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1. Introduction

Water is our most precious resource, and its responsible management and utilization
are paramount in the face of ever-growing environmental challenges. “Water, Resources,
and Resilience: Insights from Diverse Environmental Studies” explores a diverse array of
water-related topics, showcasing the vital role water plays in our lives and ecosystems. This
work delves into water’s usage, challenges, and innovative solutions, drawing from a wide
range of environmental studies. This work maintains an encompassing scope, addressing
subjects as varied as the equitable allocation of water resources, the intricacies of soil
substrates, the sustainable generation of energy, and the critical interplay between water
and public health [1,2]. It encapsulates the essence of water, elucidating its fundamental
contribution to life’s sustenance, as well as its pivotal role in supporting agricultural
practices, industrial processes, and energy production [3–7]. The work, with astute foresight,
not only recognizes the contemporary status of water resources but also casts a discerning
glance at the looming challenges precipitated by surging global population, climate change,
and pollution, all of which accentuate the global water crisis [8–12].

Furthermore, this collection places significant emphasis on the harnessing of advanced
technologies and analytical tools, as these have emerged as indispensable instruments
in refining our understanding, efficient management, and judicious utilization of water
resources [13–15]. Computational modeling, data-driven analyses, and the adept use of ge-
ographic information systems are fundamental in several of the articles, facilitating precise
assessments, predictive simulations, and the identification of emerging trends [16–19].

Our motivation for compiling this scientific work arises from the urgent need to
address water-related concerns that impact global sustainability [20–22]. The growing water
crisis, exacerbated by factors such as climate change, population growth, and pollution,
has compelled us to gather insights from various environmental studies [23–33]. We aim to
disseminate knowledge that can drive positive change and foster innovative solutions for
the responsible and sustainable management of our water resources [34–42].

The Special Issue was intended for a broad audience, including researchers, academics,
policymakers, environmentalists, and anyone interested in water-related issues. It serves
as a valuable resource for those seeking a deeper understanding of the challenges and
opportunities within the realm of water resources and environmental studies. By addressing
a wide range of topics, we aim to engage and inform a diverse readership, enabling them
to contribute to the global dialogue on water sustainability.

In this volume, each chapter explores critical facets of water and its multifaceted role
in our environment.

2. Materials, Methods, and Results

As we delve into the pages of this Special Issue, we are met with a diverse collection
of research articles that span a wide spectrum of topics within the realm of water, environ-
ment, and sustainability. The depth and breadth of the contributions showcased in this
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volume demonstrate the unwavering commitment of the global research community to
understanding and addressing critical challenges related to water resources, environmental
conservation, and sustainable practices.

The paper: Use of Water and Hygiene Products: A COVID-19 Investigation in In-
donesia [43] investigates COVID-19′s impact on hygiene and water use in Indonesia using
online and national surveys. It reveals increased adherence to hygiene practices, specifically
handwashing, and following health guidelines. This resulted in higher water and hygiene
product consumption, unaffected by socio-economic factors. Respondents’ COVID-19 per-
ception and compliance with health guidelines drove these changes, with older individuals
favoring handwashing and younger ones preferring hand sanitizer. The study also notes
stagnant access to safe drinking water but a rise in bottled water consumption, posing
challenges for SDG 6 targets. It underscores the importance of addressing COVID-19
perception to promote better hygiene practices and expresses concerns about increased
water use, domestic pollution, and wastewater management during and after the pandemic.
These findings can guide policymakers, researchers, and practitioners in public health and
water management to achieve SDG 6 goals during and beyond the pandemic.

The paper: The Vital Roles of Parent Material in Driving Soil Substrates and Heavy
Metals Availability in Arid Alkaline Regions: A Case Study from Egypt [44] addresses the
understudied influence of diverse parent materials in arid alkaline regions, focusing on
four types: fluvio-marine, Nile alluvial, lacustrine, and aeolian deposits. The investigation
assesses their impact on soil properties like clay content, bulk density, pH, and available
phosphorus (AP). Statistical tests and meta-regression models are employed to analyze
the data. Notably, alluvial deposits exhibit significantly higher soil organic carbon (SOC)
and total nitrogen content compared to other deposits. Additionally, aeolian deposits
contain more iron (Fe), while alluvial deposits have elevated levels of zinc (Zn), manganese
(Mn), and copper (Cu). Soil parent material is a key factor affecting Fe content, while bulk
density influences Zn and Mn levels, and SOC drives Cu content. This research contributes
valuable insights into understanding soil substrate dynamics and heavy metal availability,
considering variables such as parent materials, pH, bulk density, and clay content.

The research entitled: Hybrid Optimization Algorithms of Firefly with GA and PSO for
the Optimal Design of Water Distribution Networks [45] delves into innovative optimiza-
tion techniques to enhance the design of water distribution networks, by combining Particle
Swarm Optimization (FAPSO) and the Firefly Algorithm with Genetic Algorithm (FAGA),
which has been introduced to enhance the efficiency of the conventional Firefly Algorithm
for designing cost-effective water distribution networks. These models underwent rigorous
testing and were applied to both established benchmark networks found in the literature
and a real-world case study in El-Mostakbal City, Ismailia, Egypt. The performance assess-
ment of these algorithms included evaluating cost-related metrics, function evaluations,
computational time for 1000 evaluations, and a success rate determined using fuzzy logic
for solutions slightly exceeding the known optimal solution (by approximately 1.0% and
2.0%). The results demonstrated that the FAGA model surpasses the standard Firefly and
FAPSO models in terms of effectively exploring the search space, exploiting promising
areas, and converging toward optimal solutions. This indicates FAGA’s potential as a
robust optimization technique for water distribution network management.

Regulatory measures, such as submerged vanes, are essential for mitigating and pre-
venting environmental damage caused by increased river flooding. Elevated flow velocities
can lead to erosive scouring on the outer riverbank, resulting in adverse changes to the
riverbed. This paper: Experimental and Numerical Study on Flow Control Using 3-Array
Submerged Vane in Laboratory Channel Bend [46] focused on investigating the impact of
flow velocities in proximity to the outer bank through experimental testing using a 3-array
submerged vane structure in an open channel setup. The results from the experimental
vanes were verified and compared to Computational Fluid Dynamics (CFD) outcomes
using a standard-based k-ε turbulence model. The CFD model closely approximated the
real experimental results. In the outer meander, the three-array submerged vane with a
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three-vane structure was found to reduce flow velocity by 16–27% in the vane’s downstream
area, with flow velocity decreasing by 14–21% along the depth. This study recommends
the implementation of submerged vane structures as an effective approach to decrease flow
velocities and guide water flows.

The concept of floating photovoltaic plants presents an innovative approach to address
water evaporation issues while generating clean energy. A case study from Lake Nasser in
Egypt illustrates the potential of this technology in water-stressed regions, as presented in
Floating Photovoltaic Plants as an Effective Option to Reduce Water Evaporation in Water-
Stressed Regions and Produce Electricity: A Case Study of Lake Nasser, Egypt [47]. This
research aims to address two critical issues concerning water and energy while conserving
these resources. The study proposes the use of floating photovoltaic (FPV) panels with
partial coverage on Lake Nasser. Results reveal that partially covering Lake Nasser with
FPV panels offers an effective solution for preserving Egypt’s water resources, which are
strained due to water scarcity. This approach significantly reduces water evaporation from
Lake Nasser by 61.71% (equivalent to 9,074,081,000 m3/year) and generates an annual
electricity output of 467.99 TWh/year when 50% of the lake’s area is equipped with
FPV panels.

A green approach to wastewater treatment is explored in the paper: Simultaneous
Removal of Metal Ions from Wastewater by a Greener Approach [48]. The research empha-
sizes the significance of sustainable and environmentally friendly methods for metal ion
removal from contaminated water sources. Results indicated that higher initial metal ion
concentrations led to increased adsorption capacity, but decreased the removal efficiency
of S. cerevisiae yeast cells. The best results were achieved at specific conditions: pH 5.0,
2.0 g S. cerevisiae/L, 25 ◦C, and a 25-min contact time. The maximum adsorption capacities
(qmax) for Pb(II), Cd(II), and Ni(II) ions were 65, 90, and 51 mg/g, respectively, as per the
Langmuir model. The biosorption reactions for metal ions were spontaneous and followed
the pseudo-second-order model. Mechanisms of metal ion removal were elucidated using
XRD, FTIR, BET, and TEM analyses. Additionally, EDTA and citric acid proved effective
in desorbing adsorbed ions. Storage experiments revealed that immobilized S. cerevisiae
remained stable for up to 8 months, surpassing the raw yeast instability.

The World Health Organization (WHO) has endorsed the use of Water Safety Plans
(WSPs) as a highly effective approach for enhancing water safety management since 2004.
While the implementation of WSPs is gaining global traction, there remains a lack of a
standardized methodology for conducting WSP verification. The paper: Long-Term As-
sessment of a Water Safety Plan (WSP) in Salta, Argentina [49] presents a comprehensive
assessment of a specific WSP five years after its initial adoption. The study scrutinizes
the risk assessment methodology utilized by a water utility in Salta, Argentina, and ap-
praises the execution of control measures. To objectively gauge the WSP’s effectiveness,
water quality parameters and customer complaints are analyzed over time. The findings
reveal that while certain control measures were put in place and risk values decreased,
persistent issues in Salta’s water supply, like customer complaints and high turbidity levels
during the rainy season, remained unresolved. The article also emphasizes the role of
rigorous scientific evaluations and the significance of legislative and regulatory bodies in
WSP implementation.

Flash floods pose severe risks in arid regions. This case study entitled: Evaluation and
Mitigation of Flash Flood Risks in Arid Regions: A Case Study of Wadi Sudr in Egypt [50]
explores methods for evaluating and mitigating these risks, contributing to improved
disaster management strategies. The research employs an integrated approach, combining
the Geographic Information System (GIS) and the Watershed Modeling System (WMS)
with HEC-HMS to analyze and visualize flood events in the area. Various geomorpholog-
ical parameters of the watershed are determined, encompassing linear, areal, and relief
characteristics. GIS is utilized to analyze satellite images, identify valley attributes, and
delineate stream orders. WMS is employed to estimate rainstorms, basin features, and
rainfall thresholds for flooding. HEC-HMS is used for hydrological modeling and flood
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estimation. The analysis of morphometric and hydraulic parameters reveals that Wadi Sudr
encompasses 4029 streams of the seventh order, covering an area of 547.45 km2. The study
identifies two potential dam locations for flood protection, with a comparison indicating
that the first location is more suitable based on several criteria, including storage capacity,
water depth, valley shape, and construction cost efficiency. The study uses the weighted
linear combination (WLC) method to confirm the suitability of the first location. The pro-
posed dam is expected to efficiently mitigate flood risks and enable water utilization for
various purposes. This methodology holds potential for application in other areas facing
flash flood hazards.

Urban rainstorm drainage systems play a vital role in managing water in urban
environments. The research entitled Effect of Changing the Shape and Size of Inlet Area of
Grates on the Hydraulic Efficiency of Urban Rainstorm Drainage Systems [51] examines
the impact of changes to the inlet area of grates, enhancing our understanding of hydraulic
efficiency in drainage systems. The study explores five distinct grate shapes and three
relative inlet areas (26%, 51%, and 64%). The results indicate that the most efficient grate
shape is type 4, with an 8.7% reduction in discharge efficiency. Altering the inlet area size
from 26% to 64% significantly impacts the systems’ efficiency, decreasing it by 4%. The
study also utilizes dimensional analysis and multiple regression analysis to develop an
empirical equation for calculating drainage system efficiency. The findings offer insights
for decision-makers to optimize maintenance scheduling, potentially saving costs. The
empirical equation aids in monitoring grate blockage and its impact on efficiency. This
study’s outcomes can inform future road drainage system construction, enhancing their
effectiveness and reducing urban flood risks.

The final contribution to this Special Issue entitled Advances in Assessing the Relia-
bility of Water Distribution Networks: A Bibliometric Analysis and Scoping [52] offers a
comprehensive bibliometric analysis and scoping review, illuminating the latest advances
in assessing the reliability of water distribution networks. Water Distribution Network
(WDN) reliability is a crucial subject that has garnered increased attention over the past
decade, with a growing body of research exploring various aspects of this field [53]. This
study conducts a bibliometric analysis and scoping review to assess the progress and
identify research gaps in WDN reliability. Three primary research themes are discerned:
WDN optimization, reliability assessment, and the consideration of greenhouse gas (GHG)
emissions and energy costs in WDN expansion. Reliability surrogate measures (RSMs)
emerged as a heavily researched topic. Meanwhile, evaluating the performance of various
RSMs and incorporating energy and cost considerations into WDN design and expansion
are identified as emerging research trends in WDN reliability.

3. Conclusions and Perspectives

In conclusion, ‘Water, Resources, and Resilience: Insights from Diverse Environmental
Studies’ brings together a rich tapestry of research contributions that collectively empha-
size the paramount importance of water management and sustainability. As our global
community faces escalating water challenges driven by climate change, population growth,
and pollution, the need for innovative solutions and informed decision-making becomes
increasingly urgent. This collection of studies provides a multifaceted exploration of water-
related topics, ranging from the impacts of the COVID-19 pandemic on hygiene practices
in Indonesia to the intricate geomorphological parameters affecting soil substrates in arid
regions. The insights derived from these studies offer a mosaic of knowledge and strategies
to address the complex and evolving water issues of our time.

One overarching theme that emerges is the necessity for interdisciplinary collaboration.
Water resources touch upon a multitude of aspects, encompassing public health, environ-
mental conservation, energy production, and infrastructure engineering. These studies
reflect the interconnected nature of water, emphasizing the need for cooperative efforts
among researchers, policymakers, and practitioners to develop holistic solutions [54–60].
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The application of advanced technologies and analytical tools is a prevailing trend,
aiding researchers in their quest to better understand, manage, and harness water resources.
Computational modeling, data analysis, and geographic information systems have been
instrumental in several of the studies, enabling precise assessments and simulations. In this
regard, the incorporation of artificial intelligence (AI) presents an exciting avenue for future
research. AI, with its ability to process vast datasets and derive meaningful insights, can
enhance the precision and efficiency of water-related studies. Machine learning algorithms,
for instance, can aid in predictive modeling for water quality, demand forecasting, and
flood risk assessment [61].

Moreover, the findings underscore the importance of adaptable and environmentally
friendly approaches. The utilization of submerged vanes to control river flows, the deploy-
ment of floating photovoltaic panels to mitigate water evaporation, and the exploration
of greener methods for wastewater treatment exemplify sustainable practices that can
serve as blueprints for the future. These sustainable strategies not only conserve precious
resources but also align with global goals for mitigating climate change and protecting
ecosystems [62].

The focus on water safety and the assessment of water distribution networks highlights
the significance of clean and reliable water supplies for public health and urban resilience.
As urban areas continue to expand, addressing the challenges of urban rainstorm drainage
systems, with a spotlight on the efficiency of grates, is a vital concern. These studies offer
valuable insights for urban planners and engineers striving to ensure cities can effectively
manage rainfall and minimize flooding.

Finally, this collection of studies takes a significant step toward expanding our un-
derstanding of WDN reliability. In a world where water scarcity is a looming crisis, the
assessment and optimization of water distribution networks play a pivotal role. The bib-
liography analysis and scoping review illuminate the research landscape and pave the
way for future investigations. AI, with its data-driven capabilities, can revolutionize this
field by optimizing WDN designs, predicting maintenance needs, and enhancing reliability
through smart sensors and real-time monitoring [63].

In perspective, this comprehensive body of research encourages us to pursue sus-
tainable water management practices, embrace technological innovations, and engage in
interdisciplinary collaboration. AI, coupled with big data analytics, can play a pivotal role
in these pursuits, offering the potential to revolutionize water resource management. By
leveraging AI’s capabilities, researchers can develop predictive models, optimize resource
allocation, and enhance decision-making processes. AI-driven monitoring systems can
provide real-time insights into water quality, usage patterns, and network vulnerabilities,
thereby promoting resilience and sustainability [64–73].

As we stand at the threshold of a future where water scarcity threatens communities
and ecosystems, the insights and methodologies presented in this collection provide a
ray of hope. They serve as a reminder that, equipped with knowledge, innovation, and
cooperation, we possess the means to address the water challenges of our time and safe-
guard this invaluable resource for future generations. This work exemplifies the collective
commitment of the global research community to advance water resource management
and contribute to the construction of a more sustainable and resilient world.
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