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Abstract: It is significant to adopt scientific temperature control criteria for high concrete dams in the
construction period according to practical experience and theoretical calculation. This work syntheti-
cally uses information entropy and a cloud model and develops novel in situ observation data-based
temperature control indexes from the view of a spatial field. The order degree and the disorder degree
of observation values are defined according to the probability principle. Information entropy and
weight parameters are combined to describe the distribution characteristics of the temperature field.
Weight parameters are optimized via projection pursuit analysis (PPA), and then temperature field
entropy (TFE) is constructed. Based on the above work, multi-level temperature control indexes are
set up via a cloud model. Finally, a case study is conducted to verify the performance of the proposed
method. According to the calculation results, the change law of TFEs agrees with actual situations,
indicating that the established TFE is reasonable, the application conditions of the cloud model are
wider than those of the typical small probability method, and the determined temperature control
indexes improve the safety management level of high concrete dams. Research results offer scientific
reference and technical support for temperature control standards adopted at other similar projects.

Keywords: high concrete dam; in situ observation data; temperature field; temperature control index;
information entropy; cloud model; dam safety

1. Introduction

Several high concrete dams have been constructed in China over the years, e.g., the
Xiluodu arch dam (285.50 m) and the Xiangjiaba gravity dam (162.00 m), as shown in
Figure 1a,b [1–8]. These huge projects have tremendously contributed to the economic
growth and social development of China. However, they also pose serious security risks,
which could cause unpredictable and disastrous consequences. Historically, severe concrete
dam failure accidents occurred and caused vast economic losses and causalities, such as the
St. Francis dam, the Malpasset dam, and the Vajont dam [9–11]. Therefore, governments
of the world set strict requirements on the safe construction and operation of concrete
dams [12], especially for high concrete dams. Instead of a sudden occurrence, a dam acci-
dent is a gradual process from quantitative to qualitative changes. In situ observation and
risk assessment are essential for making informed decisions about the construction safety of
high concrete dams, with the ultimate goal of protecting both people and property [13]. If
robust and reliable real-time safety monitoring strategies are conducted, then most hidden
dangers can be found and catastrophic accidents can be avoided [14–16].
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spatial field. Chen et al. proposed a temperature control approach by using the finite ele-
ment (FE) method, and on this basis, the temperature field evaluation and the thermal-
induced stress of the discussed roller-compacted-concrete (RCC) dam were analyzed [23]. 
Chen et al. used the AdaBoost-ANN algorithm to reconstruct the temperature field of con-
crete arch dams. The calculation results showed that the proposed algorithm is convenient 
for dam safety assessment [24]. Pan et al. used the convolutional neural network to ana-
lyze the temperature field distribution of the Xiaowan dam, and this method can accu-
rately predict possible thermal cracks on the dam surface [25]. Hou et al. used the FE 
method to invert the thermal parameters of dam concrete. The calculation results effi-
ciently reflect the temperature field distribution of the discussed ultra-high arch dam [4]. 
Zhou et al. applied the distributed temperature sensing technology to monitor the tem-
perature field distribution of high-arch dams under construction [26]. In China, cold areas 
play an important role in further hydropower development. Compared with regions with 
a mild climate, cold areas where cold waves appear frequently have a large day-night 
temperature difference, a low annual average temperature, etc., and many scientific prob-
lems need to be solved urgently. Although there has been some progress in research re-
lated to the spatial temperature field, in-depth research remains rare, especially for those 
using in situ observation data. 

Information entropy, also known as Shannon entropy, is a measure of uncertainty 
degree caused by insufficient or chaotic information in a system. The greater the infor-
mation entropy, the higher the chaotic degree and uncertainty degree the studied system 
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Figure 1. Typical high concrete dams: (a) Xiluodu arch dam and (b) Xiangjiaba gravity dam.

Concrete temperature is an important in situ observation indicator for concrete
dams [17–19]. Several factors, e.g., cement hydration heat, atmospheric temperature, water
temperature, etc., play an important role in concrete temperature variation. Concrete mate-
rials have poor temperature conductivity. The influence of temperature is mainly reflected
in temperature stress. If temperature stress exceeds the threshold, then it can cause dam
cracks. Adopting scientific temperature control methods [20–22] can effectively prevent
dam cracks, which is crucial to guarantee dam safety. Conventionally, researchers focus on
investigating single-point control indexes. However, with the continuous construction of
ultra-high concrete dams, single-point indexes cannot meet practical demands. There is an
urgent need to construct temperature control indexes from the perspective of the spatial
field. Chen et al. proposed a temperature control approach by using the finite element (FE)
method, and on this basis, the temperature field evaluation and the thermal-induced stress
of the discussed roller-compacted-concrete (RCC) dam were analyzed [23]. Chen et al.
used the AdaBoost-ANN algorithm to reconstruct the temperature field of concrete arch
dams. The calculation results showed that the proposed algorithm is convenient for dam
safety assessment [24]. Pan et al. used the convolutional neural network to analyze the
temperature field distribution of the Xiaowan dam, and this method can accurately predict
possible thermal cracks on the dam surface [25]. Hou et al. used the FE method to invert
the thermal parameters of dam concrete. The calculation results efficiently reflect the tem-
perature field distribution of the discussed ultra-high arch dam [4]. Zhou et al. applied the
distributed temperature sensing technology to monitor the temperature field distribution
of high-arch dams under construction [26]. In China, cold areas play an important role in
further hydropower development. Compared with regions with a mild climate, cold areas
where cold waves appear frequently have a large day-night temperature difference, a low
annual average temperature, etc., and many scientific problems need to be solved urgently.
Although there has been some progress in research related to the spatial temperature field,
in-depth research remains rare, especially for those using in situ observation data.

Information entropy, also known as Shannon entropy, is a measure of uncertainty de-
gree caused by insufficient or chaotic information in a system. The greater the information
entropy, the higher the chaotic degree and uncertainty degree the studied system shows.
Many applications have been employed in the field of dam safety monitoring. Chen et al.
used information entropy theory to analyze the seepage characteristics of complex rock
mass dams [27]. Su et al. comprehensively applied information entropy theory and the FE
method to analyze the stress and deformation of concrete-faced rockfill dams [28]. Cui et al.
proposed the multi-time-scale mutual information entropy method to reveal the cyclic
synchronous changes of drought-flood abrupt alternation in the Three Gorges reservoir
area [29]. Lei et al. employed information entropy to characterize the spatial deformation
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distribution of high concrete dams. On this basis, the multi-level early-warning indexes
were constructed by applying the typical small probability method [30]. Zheng et al. used
Copula entropy and mutual information theory to analyze and process in situ obser-
vation data of dams, effectively reducing the influence of correlations among different
factors [31]. Huang et al. constructed the viscoelastic control indexes for monitoring the
deformation safety of gravity dams in alpine regions by comprehensively using the typical
small probability method and the maximum entropy method [32]. Zhang et al. used the
maximum entropy method to determine operational control loads of concrete dams accord-
ing to deformation observation data, and the analysis results showed that the proposed
method, compared with traditional approaches, has better performances [33]. Qin et al.
used weighted fusion entropy and Hurst exponent difference to evaluate the crack evolu-
tion of concrete dams [34]. Information entropy, as an intelligent and information-based
mathematical method, not only lays a theoretical foundation for measuring uncertainty in
random events, but also possesses broad universality and scalability to describe system
state evolution. Further research needs to be conducted to characterize the evolution laws
of high concrete dam temperature fields based on information entropy theory and then to
construct reasonable control indexes for ensuring dam safety.

The cloud model algorithm is a mathematical model using probability theory to
describe and quantify uncertain information. It consists of two parts, i.e., a cloud generator
and a cloud transformation. Forward and reverse cloud generators can generate cloud
droplets and determine mathematical features, respectively. Cloud transformation converts
cloud droplets into a probability distribution used for further analysis. The cloud model
possesses strong abilities in handling uncertain and imprecise information, which has been
applied in various fields, e.g., data mining, decision-making, and pattern recognition. For
dam safety monitoring, the cloud model has also achieved successful applications. Han
et al. proposed the cloud model-Monte Carlo coupling model that can accurately evaluate
risk degree in dam safety management [35]. Wu et al. integrated the cloud model and
Dempster-Shafer evidence theory to assess the safety state of tailing dams. The developed
approach has strong robustness and a fault-tolerant capacity [36]. Li et al. used the cloud
model to analyze in situ observation data of dams, and the proposed method has good
performance in discovering abnormal values [37]. Sang et al. developed the extended
cloud model and the extended analytic hierarchy process method to address uncertainty
problems in the safety assessment of dams [38]. Guo et al. used a cloud model and modal
strain energy to identify uncertain damage problems caused by noise [39]. According to
the above analyses, the cloud model algorithm can achieve the conversion of qualitative
concepts into quantitative data, which provides an effective way to construct temperature
control indexes for the multi-level risk management of high concrete dams.

Consequently, by synthetically using information entropy and a cloud model, this
study develops temperature control indexes based on in situ observation data. The paper
is organized as follows. In Section 2, temperature field entropy (TFE) for describing the
evolution characteristics of temperature fields is established, and projection pursuit analysis
(PPA) is explored to optimize weight parameters. Section 3 investigates the principle of the
cloud model, and then the cloud model-based temperature control indexes are constructed.
Section 4 conducts a case study to verify the proposed method. In Section 5, the main
conclusions of the research are summarized, and some suggestions are provided.

2. Temperature Field Characterization Using Information Entropy
2.1. TFE Construction

The evaluation process of dam temperature can be roughly divided into two stages, i.e.,
the construction period and the operation period [40–42]. During the construction period,
the temperature field of the dam body is affected by multiple factors, such as cement
hydration heat, artificial cooling, and ambient temperature. In the stage of operation,
cement hydration heat has basically dissipated, and the temperature field is affected
by ambient temperature, e.g., air temperature and water temperature [43–46]. Concrete
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temperature has a significant impact on the stability of the dam during the construction
period, but its effects during regular operation afterward are essentially insignificant.
This work mainly focuses on the construction period, and information entropy is used to
characterize the temperature field evaluation of high concrete dams.

Here, δij denotes the observation value of the ith observation point on the jth ob-
servation date, the corresponding order degree is recorded as uij, ωi denotes the weight
parameter of the ith point, i = 1, 2, · · · , n and n is the total number of observation points.
Under the condition of temperature increase, uij is defined as follows:

uij = Fi
(
δij
)
=
∫ δij

−∞
fi(δ)dδ, (1)

where fi(δ) is the probability density function of δij, and Fi(δ) denotes the probability
distribution function. For temperature decrease, uij is built as follows:

uij = 1− F(δij) =
∫ +∞

δij

fi(δ)dδ. (2)

According to the definition of information entropy, the temperature entropy (TE) of δij
is expressed by Sij as follows:

Sij = −
[
uij ln uij +

(
1− uij

)
ln
(
1− uij

)]
= −

2

∑
k=1

up
ij ln up

ij, (3)

where p is a parameter with a value of one or two, and u1
ij = uij and u2

ij = 1− uij are the
order degree and the disorder degree of δij, respectively. Obviously, the disorder degree
decreases while the order degree increases and vice versa.

This work regards the temperature field of high concrete dams as an interactional
system in which characteristic points have different contribution degrees. ωi is used to
describe the contribution degree of the ith point. The weight entropy (WE) Sω is established
as follows:

Sω = −
n

∑
i=1

ωi ln ωi. (4)

Information entropy and weight parameters are combined to describe the distribution
characteristics of the temperature field. Then, TFE can be constructed as follows:

Sj = −
n
∑

i=1

2
∑

p=1
ωiu

p
ij ln

(
ωiu

p
ij

)
= −

n
∑

i=1

2
∑

p=1
ωiu

p
ij

(
ln ωi + ln up

ij

)
= −

n
∑

i=1

2
∑

p=1
ωiu

p
ij lnωi −

n
∑

i=1

2
∑

p=1
ωiu

p
ij lnup

ij

= −
n
∑

i=1
ωi lnωi

2
∑

p=1
up

ij −
n
∑

i=1
ωi

2
∑

p=1
up

ij ln up
ij

= Sω +
n
∑

i=1
ωiSij

. (5)

Equation (5) reveals that TFE involves WE and the weighted TE. The lower the quantity
of TFE, the more dangerous the temperature status demonstrates.

2.2. Weight Optimization

PPA, as a high-dimensional data analysis method, can identify data structures and
characteristics by projecting high-dimensional monitoring data into a low-dimensional
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space. PPA [47–50] is used to optimize the weight parameters. The calculation steps are
given as follows.

Calculate Sij by using Equations (1)–(3). The matrix S is constructed as follows:

S =
{

Sij
}
=


S11 S12 · · · S1m
S21 S22 · · · S2m

...
...

. . .
...

Sn1 Sn2 · · · Snm

, (6)

where m is the total number of observation dates, and n denotes the total number of
observation points. Project S to the unit direction P =

{
p1, p2, · · · , pj, · · · , pn

}
, where

p1
2 + p2

2 + · · ·+ pn
2 = 1. The projection function G(i) is expressed as follows:

G(i) =
m

∑
j=1

pj · Sij. (7)

The best projection direction P∗ is determined by solving the following optimization
problem, namely:

Max : H(p) = SG ·QG (8)

Constraint :
m

∑
j=1

pj
2 = 1. (9)

In Equation (8), SG and QG are expressed as follows:

SG =

√√√√√ n
∑

i=1
[G(i)− g(i)]2

n− 1
(10)

QG =
n

∑
i=1

m

∑
j=1

(
R− rij

)
· f
(

R− rij
)
, (11)

where g(i) is the mean value of G(i), R = 0.1SG, rij = |G(i)− G(j)| is the distance between
G(i) and G(j), and f (t) is a unit step function equal to 1 if t > 0; otherwise, it is 0. Substitute
P∗ into Equation (7) to compute G∗(i). Then, calculate the individual contribution ωi by
using the following:

ωi =
G∗(i)

n
∑

i=1
G∗(i)

. (12)

3. Temperature Control Index Construction Based on Cloud Model
3.1. Cloud Model Algorithm

Here, U denotes a domain, C is a qualitative concept, x ∈ U is a variable, and
the certainty degree of x is recorded as u, a random number in the range of [0, 1]. The
distribution of x on U is called a cloud, and the point (x, u) is a cloud droplet.

The mathematical features of cloud model, i.e., the expectation Ex, the entropy En,
and the hyper entropy He, are calculated by using reverse cloud generator. For a data set
x = {x1, x2, · · · , xl , · · · , xk}, k is its data size, and the mean value x and the variance σx are
calculated as follows:

x =
1
k

k

∑
l=1

xl (13)

σx =

√√√√ 1
k− 1

k

∑
l=1

(xl − x)2. (14)
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The calculation expressions of Ex, En, and He are as follows:

Ex = x, (15)

En =
(π

2

)1/2 1
k

k

∑
l=1
|xl − Ex|, (16)

He =
√

σx2 − En2. (17)

Cloud droplets are generated by using a forward cloud generator. The algorithm steps
are as follows [51–55]. Generate the normal random number E′ni with the mean value of
En and the variance of He

2, expressed as follows:

E′ni = NORM
(

En, He
2
)

. (18)

Build the normal random number xi with the mean value of Ex and the variance of
E′ni , recorded as follows:

xi = NORM
(
Ex, E′ni

)
. (19)

The certainty degree ui of xi is calculated as follows:

ui = e
− (xi−Ex)2

2E′ni . (20)

Repeat the above steps, and all preset cloud droplets can be generated. The upper and
lower bounds of cloud droplets are expressed by yu(x) and yl(x) as follows:

yu(x) = e
− (x−Ex)2

2(En+3He)2 (21)

yl(x) = e
− (x−Ex)2

2(En−3He)2 . (22)

The three mathematical features have different impacts on the morphology of artificial
clouds. If artificial clouds have the same values of En and He but different Ex, then their dis-
persion degrees, distribution ranges, and cloud thickness are basically the same. However,
the center areas are different, as shown in Figure 2a,b. If artificial clouds have the same
values of He and Ex but different En, then their center areas and cloud thickness are similar,
while the dispersion degrees and distribution ranges are different, as shown in Figure 2a,c.
Moreover, it can be seen from Figure 2a,d that same Ex, same En, and different He result in
similar center areas, similar dispersion degrees, similar distribution ranges, but different
cloud thickness. The greater the value of He, the thicker the artificial cloud exhibits.

3.2. Temperature Control Index

Table 1 shows the contribution degrees of different domains, which are important
references to establish the temperature control index. Considering practical situations of
high concrete dams, TFEs under unfavorable conditions are taken as samples, and the data
set S′ is constructed as follows:

S′ = {S1, S2, · · · , Sk}. (23)
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Figure 2. Cloud droplet distributions with different mathematical features: (a) Ex = 0, En = 1, and
He = 0.05; (b) Ex = 1, En = 1, and He = 0.05; (c) Ex = 0, En = 0.5; and He = 0.05; and (d) Ex = 0,
En = 1, and He = 0.1.

Table 1. The ∆D and β values of ∆U.

Domain ∆U Contribution Degree ∆D Value of β

[Ex − 0.67Ek, Ex + 0.67Ek] 50.0% 0.67
[Ex − Ek, Ex + Ek] 68.3% 1.00

[Ex − 1.96Ek, Ex + 1.96Ek] 95.0% 1.96
[Ex − 2Ek, Ex + 2Ek] 95.5% 2.00

[Ex − 2.58Ek, Ex + 2.58Ek] 99.0% 2.58
[Ex − 3Ek, Ex + 3Ek] 99.7% 3.00

Ex, En, and He are calculated by employing the reverse cloud generator, and cloud
droplets are generated using the forward cloud generator. α denotes the confidence
level. The relationship between the confidence level α and the contribution degree ∆D
is α = 1− ∆D. According to the principle of small probability event, if small probability
events occur, then the studied dam is in different degrees of abnormality. The corresponding
temperature control index Sm,α is constructed as follows:

Sm,α = Ex − βEn, (24)

where β is a parameter related to α. According to Table 1, if α is set as 0.01, then β equals 2.58.
Dam security can be evaluated by comparing Sj and Sm,α. If Sj < Sm,α, then the studied
dam may be in an abnormal state on the jth observation date. Appropriate measures should
be taken to improve the temperature state of the studied dam.

In actual applications, several confidence levels α1, α2, · · · , αk (α1 > α2 > · · · > αk)
are set, and the corresponding Sm,α1 , Sm,α2 , · · · , Sm,αk (Sm,α1 < Sm,α2 < · · · < Sm,αk ) are
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used for multi-level dam risk management. It should be noted that α is determined by
considering various factors, e.g., engineering and build grades. This parameter should be
carefully selected.

The algorithm flowchart is shown in Figure 3.
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4. Case Study
4.1. In Situ Observation Data

The studied dam is a RCC gravity dam, and it is located on the Jinsha River in south-
western China. This dam has a crest elevation of 1424.00 m, a maximum dam height
of 160.00 m, and a crest length of 640.00 m. The storage capacity of the reservoir is
9.13 × 109 m3. The normal and checked water levels are 1418.00 m and 1421.07 m, re-
spectively. The proposed methodology is adopted for the #6 dam section. Thirty-three ob-
servation points are installed to monitor temperature variations, as shown in Figure 4.
Figure 5 gives the time curves of air temperature that show a periodic change pattern. Tak-
ing November 2011 as an example, the average daily temperature is 14.2 ◦C, the maximum
temperature is 30.7 ◦C, and the minimum temperature is 4.7 ◦C. The average, maximum,
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and minimum temperature differences between day and night are 17.4 ◦C, 22.5 ◦C, and
7.4 ◦C, respectively.
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Figure 5. Time curves of air temperature.

The time curve of the concrete temperature observed at A6-T-21 is shown in Figure 6.
In the early stage of concrete pouring, the concrete temperature gradually increases due
to cement hydration heat. As cement hydration heat gradually dissipates, the concrete
temperature exhibits a decreasing trend. Figure 7a,b show the temperature field distribu-
tions before and after water storage, respectively. After the upstream water level reaches
1397.83 m, the temperature change on the upstream surface is mainly affected by air tem-
perature and water temperature. Compared with the downstream surface, the change
amplitude of the upstream surface is relatively smaller. It can be seen from Table 2 that
the maximum and minimum values are 49.4 ◦C and 12.4 ◦C, respectively, and that the
maximum annual variation is 22.0 ◦C, which appeared at A6-T-37 in 2009.
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Figure 6. Time curve of concrete temperature observed at A6-T-21.

Table 2. Maximum value, minimum value, and maximum annual variation.

Observation
Point

Point
Number

Maximum Value/
Date (mm-dd-yyyy)

Minimal Value/
Date (mm-dd-yyyy)

Maximum Annual
Variation/Year (yyyy)

A6-T-06 1 31.1/09-11-2007 17.0/08-30-2007 14.2/2007
A6-T-07 2 31.9/10-22-2008 20.0/01-30-2012 10.8/2008
A6-T-08 3 34.0/09-05-2008 23.0/02-01-2010 10.9/2008
A6-T-09 4 33.0/09-10-2008 17.9/03-11-2008 15.1/2008
A6-T-10 5 30.8/05-12-2008 17.4/03-11-2008 13.5/2008
A6-T-11 6 34.6/10-07-2008 19.9/02-22-2012 11.3/2008
A6-T-12 7 40.6/05-19-2008 22.2/03-22-2008 18.4/2008
A6-T-13 8 33.8/09-02-2008 18.1/02-01-2010 15.0/2008
A6-T-14 9 30.4/06-06-2008 18.1/08-19-2010 10.3/2008
A6-T-15 10 30.5/07-04-2008 17.4/01-03-2011 10.3/2008
A6-T-16 11 32.3/05-23-2008 19.9/08-11-2011 11.8/2008
A6-T-17 12 31.7/05-16-2008 18.5/03-18-2011 11.8/2008
A6-T-18 13 31.5/05-16-2008 20.7/12-28-2011 10.9/2008
A6-T-19 14 31.7/05-16-2008 19.6/04-19-2008 12.2/2008
A6-T-20 15 37.7/05-17-2008 14.7/12-28-2011 18.9/2008
A6-T-21 16 37.1/08-15-2008 17.9/05-05-2008 19.2/2008
A6-T-22 17 35.5/08-29-2008 18.1/05-05-2008 17.4/2008
A6-T-23 18 32.1/06-06-2008 18.6/05-05-2008 13.5/2008
A6-T-24 19 38.0/07-24-2008 19.0/07-03-2008 19.0/2008
A6-T-25 20 34.2/09-05-2008 19.0/07-03-2008- 15.3/2008
A6-T-26 21 30.5/02-11-2010 20.0/07-03-2008 10.5/2008
A6-T-27 22 31.7/01-14-2009 12.4/03-10-2011 10.6/2008
A6-T-28 23 28.5/12-17-2010 18.3/12-03-2008 5.9/2008
A6-T-29 24 28.4/08-11-2010 19.0/12-03-2008 4.9/2008
A6-T-30 25 40.2/11-05-2009 18.1/12-03-2008 14.3/2009
A6-T-31 26 32.0/12-17-2010 18.6/12-03-2008 5.8/2010
A6-T-32 27 31.8/12-17-2010 18.0/12-03-2008 6.3/2008
A6-T-33 28 27.9/12-17-2010 17.8/12-03-2008 6.9/2008
A6-T-34 29 30.5/08-26-2010 14.0/12-04-2008 7.8/2010
A6-T-35 30 49.4/05-28-2009 17.3/07-22-2011 21.2/2009
A6-T-36 31 39.6/05-28-2009 17.5/01-20-2011 20.6/2009
A6-T-37 32 48.5/10-04-2009 19.0/04-06-2011 22.0/2009
A6-T-38 33 45.3/09-28-2009 22.4/02-10-2012 16.5/2009
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Figure 7. Temperature field distributions, (a) before water storage and (b) after water storage.

4.2. Weight Distribution

The concrete pouring of the #6 dam section began on 29 July 2007. The construction
was completed on 16 November 2009. The dam foundation elevation is 1288.00 m, and
the dam crest elevation is 1424.00 m. The average pouring temperature is approximately
16 ◦C. The analysis period is divided into four stages according to the pouring process.
Stage 1 is from 26 January 2008 to 6 March 2008. The corresponding pouring elevation
is 1311.00 m. Stage 2 is from 7 March 2008 to 10 August 2008 with a pouring elevation
of 1360.00 m. Stage 3 is from 11 August 2008 to 26 November 2009, and the pouring
elevation is 1422.50 m. Stage 4 is from 27 November 2009 to 20 January 2014. At this stage,
the dam construction has been completed. The weight distribution is optimized by PPA,
and the results are shown in Figure 8. The point numbers are given in Table 2. To verify
the reasonability of the weight distribution, the temperature fields of the four stages are
simulated using the FE method. The numerical simulation considers the comprehensive
effects of cement hydration heat, ambient temperature, and cooling water pipes. The initial
temperature of cooling water is approximately 11.4 ◦C. Figure 9a,b show the FE models
of the dam body, foundation, and cooling water pipe. The ABAQUS 2021 software is
used to conduct numerical simulations in this work. The temperature distributions are
presented in Figure 10a–d. Apparently, observation points with higher calculation values
have higher weight parameters, indicating that the weight distribution patterns are in line
with actual situations.
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4.3. Comparative Analysis

At an early stage of the construction period, concrete materials release abundant heat,
and dam temperature quickly increases, leading to a decrease in TFEs. Thereafter, the
concrete temperature of the dam body gradually decreases due to artificial cooling and
heat dissipation, leading to an increase in TFEs. Since the end of Stage 3, the concrete
temperature of the dam body has started to decrease and tends to stabilize gradually. Due
to periodic changes in ambient temperature, TFEs show periodic fluctuations at Stage 4,
as demonstrated in Figure 11. The regularities of TFEs agree with actual situations, and
Equation (5) can effectively characterize the evolution characteristics of a high concrete
dam temperature field.
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Figure 11. Time curve of TFEs for the #6 dam section.

In this work, the typical small probability method is compared with the cloud model.
The analysis process is as follows. The probability distribution of S′ = {S1, S2, · · · , Sk} is
tested by the Kolmogorov–Smirnov (K–S) method [56,57]. Then, its probability density
function f (S) and distribution function F(S) are determined. According to the confidence
level α, its abnormal probability is expressed by P(S ≤ Sm,α) as follows:

P(S ≤ Sm,α) =
∫ Sm,α

−∞
f (S)dx. (25)

Then, the control index value Sm,α is established as follows:

Sm,α = F−1(S, σS, α
)
, (26)

where S and σS denote the mean value and the variance of S′, respectively. The two pa-
rameters are calculated by Equations (13) and (14). The annual extreme values of Sj are
listed in Table 3. The results of the K–S test are shown in Table 4, and the most reasonable
probability distribution is the normal distribution with S = 1.14 and σS = 0.0589. For the
cloud model, the values of Ex, En, and He are 1.1400, 0.0501, and 0.0070, respectively, and
the values of β are 1.96 (α = 5%) and 2.58 (α = 1%), respectively. The distribution of cloud
droplets is shown in Figure 12. This paper sets two control levels according to different
dangerous situations, i.e., Level 1 (α = 5%) and Level 2 (α = 1%). The calculated results
of the typical small probability method and the cloud model are listed in Table 5. Their
results are relatively consistent, indicating that the constructed indexes are reasonable and
credible. Moreover, the cloud model, compared with the typical small probability method,
also has the advantage that it can still obtain high-precision control indexes in the case of
small samples.

Table 3. Annual extreme values.

Year 2008 2009 2010 2011 2012 2013

Minimum value of TFEs 0.723 0.968 1.126 1.034 1.170 1.160
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Table 4. K–S test results.

Probability Distribution Confidence Level

Lognormal distribution 0.23
Normal distribution 0.15
Uniform distribution 0.64

Triangular distribution 0.33
Exponential distribution 0.41

γ distribution 0.87
β distribution 0.78

Table 5. Temperature control indexes of the two methods.

Method Temperature Control Index

Typical small probability method α = 5% α = 1%
1.0431 1.0031

Cloud model
α = 5% α = 1%
1.0418 1.0107

According to the above analyses, the established control indexes are appropriate for
global monitoring of temperature fields, whereas conventional indexes are appropriate for
local monitoring. Given that global monitoring is more important than local monitoring,
the established indexes have greater significance than conventional indexes. This research
offers scientific reference and technical support for the temperature control of other similar
high concrete dam projects.

5. Conclusions and Suggestions

This work establishes the temperature control indexes for high concrete dams from
the perspective of the spatial field. Information entropy theory is applied to describe the
evaluation regularity of the temperature field, and then the expression of TFE that considers
the contribution degrees of different observation points is established. Using TFE, the cloud
model is employed to build the temperature control indexes. A case study is conducted in
which the cloud model is compared with the typical small probability method. According
to the calculation results, the variation law of TFEs agrees with actual situations, and the
determined temperature control indexes can improve the safety management level of high
concrete dams. Based on actual situations, different temperature control measures can be
taken, e.g., pre-cooling methods such as lowering the temperature of concrete-forming
components or post-cooling methods like running cold water through a pipe embedded in
dam concrete.
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Through contrastive analysis, the following conclusions can be drawn. When using
the typical small probability method, the probability distribution of dangerous observation
values needs to be determined. It is not applicable when the observation time is short. If
the analysis samples do not conform to a definite distribution, then the applicability of
this method is greatly limited. The cloud model directly obtains the mathematical features
using the reverse cloud generator and generates cloud droplets by employing the forward
cloud generator. As a result, this model can effectively represent the characteristics of a
pan-normal distribution, and it has wider application conditions than the typical small
probability method. Moreover, the cloud model considers the randomness and fuzziness of
information, and no strict requirements are put on the sample size. Therefore, there is no
need to test the probability distribution of the analysis example. In addition, it should be
noted that this case study sets two confidence levels, i.e., α = 1% and 5%. In fact, there is no
unified standard for selecting the values of α. The determination of α should be given full
consideration to practical experience and theoretical calculation, and detailed arguments
need to be conducted.
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Nomenclature and Abbreviations

Nomenclature
i an observation point
j an observation date
δij the observation value of the ith point on the jth date
uij a parameter related to the order degree
p a parameter related to u1

ij and u2
ij

u1
ij the order degree of δij

u2
ij the disorder degree of δij

fi(δ) the probability density function of δij
Fi(δ) the probability distribution function of δij
Sij the temperature entropy of δij
ωi the weight of the ith point
Sj the TFE on the jth date
S a matrix
m the total number of observation dates
n the total number of observation points
P the unit projection direction
G(i) the projection function
P∗ the best projection direction
g(i) the mean value of G(i)
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SG a parameter related to PPA
QG a parameter related to PPA
G∗(i) a parameter related to P∗

R a parameter related to PPA
rij the distance between G(i) and G(j)
f (t) a unit step function
t a parameter related to f (t)
U the domain
C a qualitative concept
x a variable
u the certainty degree of x
Ex the expectation of the cloud model
En the entropy of the cloud model
He The hyper entropy of the cloud model
x a data set
x the mean value of x
σx the variance of x
S′ a data set
f (S) the probability density function of S′

F(S) the distribution function of S′

P the abnormal probability
S the mean value of S′

σS the variance of S′

k the size of the data sets x and S′

yu the upper bounds of cloud droplets
yl the lower bounds of cloud droplets
∆U a micro-interval in the domain U
∆D the contribution degree of ∆U
U∆U the certainty degree of ∆U
α the confidence level
Sm,α the temperature control index with a confidence level of α

β a parameter related to α

Abbreviations
PPA projection pursuit analysis
TFE temperature field entropy
FE finite element
RCC roller compacted concrete
TE temperature entropy
WE weight entropy
K-S Kolmogorov–Smirnov
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