37.2 67.9 85.7 235.1 1229.0 6.3 0.5 5.4 BDL BDL 7.4 BDL 76.3 BDL BDL BDL
TM03 IWW 525.3 146.2 187.9 453.3 474.9 60.2 10.6 10.7 0.9 BDL 35.4 1.8 55.1 BDL BDL 0.3
TA04 IWW 2278.8 3358.1 150.7 582.8 4329.5 3097.1 7.4 28.6 10.1 3.3 77.1 BDL 234.0 BDL BDL 1.1
TA05 IWW 74.3 1881.0 46.2 438.8 34.1 472.6 3.5 3.5 0.8 1.1 11.1 BDL 23.4 BDL 1.81 0.1

Detection Limits 0.640 0.059 0.013 0.392 0.006 0.008 0.002 0.003 0.044 0.150 0.198 0.003 0.057 0.001 0.650 0.015

WHO standards 300 200 - - 50 100 - 20 1300 70 5000 10 - 3 2 10

2.3. Biosensors

Molecular biosensors are bacterially derived sensors that determine the bioavailability
of both specific chemicals and the overall toxic effect. These biosensors have been developed
and provided by Oxford Molecular Biosensors, a spinout company from the University
of Oxford (www.omb.co.uk, accessed on 1 June 2023). For this study, we employed a
metabolic-based acute toxicity sensor, Acinetobacter baylyi ADP1 Tox2, which has previously
successfully demonstrated the presence of cell damage or cytotoxicity in heavy metal-
contaminated seawater [25] and river water [16]. The soil bacterium-based biosensor has
been engineered, using a synthetic biology approach, to luminesce brightly in low-toxicity
samples, and dimly in cytotoxic conditions, as illustrated in Figure 2. They sensitively
respond at very low concentrations of toxic pollutants, with resolution over several orders
of magnitude. Certain bacteria such as Vibrio fischeri naturally bioluminesce and have
been used commercially for the detection of toxicity in freshwater toxicity detection for
decades by companies such as Microtox [26,27], however, engineered whole-cell biosensors
that are genetically designed for heightened sensitivity and detection of individually toxic
components are new to the market. The OMB biosensor testing protocol utilizes positive
and negative controls in every assay, allowing comparison between assays and a semi-
quantitative result proportional to toxicity. This can then be calibrated against known
concentrations of cytotoxicants for comparison, for example, Zinc.

The acute toxicity biosensor is important in determining water quality from an ecology
standpoint and also to inform public supplies. Biosensor assays are rapid, taking less than
one hour and so they are uniquely placed to act as an early warning of toxic pollution.
The yellowstripe goby fish, Mugilogobius chulae, is often used as a model for toxicity.
When the cytotoxicity biosensor was compared with the goby results, they were found
to be comparable, demonstrating that the biosensor system can function as a proxy for
cytotoxicity assessments in animal models [25]. The biosensor output encompasses the

www.omb.co.uk
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presence and bioavailability of toxicity, precluding the need to use multiple sensors and
hence it can be used to determine whether further testing is required. It can test both fresh
and saline water without additional pre-treatment, allowing more powerful comparisons
between samples and flexibility of testing. The biosensor data in this study was collected
and analyzed with reference to the metals data in order to ascertain the presence of any
trends or patterns that might be important in the assessment of pollution around the Awash
River Basin.
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Figure 2. Luminescence from the bacterial biosensors reflecting acute toxicity.

Samples collected at the same 21 locations (Figure 1) were passed through a 0.2 uM
filter before being challenged against the acute toxicity biosensor for 30 min. A positive
control of 0.4 mM Zinc from Zinc Chloride is included as a known toxicant for reference.
Results were then standardized to the negative control, 0.01 M sterile phosphate-buffered
saline (PBS), and expressed as a percentage. Values above 110% (100% plus one standard
deviation) were considered stimulatory; and values below 90% (100% minus one standard
deviation) were considered toxic, with magnitude increasing as values decrease. When the
tested value is significantly lower than the control, cell metabolism is inhibited, and toxicity
is implied. When the tested value is significantly higher than the control, the result can
be considered ‘stimulatory’. This may be a result of hormesis, whereby the concentration
of toxic compound(s) is below the threshold for toxicity, and instead has a beneficial or
stimulatory effect on an organism [28]. The adage of ‘the dose makes the poison’ attributed
to Swiss philosopher Paracelcus implies that toxicity is just a matter of dose. It is also
possible that when perturbed, the cell mounts a response to the mixture by mobilizing
energy reserves [29]. Therefore, stimulation of luminescence may suggest an early form of
toxicity to a surmountable response, or a positive stimulation/beneficial effect.

2.4. INCA-Metals Application to the Awash River Basin

The Integrated Catchment Model (INCA) is a dynamic, daily time-step, catchment
scale process-based model to calculate pollutant transfer from both diffuse sources and
point sources to the catchment outlet. INCA model was originally created to simulate
nitrogen [30]. Over the past two decades, new versions of INCA models were developed
such as INCA-Metals [31]. The updated INCA-Metals model has a multibranch structure
which allows it to simulate the in-stream metal concentrations in the dendric stream
network [32].

INCA-Metals is a mass-balance dynamic model that estimates the daily fluxes and
concentrations of flow, ammonia, cyanide, and eight metals (Cadmium, Lead, Zinc, Mer-
cury, Arsenic, Copper, Chromium, and Manganese) based on 1 km2 cell. The flow and
metals are simulated by accounting for contributions from various inputs and transforma-
tions in the soil, groundwater, and rivers. The processes for INCA-Metals are based on
those included in the Integrated Catchment model of Nitrogen but have been adapted to
represent the metal adsorption to sediment, cyanide decay to ammonium, and cyanide
volatilization [32]. The sources of pollutant inputs to the model include point sources
such as abstractions, waste dumps, treated or untreated waste effluent as well as diffuse
pollution from rural runoff. The hydrology component of the model is the same as other



Water 2023, 15, 4073 6 of 14

INCA models where the river flow is generated by the soil flow, direct runoff flow, and
groundwater flow [33]. Detailed equations for calculating flow and metal chemical fluxes
can be found in Whitehead et al. [32]

The INCA models (Chloride, Nitrogen, and Phosphorus version) have already been
applied to the Awash basin [34,35], however, this study is the first INCA application of
the metals. The same INCA setup implemented in Bussi et al. [35] and Jin et al. [34] has
been used here. To simulate flow and metal concentrations in the Awash River using INCA,
the catchment was divided into 24 sub-catchments (Figure 1, shows the upper and middle
Awash Basin), following the same setup as in Jin et al. [34]. The sub-catchment/reach
boundaries were selected at confluences, effluent discharges, flow stations, and water
quality monitoring stations, using the same principle as other INCA applications. Sub-
catchments were delineated using a digital elevation model (DEM) in ArcGIS, which
was obtained from the Shuttle Radar Topography Mission (SRTM) [34–36]. The land use
information was from the GlobCover Portal and the most updated dataset from January to
December 2009 was used in this study [34,35,37]. For the Awash River Basin application,
six land use classes including arable, grassland/mixed, forest, water, bare, and urban
were selected. The percentage of each land use class, sub-catchment area, and reach river
length were calculated for each sub-catchment in ArcGIS which were used as INCA basic
inputs that describe river network topology, reach characteristics, and sub-catchment
characteristics.

Hydrological inputs to INCA include daily time series of precipitation, temperature,
hydrologically effective rainfall (HER), and soil moisture deficit (SMD). HER and SMD
are estimated using the Precipitation, Evapotranspiration, and Runoff Simulator for Solute
Transport (PERSiST) model, which is a conceptual, daily time-step, semi-distributed model
designed primarily for use with the INCA models [34,38]. In this study, daily rainfall data
were acquired from the Climate Hazards Group Infrared Precipitation with Stations v2.0
(CHIRPS) [11,39]. Daily temperature data were obtained from a network of local weather
stations. Both precipitation and temperature were acquired for the period between 1981
and 2021.

The Awash River Basin was divided into three climate zones: Upper Awash, Middle
Awash, and Lower Awash to account for spatial variation of rainfall and temperature.
To calculate average daily rainfall and temperature, the same procedure applied to Bussi
et al. [35] and Jin et al. [34] were used in this study. A gridded dataset (10 × 10 km) of daily
precipitation and temperature was created to compute the average of all the 10 × 10 km
cells within each of the climate zones. The daily time series of HER and SMD between 1981
and 2021 were then generated by PERSiST for the Upper, Middle, and Lower catchments.

3. Results and Discussions
3.1. Metal Pollution in Awash River Basin

The metals results for sixteen locations along the river and five tanneries are shown
in Table 1. The results indicate high concentrations of Chromium (Cr), Lithium (Li),
and Cobalt (Co) in the tannery discharges, with these resulting in high concentrations
in the downstream tributaries and river locations. For the river samples, at least one
sample had concentrations of Iron (Fe), Aluminum (Al), Chromium (Cr), Manganese
(Mn), Molybdenum (Mo), or Arsenic (As) that were higher than the WHO limits (Table 1).
Specifically, for Mn, the majority of the samples (12 out of 16) exceeded the WHO limit. For
As, two of out sixteen river samples had concentrations over the WHO limit. For Copper
(Cu), Zinc (Zn), Cadmium (Cd), Mercury (Hg), and Lead (Pb), all samples were below the
WHO limits.

Metal concentrations along the Awash River vary significantly (Figure 3). Concentra-
tions of Cadmium, Chromium, Copper, Manganese, Lead, and Zinc were highest near the
city of Addis Ababa reflecting the dense population and large number of industries in that
area. Concentrations of Arsenic and Cadmium are high at the downstream locations in the
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middle Awash. This could be due to the mixing of the Beseka Lake water that is supported
primarily by groundwater with high heavy metal concentrations [40].
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Figure 3. Spatial variations of selected metals in river water samples. Concentrations are in µg/L.

3.2. Biosensors Results and Toxicity

The results of the acute toxicity assay are displayed in Figure 4, with toxicity expressed
as a percentage of luminescence relative to the PBS control.

The results from testing the instream samples using the molecular biosensors sug-
gested that the river sample toxicity was never significantly greater than the control (less
than 90% luminescence); however, there was significant stimulation in 13 out of 16 samples.
The Awash after Akaki mix (SW6) and Lake Beseka samples (SW14) gave the highest
toxicity readings of instream samples though they were not statistically different from
the control (p > 0.5). The Akaki results may be lower than most samples tested due to
the tannery discharges, and Lake Beseka may contribute high salinity levels and/or rock
weathering (geogenic) effects due to subsurface flows of active rift and the presence of
volcanic ash [34,40].

The stimulatory effect in the majority of samples may be a result of hormesis, whereby
a low concentration of toxicant is stimulatory or beneficial to an organism. This may in
turn indicate that the concentration is below the toxicity threshold; or may be due to the
mobilization of energy reserves within the biosensor, in a protective response of a low-grade
toxicant. With the tannery samples, three out of five samples were significantly toxic at the
TM01, TM02, and TM03 locations. The sample from TA04 was not significantly different
from the control, and the sample from TA05 was slightly stimulatory. The largest acute
toxicity was observed at TM02 (2.9%) which was highly statistically significant.
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Figure 4. Acute toxicity results expressed as a percentage of luminescence relative to the phosphate-
buffered saline (PBS) control taken at t = 30 min. All samples (n = 21) were tested in technical triplicate
and error bars denote one standard deviation above and below the mean.

The output from the acute toxicity biosensors can be described as the net biological im-
pact of the complex mixtures within a water sample. It is indicative of changes in metabolic
activity within the cells. These biosensors have been engineered to constitutively express
luminescence until metabolically perturbed. Luminescence-based biosensors report on the
holistic whole-cell effects of pollutants on cellular metabolism, and therefore the output
encompasses many toxic mechanisms such as genotoxicity, cell membrane disruption, or os-
motic stress as just a few examples [26]. As they are affected by the individual components
of a water sample as well as their combinatorial effects, they are not necessarily suitable
for identifying specific individual drivers of toxicity; however, correlations between the
concentrations of certain metals and the toxicity values indicated that some metals may
have more of a pronounced toxic effect on the biosensors. In particular, a previous study
identified Zinc, Cadmium, and Copper as biosensor toxicants [25].

Many metal species are known to have toxic effects through the generation of reactive
oxygen species (ROS) which cause oxidative stress within the cell and can cause gene
damage. As a holistic snapshot of water quality, biosensor technology has the potential
to be used for rapid (30 min), in situ detection of toxic compounds in water. It can be
calibrated to specific sample areas, making it a valuable tool for environmental monitoring
and public health.

With the detailed analysis of metals available, toxicity/stimulation data of river sam-
ples (n = 16) was related to eight metals that the INCA-Metals model simulates. This
exploratory exercise was to find statistically significant metals that relate to river water
toxicity in the Awash River system. With an established relationship, metal simulation
output from the INCA-Metals model could potentially be used to reasonably predict river
toxicity values over time at any reach in the Awash River. To do this, backward regression
analysis was applied to acute toxicity and eight metals. It was found that Lead, Zinc,
Arsenic, Copper, and Manganese were highly linked to acute toxicity (Table 2). Multiple
regression with the metals data yielded a predictive equation based on these metals with a
high correlation of r2 = 0.94 (Figure 5):
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Acute toxicity = 17.364 × [Lead] − 1.715 × [Zinc] − 2.631 × [Arsenic]

− 3.361 × [Copper] − 0.013 × [Manganese] + 177.861 EQ.1

Table 2. Statistical results of multiple regression analysis.

Coefficients
Estimate

Coefficients
Standard Error t p

(Intercept) 177.861 6.106 29.127 <0.001
Lead 17.364 7.075 2.454 0.034
Zinc −1.715 0.650 −2.638 0.025

Arsenic −2.631 0.248 −10.605 <0.001
Copper −3.361 1.779 −1.890 0.088

Manganese −0.013 0.006 −2.058 0.067
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Figure 5. The statistical model predicted acute toxicity versus actual acute toxicity for the river samples.

3.3. Modelling Tannery Effluent Controls

To assess the impacts of the tanneries on the Awash River, the INCA-Metals model
has been set up for the Awash River System, based on the previous applications of the
model by Bussi et al. [35] and Jin et al. [34]. These applications were set up to address
issues on nutrient management in the Awash and also the issues of salinity in the river and
Lake Beseka. These two papers discuss in detail the INCA model setup and the definition
of reach boundaries using topography (Figure 1) and other spatial data such as land use,
animal numbers, and population, as well as the key driving data such as the daily rainfall,
temperature, and soil moisture deficit.

Typical simulations for flow and salinity are shown in Figure 6 and demonstrate
reasonable fits to the observed data with KGE statistics (Kling-Gupta efficiency) [41] of 0.7
for both flow and salinity [34]. The INCA-Metals model has been set up using the same
information as the other INCA applications and, in this case, the INCA-Metals model has
been set up with the 5 tanneries located at their reach locations (Figure 1). The model
has then been run to assess the impacts of the metals on the downstream water quality.
Figure 7 illustrates the simulation over 2 years showing the daily flows and the associated
Chromium and Manganese water chemistry at a downstream river reach from tanneries
(reach 5). The time series of Chromium show higher concentrations in the low flow period,
due to the lack of dilution from rainwaters, and much lower concentration in the high
flow periods. Manganese however has a different pattern. When the flow is higher, the
Manganese concentration also goes higher which might reflect the contribution of high



Water 2023, 15, 4073 10 of 14

Manganese from groundwater. Furthermore, the INCA model calculates the distributions
of the simulated data. The spread of behaviors in Figure 8 indicates a non-gaussian type
distribution with a mean Chromium of 0.0615 mg/L, which is above the WHO metals
limit of 0.05 mg/L. Manganese has a mean of 0.112 mg/L, which is also above the WHO
metals limit of 0.1 mg/L. The high mean concentrations of Chromium and Manganese in
this reach are due to the discharge of tannery effluent into the Akaki River (Table 1). With
untreated or partially treated effluents continuously discharging high levels of metals into
the river system, the Awash River water will become increasingly impacted over time.
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Figure 6. Flow and salinity model simulations (grey lines) compared to observed flow (red line) and
salinity data (red circles) 2005–2014.
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Figure 7. The simulated flow, Chromium, and Manganese concentrations in the main Awash River
below the tanneries at reach 5, over 2 years 2020–2021.
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Figure 8. Distributions of flow, Chromium, and Manganese in the river system downstream of the
tanneries (reach 18).

To help assess the future condition, a scenario analysis has been undertaken as an
example to simulate metal concentrations with future effluent treatment. Figure 9 shows
the simulated Chromium concentrations with a 50% reduction in effluent concentrations
compared to the original Chromium concentrations. The peak metal concentration at
Reach 4 in the main Awash River profile reflects the tanneries discharge (Figure 9). With a
50% reduction in Chromium concentration in tannery effluent, the reduction of the mean
Chromium concentration in river water is significant with a nearly 50% reduction at reach
4 which is immediately downstream from the tanneries. Moving down the river profile,
the impact became less, and the reduction reached approximately 25% at reach 9 (Figure 9).
The reduction in metals (e.g., 50% Chromium) can also be translated into toxicity, as shown
in Figure 10, illustrating how the water toxicity will change based on the toxicity regression
model (EQ.1). The values increasing suggest a more stimulatory nature, which could
suggest an environment that might be more stimulatory or beneficial to an organism which
may indicate a less toxic condition. The results suggest that serious consideration should
be given to the treatment of the tannery effluents so that toxic conditions are reduced
downstream of the tanneries.
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Figure 9. Profile down the main Awash River shows the reductions along the river using the mean
Chromium concentrations from the model simulations.
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Figure 10. Calculated baseline and scenario river water toxicity along the main Awash River.

4. Conclusions

Water quality degradation due to rapid population growth, urbanization, and in-
dustrialization is a global environmental issue. The UN Sustainable Development Goal
6.3 aims to reduce pollution impacts globally and to encourage countries to close the gap
between current poor water supplies and the ideal situation, where there are adequate
water supplies for people, industry, and agriculture. Globally this gap is about 30% on
average. Ethiopia has quite a long way to go to close this gap and, in many ways, the gap is
expanding as industrial development continues and populations move towards the cities.

In this paper we consider elevated heavy metal concentrations such as Fe, Al, Cr,
Mn, Mo, or As, resulting from untreated industrial effluent discharge into rivers. These
are known to pose health concerns and risks to humans, especially where they drain into
reservoirs or public water supplies. This is a serious concern for Ethiopia and requires
action to put in place a suitable pollution control strategy, as well as ensure that the industry
establishes adequate treatment facilities.

In countries like Ethiopia where conventional instruments and new technology are
lacking, there have been few studies focusing on evaluating heavy metal levels in Ethiopian’s
river basins. This is the first comprehensive study that combines field sampling from sur-
face waters and tanneries, chemical laboratory analysis, new biosensor technology, and
mathematical modeling to assess the water chemistry and water toxicity in the Awash
River. It was found that Lead, Zinc, Arsenic, Copper, and Manganese were highly linked to
water toxicity in this river system. The study demonstrated the importance of metal-driven
responses to toxicity and the value of a biosensor-based assessment of water quality. It
must be noted that it was a small dataset in comparison to the number of metals tested;
however, this work serves as a proof of concept for bacterial biosensor toxicity analysis in
freshwater systems.

The multi-branch water quality model (INCA) was used to estimate the heavy metal
concentrations and to simulate the impact of tannery discharge on the river water pollution
levels. It is important to recognize that although most river water samples had heavy metal
concentrations below the WHO drinking water standards, wastewater effluents constantly
discharge polluted water into water bodies, significantly deteriorating the water quality.
Several wastewater treatment plants that incorporate primary treatment with secondary or
secondary with tertiary are currently under construction. The new wastewater treatment
plants combined with strict implementation of wastewater discharge permit systems and
enforcement of the law will improve future Awash River water quality.
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