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Abstract: Evaluating waterlogging vulnerability and analyzing its characteristics and future trends
can provide scientific support for urban disaster prevention and reduction. For this study, taking
Fuzhou as an example, an urban waterlogging vulnerability assessment system was constructed from
the three dimensions of exposure, sensitivity, and adaptive capacity. The entropy method was used
to evaluate urban waterlogging vulnerability in Fuzhou during 2014–2020. The use of CA–Markov
to predict waterlogging vulnerability in 2023, 2026, and 2029 in Fuzhou is an important innovation
reported in this paper. Study results showed that: (1) Vulnerability to waterlogging in Fuzhou follows
a gradually decreasing “center-southeast” distribution pattern, with Level 5 areas mainly located in
Cangshan District, Gulou District, and Taijiang District. (2) Changes in waterlogging vulnerability
in Fuzhou from 2014 to 2020 can be divided into five change modes, with changing areas, mainly
of the late-change type, accounting for 14.13% of the total area. (3) Prediction accuracy verification
shows that the CA–Markov model is suitable for predicting waterlogging vulnerability in Fuzhou
with high accuracy and a kappa coefficient of 0.9079. (4) From 2020 to 2029, the vulnerability level of
the eastern coastal region of Fuzhou is expected to generally increase, and the vulnerability degree
will continue to deteriorate. The proportion of Level 5 vulnerable areas will increase by 4.5%, and the
growth rate will increase faster and faster with the passage of time.

Keywords: waterlogging vulnerability; Fuzhou; CA–Markov model; dynamic change; index system

1. Introduction

Urban waterlogging vulnerability indicates the degree of damage that the socioeco-
nomic activities of a city may suffer under the disturbance or pressure of waterlogging,
i.e., the nature of the region’s vulnerability to injury and loss when facing waterlogging.
Because reducing vulnerability to waterlogging effectively reduces disaster risk and im-
proves resilience, it has become a critical issue in urban development and water hazard
research [1].

The main methods for assessing vulnerability to waterlogging are the indicator system
method and the vulnerability curve method [2,3]. The vulnerability curve method, also
known as the disaster loss curve method, assesses vulnerability by constructing a function
between different hazard intensities and losses of disaster-bearing bodies. Accurate and
credible results may be obtained using this method [4]. The data used for curve fitting are
mainly historical disaster data, field research data, insurance data, etc. The HAZUS-MH
(Hazard United States—Multi-Hazard) [5] software developed by the Federal Emergency
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Management Agency of the United States, and the EMA-DLA (Emergency Management
Australia—Disaster Loss Assessment) [6] software developed by the Australian Emer-
gency Management Agency are both widely used internationally. The indicator system
method selects assessment indicators and constructs vulnerability indices according to
the characteristics of the study area and hazard features, and can thus assess vulnerability
to waterlogging more comprehensively and accurately. The indicator system method is
less dependent on historical disaster data than the vulnerability curve method. It has a
broader scope of application, from large-scale international plans to small-scale community
vulnerability studies. For example, Li et al. [7] conducted a waterlogging vulnerability
assessment of old neighborhoods and found that waterlogging vulnerability was higher in
neighborhoods with longer construction times and a more backward living infrastructure.
Zheng et al. [8] comprehensively analyzed the waterlogging vulnerability of 17 municipal
administrations in Hubei Province and found that waterlogging vulnerability was higher
in municipal administrations located in the southeastern region. In addition, the indicator
system method can identify the factors affecting vulnerability, so that human beings can
make corresponding countermeasures in a targeted manner. Helderop et al. [9] showed
that population growth and urban development lead to an increase in vulnerability to
urban flooding. Using the hierarchical analysis method, Huang et al. [10] found that water
surface area and drainage network density are the key factors affecting vulnerability to
urban flooding, and Christian et al. [11] found that the education level of residents and
gender differences significantly affect vulnerability to regional flooding.

With in-depth studies of waterlogging vulnerability, scholars have found that the
time scale determines the degree of damage and impact caused by storm waterlogging
disasters in a city [12], and that vulnerability to waterlogging in the same area tends to
change due to different time scales. However, previous studies have mainly focused on
vulnerability evaluation in present-day urban situations; there have been fewer studies
on the changing status of vulnerability and predictions of future development. Scientific
prediction can help decision-makers understand the future development of waterlogging
vulnerability so that existing measures may be adjusted, or new measures formulated, to
mitigate risk and reduce the loss in time. Some studies have predicted vulnerability using
specific mathematical and theoretical models, but their prediction accuracy has been low.
For example, Yi et al. [13] used the vulnerability index as the dependent variable and the
influence factor as the independent variable to build a neural network model to assess and
predict vulnerability in Urumqi city. However, the average error reached 14.64%. With the
rapid development of GIS, RS, and big data technologies, the accuracy of data acquisition
is growing higher and higher, and how to improve the accuracy of vulnerability prediction
has become the focus of research by scholars today.

The CA–Markov model is a lattice dynamics model which combines the ability of the
CA (cellular automata) model to predict the evolution of spatial patterns with the ability
of the Markov model to extrapolate time series. It has been widely used for predicting
the evolution of land use and vegetation cover [14,15]. In addition, some scholars have
gradually introduced the CA–Markov model into their future-prediction research relating
to vulnerable areas. For example, Yao et al. [16] used the CA–Markov model to simulate
and predict the development of ecological vulnerability in the middle and upper Yalong
River basin, and thereby revealed a pattern of dynamic changes in the future development
of ecological vulnerability in the region. Marzieh et al. [17] used CA–Markov to predict
drought vulnerability in southwest Iran and found that the predicted drought map was
highly consistent with the observed drought map. It can be seen that the CA–Markov
model has high prediction accuracy and adaptability, but it has been less widely used in
studies in waterlogging vulnerability.

Therefore, it is necessary to address the issue of insufficient exploration in existing
research on predicting future vulnerability to waterlogging. As a typical representative of
coastal cities in the south of China, Fuzhou City is a disaster area that is greatly affected by
typhoons and rainstorms on a national scale. Meanwhile, with the accelerated progress of
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urbanization in Fuzhou, the proportion of impermeable surface area is increasing, so that
surface runoff volume is also increasing, and flooding disasters occur frequently. Therefore,
conducting an urban flood vulnerability assessment in Fuzhou may provide support for
flood disaster management, and for disaster prevention and mitigation, in the city, as well as
providing some reference for flood vulnerability assessments in other coastal cities. For the
study described in this paper, we constructed a vulnerability assessment system for urban
waterlogging in Fuzhou based on the VSD model framework to assess the vulnerability of
Fuzhou and predict the future development of vulnerability using the CA–Markov model,
to provide support for waterlogging disaster management, and for disaster prevention and
mitigation, in Fuzhou.

2. Materials and Methods
2.1. Study Area

Fuzhou is located on the southeast coast of China, in the eastern part of Fujian Province,
downstream of the Min River by the sea. The city has 13 counties and districts under its
jurisdiction, as shown in Figure 1. As a typical representative of China’s eastern coastal
cities, it is a disaster area which is greatly affected by typhoons and rainstorms nationwide.
Fuzhou experiences many days of rainstorms and high-intensity rain. At the same time,
with the accelerated progress of urbanization in Fuzhou, the proportion of impervious
surface area is increasing, so that surface runoff is also increasing, and waterlogging
disasters occur frequently.
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Figure 1. Administrative division of Fuzhou.

2.2. Data Source

The data types and sources used in this study are shown in Table 1. Because different
data sources exist, there are also gaps in the coordinate system and resolution. All data
coordinate systems are projected as WGS_1984_UTM_ZONE_50N, with grid resolution
resampled to 100 m by the nearest neighbor technique, to prevent mistakes in overlay com-
putations.
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Table 1. Names and sources of study area base data.

Data Type Data Name Data Source

Meteorological data
Daily meteorological dataset of basic

meteorological elements of China National Surface
Weather Station (V3.0)

Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 1

September 2022))

Geographic
information data

Digital elevation model (30 m resolution) Geospatial data cloud (https://www.gscloud.cn
(accessed on 1 September 2022))

Night-lighting data (1000 m resolution)
National Centers for Environmental Information

(NCEI) (https://www.ncei.noaa.gov (accessed on
1 September 2022))

Normalized difference vegetation index spatial
distribution dataset in China (100 m resolution)

Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences
(https://www.resdc.cn (accessed on 1

September 2022))

Road network, building, water system vector data OpenStreetMap (https://www.openstreetmap.org
(accessed on 1 September 2022))

Land use data (10 m resolution) European Space Agency (www.esa.int (accessed on
1 September 2022))

Population distribution data (100 m resolution) WorldPop (https://www.worldpop.org (accessed
on 1 September 2022))

Socioeconomic data
Education, medical, disaster prevention, and

control data Fuzhou Statistical Yearbook

Emergency shelter data Fuzhou Municipal People’s Government

2.3. Technical Process

A flowchart of the process used for the present study is shown in Figure 2.
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2.4. Index System Construction

For this study, we established an index system based on the VSD model, which has a
wider scope of application than other models [18]. Exposure refers to the extent to which
a city is adversely affected by external pressure or stress, including the influence range

https://www.resdc.cn
https://www.gscloud.cn
https://www.ncei.noaa.gov
https://www.resdc.cn
https://www.openstreetmap.org
www.esa.int
https://www.worldpop.org
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of the causal factors and the spatial location distribution of the disaster-bearing body.
Sensitivity refers to the degree of response of urban disaster-bearing bodies to waterlogging
disturbances; this is determined by the nature of the disaster-bearing bodies themselves,
including their natural and social characteristics. Adaptive capacity refers to the effective
measures taken by humans in response to waterlogging hazards.

Based on the theory of waterlogging vulnerability, and the current situation with
regard to waterlogging disasters in Fuzhou, 20 evaluation indicators were selected to build
an indicator system for assessment of waterlogging vulnerability in Fuzhou, as shown in
Table 2. The entropy method was used to calculate the index’s weight and thus avoid the
influence of human factor of subjective method.

Table 2. Urban waterlogging vulnerability assessment index system for Fuzhou.

Guideline Layer Indicator Layer Indicator Properties Indicator Meaning

Exposure

Total annual rainfall Positive

The annual rainfall totals represent the overall spatial
distribution differences of rainfall in the region. The

higher the rainfall, the higher the risk of waterlogging
and the higher the vulnerability of the area [19].

Number of annual
rainstorms Positive

The sum of the annual number of heavy rainfall events
(daily rainfall ≥ 50 mm or rainfall ≥ 30 mm in 12 h) in

Fuzhou.

Annual storm peak Positive

The peak amount of daily rainstorms in a year. The
city’s waterlogging volume is also greatest during the

peak period, and the city’s traffic congestion and
drainage network operation are related to this

indicator [20].

Population density Positive
The density of the population within the area. The body

most directly affected by urban waterlogging is the
urban population.

Road network density Positive
Reflection of the traffic operation in the region,

expressed by the length of the road network per unit
area.

Building density Positive

Urban buildings are the main disaster-bearers of
internal waterlogging. The greater the building density,

the greater the economic loss, and the normalized
difference build-up index can reflect the building

density more accurately.

Sensitivity

Night lighting Positive Indicators reflecting human activity and economic
activity [21,22].

Soil water retention Negative

Reactive surface runoff. Surface runoff during rainfall is
one of the important factors contributing to the risk of

waterlogging, and surface runoff is related to soil
water-holding capacity [23].

Distance from the water
system Negative

Heavy rainfall events often cause urban waterlogging.
When the rainfall exceeds the storage capacity of water
systems, rivers tend to spill out, thus becoming a new

source of disaster.

Slope Negative

Reflection of the degree of surface tilt. The slope of the
ground can accelerate the water catchment to form

groundwater, and when the drainage is poor, it
develops into internal waterlogging.

Normalized difference
vegetation index Negative Reflection of the vegetation cover of the region.

Vegetation can effectively reduce surface runoff.

Topographic wetness
index Positive

The topographic wetness index can reflect the influence
of topography on the area of catchment production. The

higher the topographic wetness index, the larger the
catchment area on the area’s slope, or the steeper the
hydraulic gradient, the more likely the production of

runoff [24–26].
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Table 2. Cont.

Guideline Layer Indicator Layer Indicator Properties Indicator Meaning

Topographic position
index Negative

Reflection of the effect of local elevation on runoff,
defined as the difference between the center-point

elevation and the mean elevation in the center-point
domain [27].

Contagion index Positive

Landscape sprawl is positively correlated with the
degree of regional inundation, so the greater the

landscape sprawl, the higher the inundation
vulnerability [28].

Shannon’s diversity index Negative

The diversity of the landscape is negatively correlated
with the degree of regional waterlogging, i.e., the more
complex the overall urban landscape, and the richer its
composition types, the less likely it is to cause regional

waterlogging hazards [28].

Adaptive
capacity

Education level Negative

The higher the education level of residents, the better
their ability to recognize and judge risks and their ability

to cope with them. Regional education expenditure
indicates the education level of residents [29].

Medical level Negative

The regional medical level is related to the health of
citizens and the level of health services. It is an

important guarantee for the sustainable development of
human society [30,31]. The medical expenditure of each

county in Fuzhou City indicates the regional medical
level.

Disaster prevention and
control capacity Negative

Reflection of the government’s ability to both prevent
and manage disasters, and rebuild after them, using
expenditures on disaster prevention and emergency

management.

Emergency evacuation
distance Positive

Reflection of the ability of the region to respond to
public emergencies [22]. The distance from the center of

each grid to the initial point is calculated using the
emergency shelter as the initial point.

Drainage pipe network
design standards Negative

The design standard of drainage networks is an
important factor affecting urban waterlogging. When

the intensity of rainfall exceeds the urban drainage
network design standard, the groundwater cannot be
removed in time, thus causing waterlogging in local

areas. This study refers to the requirements of the
design return period of rainwater drains in the Outdoor
Drainage Design Standard GB50014–2021 [32], and the
scope of the central city area as stipulated in the Fuzhou

City Master Plan (2011–2020), and assigns values
according to the importance of the geographical location

of different areas.

2.5. Waterlogging Vulnerability Index and Classification

Waterlogging vulnerability may calculated based on indicator weights using the
following formula:

WVI = E + S − A =
n

∑
i=1

δeiXei +
n

∑
i=1

δsiXsi −
n

∑
i=1

δaiXai (1)

where WVI is waterlogging vulnerability; E is exposure; S is sensitivity; A is adaptive
capacity; δei, δsi, and δai are the weights of the indicators of exposure, sensitivity, and
adaptive capacity, respectively; Xei, Xsi, and Xai are exposure, sensitivity, and adaptive
capacity values, respectively; and n is the number of indicators in each dimensional layer.
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The WVI values for each year were graded by the “natural intermittent point grading
method”, and the upper and lower thresholds of each grade were found. Finally, an average
value of thresholds of the same grade was taken as the final criterion for data classification.
The WVI was classified into Level 1, Level 2, Level 3, Level 4, and Level 5; the higher the
level, the more severe the vulnerability.

2.6. CA–Markov Model

Cellular automata comprise cells, cell states, cell space, a cell neighborhood, and cell
rules [33]. The cell is the most basic unit of cellular automata, and its composition differs
according to different models. The cell state is the state to which the cell belongs at a given
time. Cell space is an expanse of space in which cells are located, and which can be divided
into one dimension, two dimensions, or multiple dimensions, with two-dimensional cellular
automata being widely used. Cell neighborhood refers to the geometric position and state
of a cell adjacent to it. Cell rules are the transition rules that determine the state of the
cell at the next moment. In this study, two-dimensional cell space is used, and the grid of
vulnerability data for Fuzhou is taken as the cell. Each cell has a certain area and a certain
coordinate. The cellular state is divided into five categories: Level 1, Level 2, Level 3, Level
4, and Level 5. A 5 × 5 filter is selected to define the cell neighborhood; this means that
24 cells around the filter affect the properties of the cell. Markov chains are used as cell
conversion rules.

The Markov model is also known as a Markov chain. It can use the empirical transition
probability of the existing discrete state of the system to simulate and predict future devel-
opment [34]. Markov chains have “memoryless” properties, meaning that the probability
distribution of the system state at time t + 1 is only related to the state at time t, and is
independent of the state before time t. It can be expressed by the formulas below [35]:

S(t + 1) = Pij × S(t) (2)

Pij =

P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn

 (3)

where S(t) and S(t + 1) denote the states of the system at moments t and t + 1, respectively;
Pij is the state transfer matrix; i and j represent the two initial end-time points; and n is each
vulnerability level in the study area.

The CA–Markov model combines the ability of cellular automata to simulate the
spatial variability of the system with the advantage of Markov long-term prediction. For
this reason, the CA–Markov model was used in this study to carry out simulation and
prediction of urban waterlogging vulnerability in Fuzhou.

IDRISI is a software that perfectly combines GIS and image-processing functions.
IDRISI17.0 software was used to complete the CA–Markov simulation prediction. The key
steps of the process used in the present study were as follows:

(1) Data format conversion and reclassification: the waterlogging vulnerability assess-
ment results for Fuzhou were converted into the raster data format supported by IDRISI
and reclassified in IDRISI according to the vulnerability classification criteria.

(2) Generating the transfer matrix: the Markov model was used to generate the transfer
matrix of waterlogging vulnerability states.

(3) Logistic was applied to analyze each flooding vulnerability level that might occur
in each raster, and the spatial distribution probability maps of each flooding vulnerability
level were obtained. The suitability maps for each individual flooding vulnerability level
were superimposed using a collection editor in IDRISI software, and the suitability atlas
was obtained as a transformation rule for CA–Markov, which was used as the basis for
the prediction.
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(4) Defining the cell neighborhood: an appropriate filter was selected to define the cell
neighborhood.

(5) Determining the iteration coefficient: Because the data used had a time interval
of 3 years, the time interval for the number of cycles was also set to 3 years; the iteration
coefficient was therefore taken to be 3. The equivalence coefficient was determined to be as
0.15 [36] by referring to the corresponding literature to complete the simulation prediction
of waterlogging vulnerability in Fuzhou.

2.7. Accuracy Check

The kappa coefficient is a measure of accuracy. The CROSSTAB module in IDRISI17.0
software was used to calculate the kappa coefficient to verify the accuracy of the CA–
Markov model simulation results. The calculation equation is as follows [37]:

k =
Po − Pe

1 − Pe
(4)

where Po is the proportion of correctly predicted grids and Pe is the proportion of grids
consistently predicted by the simulation in the random state. When the kappa coefficient
is ≥0.75, the simulation accuracy is higher. When 0.4 ≤ kappa coefficient < 0.75, the
simulation accuracy is normal. When the kappa coefficient is < 0.4, the simulation accuracy
is low.

3. Results and Discussion
3.1. Temporal and Spatial Evolution Characteristics of Waterlogging Vulnerability in Fuzhou
3.1.1. Spatial Distribution Characteristics of Waterlogging Vulnerability in Fuzhou

By calculating the indicators’ information entropy, the indicators’ weights were cal-
culated according to the discrete degree of the entropy value. The calculation results are
shown in Table 3. Based on the weights of the indicators and the formula of the waterlog-
ging vulnerability index, the vulnerability of Fuzhou to waterlogging in 2014, 2017, and
2020 was calculated. The vulnerability index was graded and finally divided into Level 1
vulnerable areas (−0.02–0.05), Level 2 vulnerable areas (0.05–0.12), Level 3 vulnerable areas
(0.12–0.18), Level 4 vulnerable areas (0.18–0.28), and Level 5 vulnerable areas (0.28–0.62).

Table 3. Entropy method to calculate the weighting results.

Index Weight Index Weight

Total annual rainfall 0.019 Normalized difference vegetation index 0.008
Number of annual rainstorms 0.009 Topographic wetness index 0.056

Annual storm peak 0.026 Topographic position index 0.002
Population density 0.29 Contagion index 0.032

Road network density 0.128 Shannon’s diversity index 0.007
Building density 0.01 Education level 0.005

Night lighting 0.196 Medical level 0.006
Soil water retention 0.152 Disaster prevention and control capacity 0.013

Distance from the water system 0.002 Emergency evacuation distance 0.032
Slope 0.004 Drainage pipe network design standards 0.003

The spatial distribution characteristics of waterlogging vulnerability in Fuzhou are
shown in Figure 3. The vulnerability to waterlogging in Fuzhou shows a “center-southeast”
distribution pattern which is gradually decreasing. The central and southeastern regions are
mainly of Level 4 and Level 5 vulnerability, while the Level 3 vulnerable areas are scattered
around the water system of Fuzhou. The northwest and southwest regions are mainly of
Level 1 and Level 2 vulnerability. As the Gulou, Taijiang, and Cangshan districts are the
central urban areas specified in the overall urban plan of Fuzhou, the level of economic
development and urbanization in these districts is high. Good economic conditions have
led to high local population density and extensive road network construction, so that
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disaster losses are greater when waterlogging is experienced. The southeast region is
mainly Fuzhou’s south-wing development zone, including the Fuqing central urban area,
the Yuanhong investment zone, and the Jiangyin industrial concentration zone. These
regions are characterized by highly concentrated industry and commerce; the economic
losses caused by a waterlogging disaster are therefore higher in this region than in other
regions affected by the same event; the vulnerability level in the southeast is therefore high.
The northwestern part is mainly mountainous, with rich vegetation, high altitude, and a
relatively low population, so that vulnerability to waterlogging in the southwestern part
is lower. Zhang et al. [38] reported that increases in impervious surfaces and changes in
natural water surfaces have had a large impact on waterlogging in Fuzhou.
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3.1.2. Temporal Evolutionary Characteristics of Waterlogging Vulnerability in Fuzhou

The statistical analysis of the raster proportion of each level of vulnerability in Fuzhou
is shown in Table 4. Between 2014 and 2017, the Level 1 and Level 2 areas in Fuzhou
decreased by 177.6 km2 (1.41%) and 16.8 km2 (0.14%), respectively; the Level 3, Level 4
and Level 5 areas increased by 126 km2 (1.05%), 44.4 km2 (0.37%), and 26.4 km2 (0.18%),
respectively, with the most significant increase in Level 3 areas. Between 2017 and 2020, the
vulnerability of the Fuzhou region to waterlogging increased significantly. In that time, the
areas with vulnerability at Levels 2, 3, 4, and 5 increased by 284.4 km2 (2.37%), 414 km2

(4.45%), 103.2 km2 (0.86%), and 39.6 km2 (0.33%), respectively. In contrast, the area at Level
1 vulnerability decreased by 843.6 km2 (7.03%) between 2017 and 2020.

Table 4. Extent of vulnerability-level areas in Fuzhou between 2014 and 2020.

Year Level 1/km2 Level 2/km2 Level 3/km2 Level 4/km2 Level 5/km2

2014 8518.8 1946.4 937.2 460.8 136.8
2017 8341.2 1929.6 1063.2 505.2 163.2
2020 7497.6 2214 1477.2 608.4 202.8

The spatial analysis function of ArcGIS was used to perform superposition analysis of
the vulnerability assessment results for different periods, and a change-and-transfer matrix
of vulnerability in the study area from 2014 to 2020 was obtained, as shown in Table 5. It
was found that changes in waterlogging vulnerability in Fuzhou could be divided into five
types: (1) Continuous-change types, such as the A–B–C type, mainly Level 1–Level 2–Level
3. (2) Repeated-change types, such as the A–B–A type, mainly Level 1–Level 2–Level 1 and
Level 2–Level 1–Level 2. (3) Late-stage-change types, such as the A–A–B type, including
changes from low-level to high-level and from high-level to low-level. (4) Early-stage-
change types, such as the A–B–B type. This the type most evident in changes from Level 2
to other levels. (5) Stable types, such as A–A–A. Among these, The transformation area of
the Level 1–Level 1–Level 1 change type was the highest, at 556.75 km2. The transformation
area of the Level 5–Level 5–Level 5 change type was lowest, at only 9.18 km2. The stable
area accounted for 74.91%, which can be understood as an absolute dominant position. The
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area that changed was mainly of the late-change type, accounting for 14.13%. Therefore,
it can be considered that vulnerability to waterlogging in most areas of Fuzhou changed
between 2017 and 2020.

Table 5. Different types of change in waterlogging vulnerability in Fuzhou from 2014 to 2020.

Type Main Types of Change Area/km2 Scale/%

Stable

Level 1–Level 1–Level 1 556.75 62.5
Level 2–Level 2–Level 2 58.53 6.57
Level 3–Level 3–Level 3 26.28 2.95
Level 4–Level 4–Level 4 16.57 1.86
Level 5–Level 5–Level 5 9.18 1.03

Early-stage change

Level 1–Level 2–Level 2 17.55 1.97
Level 2–Level 1–Level 1 9.89 1.11
Level 2–Level 3–Level 3 16.12 1.81
Level 3–Level 2–Level 2 5.88 0.66
Level 3–Level 4–Level 4 6.95 0.78

Late-stage change

Level 1–Level 1–Level 2 62.89 7.06
Level 1–Level 1–Level 3 7.39 0.83
Level 2–Level 2–Level 1 5.7 0.64
Level 2–Level 2–Level 3 33.76 3.79
Level 3–Level 3–Level 2 4.81 0.54
Level 3–Level 3–Level 4 11.31 1.27

Repeated change

Level 1–Level 2–Level 1 10.42 1.17
Level 2–Level 1–Level 2 10.33 1.16
Level 2–Level 3–Level 2 6.68 0.75
Level 3–Level 2–Level 3 8.28 0.93

Continuous change Level 1–Level 2–Level 3 5.61 0.63

To further understand the characteristics of the changes in the vulnerability of Fuzhou,
the types with a relatively large transformation area from 2014 to 2020 were screened
and visualized, and changes in the vulnerability index of Fuzhou calculated, as shown in
Figure 4. It can be seen that the transformation area is concentrated in the eastern coastal
area and is characterized by mainly high vulnerability levels, while the vulnerability of
the western area is mainly at Levels 1 and 2. These areas are mainly located in the urban
area of Fuzhou close to the Minjiang River; according to the current trend, these areas
are most likely to be transformed to Level 5 vulnerability in the future. Therefore, we
need to focus on these areas when planning future disaster prevention and mitigation.
The areas with greatest increases in their vulnerability index are mainly distributed in
Fuqing City, Pingtan County, and Minhou County; of these, Fuqing City has experienced
the greatest increase in its vulnerability index. The main reason is that Fuqing City has
gradually improved its road network by means of intensified road construction in recent
years. Changfu Expressway and the Binhai transport corridor were both constructed
during this period, and the original national, provincial, and county roads were upgraded
and reconstructed. The road network is now denser than it was in 2014, and this has
driven the development of industry, the aggregation of population, and the promotion of
economic development. However, the corresponding urban drainage facilities have not
kept up with the construction, resulting in a sharp rise in the vulnerability index of the
region. In the Level 5 vulnerable areas, which are mainly in the center of the study region,
the vulnerability level has not changed, but the corresponding vulnerability index has
decreased. This shows that the corresponding disaster reduction measures are effective
and can reduce the vulnerability of urban waterlogging.
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3.2. Future Prediction of Waterlogging Vulnerability in Fuzhou
3.2.1. CA–Markov Simulation Accuracy Check

The CA–Markov model was used to simulate the waterlogging vulnerability of Fuzhou
in 2020 using the results of the waterlogging vulnerability assessments in 2014 and 2017
as the base data. The simulation result and the actual situation are shown in Figure 5. It
can be seen that their spatial distribution characteristics are consistent. The average error
of the simulation result for 2020 is 8.44% for each vulnerability level, relative to the actual
results which are shown in Table 6. Among these results, the simulation error for Level 3
vulnerability is the highest, at −19.82%, and the simulation error for Level 2 vulnerability
is the lowest, at −3.79%. The kappa coefficient of the predicted waterlogging vulnerability
in Fuzhou in 2020 is 0.9079, indicating that the model is feasible and applicable to the
prediction of waterlogging vulnerability in Fuzhou.
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Table 6. Area proportions and relative errors between the simulation result and the actual situation
for each vulnerable level in Fuzhou in 2020.

Waterlogging
Vulnerability Level

Simulated Area
Ratio/% Actual Area Ratio/% Relative Error/%

Level 1 66.07 62.48 5.75
Level 2 17.75 18.45 −3.79
Level 3 9.87 12.31 −19.82
Level 4 4.72 5.07 −6.9
Level 5 1.59 1.69 −5.92

3.2.2. Results of Predictions of Future Waterlogging Vulnerability in Fuzhou

Based on the vulnerability assessment results for Fuzhou in 2017 and 2020, the
CA—Markov model was used to predict the vulnerability of Fuzhou City to internal
waterlogging in 2023, 2026, and 2029. The simulation results are shown in Figure 6. It
can be seen that the regions with the largest predicted change in vulnerability in Fuzhou
between 2020 to 2029 are concentrated on the eastern coast; this is consistent with the chang-
ing trend of vulnerability in Fuzhou from 2013 to 2020. The vulnerability levels of Luoyuan
County and Lianjiang County in the northeast exhibit the greatest change, generally from
Levels 3 and 4 to Level 5. In the eastern Changle District and in the southeastern Pingtan
County, vulnerability levels are not predicted to increase but instead exhibit a trend of
spreading into surrounding areas.
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The areas of waterlogging vulnerability levels in different years are shown in Table 7.
Between 2020 and 2029, the extent of Level 1 vulnerable areas in Fuzhou is predicted to
decrease by 3717 km2, while Level 2, Level 3, Level 4, and Level 5 vulnerable areas are
expected to increase in size by 459 km2, 1646 km2, 1115 km2, and 494 km2, respectively.
Among them, the extent of Level 5 vulnerable areas is expected to grow faster and faster
with the passage of time. In summary, the extent of the areas in Fuzhou which are vulnerable
to waterlogging is increasing with time, and the vulnerability level continues to deteriorate.
Therefore, it is necessary to strengthen further the optimization and control of vulnerable
areas in Fuzhou.

Table 7. Predicted extent of vulnerable level areas in Fuzhou between 2023 and 2029.

Year Level 1/km2 Level 2/km2 Level 3/km2 Level 4/km2 Level 5/km2

2023 5853.5 3068.6 1975.9 824.6 246.5
2026 3896.8 3707.7 2775.4 1235.1 353.1
2029 2136.3 3528.2 3622.7 1940.0 740.8

4. Conclusions

In this study, taking Fuzhou as the research object, we constructed a waterlogging
vulnerability assessment system, calculated a waterlogging vulnerability index for the



Water 2023, 15, 4025 13 of 15

period from 2014 to 2020, and predicted future trends in vulnerability. The main conclusions
drawn may be stated as follows:

(1) The vulnerability of waterlogging in Fuzhou is characterized by a gradually de-
creasing “center-southeast” distribution pattern. Level 1 and Level 2 vulnerable areas
are distributed in Fuzhou’s northwestern and southwestern areas. In contrast, Level 3
vulnerable areas are scattered around the water system of Fuzhou. Level 4 and Level 5
vulnerable areas are concentrated in central areas such as Gulou District, Taijiang District,
Cangshan District, and the southeastern development area of the south wing of Fuzhou.

(2) Between 2014 and 2017, and between 2017 and 2020, Level 1 regions exhibited the
greatest decreases in vulnerability, of 1.41% and 7.03%, respectively. Level 3 regions showed
the largest increases, of 1.05% and 4.45%, respectively. The change in the vulnerability of
Fuzhou to waterlogging between 2014 and 2020 can be divided into five change modes, in
which the change of regional types is mainly in the later stage. The change of region types
was concentrated in the eastern coastal area, and was characterized mainly by transition
between high vulnerability levels. The areas with the highest increases in their vulnerability
index were Fuqing County, Pingtan County, and Minhou County, largely because of the
construction of new road networks in these areas. In future disaster prevention and
mitigation, focusing on areas with rapid road network construction is necessary.

(3) The CA–Markov model can accurately predict waterlogging vulnerability with a
kappa coefficient of 0.9079. Between 2020 and 2029, the vulnerability of Fuzhou is expected
to increase further. In the counties of Luoyuan and Lianjiang in the northeast, the regional
vulnerability level is predicted to rise generally to Level 5, while in Changle district in
the east, and in Pingtan County in the southeast, the regional vulnerability level is mainly
predicted to exhibit a trend of spreading to surrounding areas. With the passage of time,
the proportion of Level 5 vulnerable areas is expected to increase faster and faster.

(4) This study has a limitation with respect to the modeling of waterlogging vulnera-
bility at Level 3. It can be seen that the error reaches −19.82% in this case. However, in this
study, we have improved the model accuracy for Fuzhou to the greatest degree possible
using existing technology and data, and although the error is large for the simulation of
Level 3, the methods described in paper nevertheless represent a new means of applying
the CA–Markov model for the prediction of waterlogging vulnerability levels.
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