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Abstract: This study deals with the computational analysis of the kinetic processes of microbial
electrolysis cell-assisted anaerobic digestion (MEC-AD) for treating raw-waste-activated sludge
(WAS), compared to conventional AD, as well as investigating the effect of the organic loading rate
(OLR) on the system’s performance. The aim was to derive a mathematical model for the study
of MEC-AD using the ADM1 framework, which can be utilized to extract the effect of an applied
potential on the kinetics of AD. The experimental data were obtained from the operation of two
identical reactors (an AD reactor and an MEC-AD reactor), which were operated at different OLRs.
The kinetic parameters extracted from the ADM1 showed that the MEC-AD reactor yielded improved
biomass yields, substrate consumption, and first-order disintegration rates, with a predominant
contribution to the disintegration of complex particulates, which increased fourfold compared to the
AD reactor. Moreover, it enabled operation at higher OLRs (achieving the highest divergence from
the AD reactor at the OLR of 4.14 gCOD/(L × d)), therefore accelerating WAS treatment, as well as
showing an improved performance at increased solids retention time (SRT). The ADM1 exhibited
efficient adaptability and predictability of the kinetic processes and can be effectively used for the
optimization of the MEC-AD operation.

Keywords: ADM1; Monod substrate; hydrolysis; MEC-AD; waste-activated sludge; methanogenesis;
organic loading rate

1. Introduction

Anaerobic digestion (AD) is an extensively used and accepted process, since it fa-
cilitates waste treatment, along with energy recovery, in the form of methane contained
in the biogas [1]. Waste-activated sludge (WAS) is a typical AD substrate which is pro-
duced globally in large quantities, surpassing 45 million dry metric tons annually, and
has a high potential for energy recovery [2,3]. However, the AD process is susceptible to
limitations, which result in limited conversion of organic compounds and low methane
yield. This is attributed to WAS’s characteristics, specifically the nonavailability of readily
biodegradable constituents of WAS, which identifies hydrolysis as the rate-limiting step in
the process [4–7].

In order to overcome the challenges of AD’s slow kinetics and the instabilities caused
by an increase in the OLR of WAS, numerous pretreatment techniques have been proposed
to enhance the biodegradability of WAS’s organic components. These include mechanical,
chemical, thermal, and enzymatic processes as well as combinations of them. Despite
the fact that many pretreatment methods have yielded promising results, it has been
reported that in many cases these methods can be energy-intensive or require the addition
of chemicals, which result in ambiguous cost-effectiveness [8]. In this direction, several
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innovative techniques have been recently applied in AD in order to overcome the low
biodegradability issues of complex substrates, improve the energy yield of the process,
and produce a higher-quality digestate. These advances include codigestion of multiple
substrates, embedding biobased accelerants, or introducing a magnetic field in conventional
AD, all of which have exhibited a promising effect on the stability of the process and the
fertility of the digestate, and can accelerate wastewater treatment [9–12].

In this context, MEC-AD has emerged as a promising alternative to the conventional
AD treatment of WAS [13–15]. Specifically, it has been found that applying a small potential
in AD can result in improved waste treatment along with higher methane yield. This is
achieved by the increase in the oxidation rate of nonbiodegradable organic compounds on
the bioanode, while the enrichment of the microbial cultures on the biocathode (electroac-
tive, hydrogenotrophic, and acetoclastic methanogens) facilitates the bioelectrochemical
conversion of CO2 to CH4, which boosts methane productivity [16]. As a result, the hydroly-
sis of nonbiodegradable substrates is increased and the process is accelerated. Furthermore,
recent studies have demonstrated that introducing accelerants or multiple substrates to
be codigested in MEC-AD systems results in remarkable stability and the enhanced elec-
trocatalytic stability of the process [17,18]. Moreover, MEC-AD energy recovery has been
reported to far outperform that of conventional AD, while the energy input in the form
of electricity is negligible relative to the additional methane production, resulting in high
cost-effectiveness [19].

Modeling has been increasingly used for understanding the intricate actions involved
in waste treatment processes, in order to ultimately design and control them. To this end,
modeling of the AD process has been widely implemented, yielding important results
regarding our understanding, prediction, and optimization of the complex processes taking
place [20]. Anaerobic digestion model No. 1 (ADM1), developed by the International
Water Association (IWA), is regarded as the most accepted and widely used model for
AD [19,21]. The numerical simulation of AD can provide valuable insights and provides an
effective means to optimize and regulate AD processes. ADM1 involves all AD processes,
from hydrolysis to methanogenesis, as well as physicochemical dependencies and phase
transition processes, in order to enable the application of the model to obtain complete
mass balances [22]. Parker, 2005 [23] and Batstone and Keller, 2003 [24] summarized the
application of ADM1 to advanced AD processes, and while the ADM1 processes have been
extensively elaborated over the past decades, studies have recently shifted towards model
simplifications, modifications, or integration with other analytical models [25–27].

However, limited research has been conducted in the field of modeling of MEC-
AD’s intricate processes, since this would require the integration of bioelectrochemical
and abiotic redox reactions taking place on the electrodes, along with the established
AD biochemical and physicochemical processes. Zou et al., 2021 [28] first developed an
artificial neural network (ANN) model for an MEC-AD reactor fed with swine manure;
however, the model only predicted CH4 production, while no substrate consumption was
taken into account. Nguyen et al., 2022 [29] recently developed an ANN model for the
optimization of alkaline pretreated WAS-fed MEC-AD, which included both substrate
consumption and CH4 production. The results showed that at an applied potential of
0.63 V, the net energy output and monetary value of the MEC-AD reactor were optimized
and significantly increased relative to conventional AD. Nevertheless, no computational
studies have been performed in order to describe the raw-WAS-fed MEC-AD reactor, to
extract the kinetic parameters of the MEC-AD along with delineation of the effect that the
applied potential has on the kinetic processes, or to identify the effect that the OLR has on
raw WAS treatment.

In this context, the purpose of the current study is to render the raw-WAS-fed MEC-AD
process foreseeable and predictable by using the ADM1 framework. Experimental data
obtained from the long-term operation of two identical reactors, one used as a conventional
AD reactor and the other as an MEC-AD reactor, were used for the present study. The
aim was to derive a single kinetic and mathematical model for the study of the AD reactor
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in comparison with the MEC-AD reactor. This custom model can therefore serve as a
guide showing the quantitative difference that the effect of an applied potential has on the
Monod-type and on the first-order kinetics of AD, which involve substrate consumption,
disintegration of particulates, hydrolysis, and biomass concentrations. ADM1 extracts
the kinetic parameters for the AD reactor biochemical processes, while in the case of the
MEC-AD reactor, the bioelectrochemical interactions and redox reactions taking place
on the electrodes are not taken into consideration. It can therefore serve as an imprint
of the quantitative effect that an MEC-AD would have on the kinetics of its biochemical
processes, in comparison with a conventional AD. This is the first study that addresses
the efficiency, adaptability, and predictability of the ADM1 framework in optimizing
MEC-AD’s operation.

2. Materials and Methods
2.1. Experimental Setup and Operation

The experimental raw-WAS-fed AD’s and MEC-AD’s datasets were obtained from
Kanellos et al., 2024 [30], in order to extract the kinetic parameters of each process using
the ADM1. As shown in Figure 1, two identical 2 L reactors were constructed and operated
as an AD and an MEC-AD reactor. The reactors were cylindrical glass vessels and were
equipped with an inlet/outlet tube in order to facilitate the draw–fill operation mode.
Additionally, a biogas outlet was incorporated at the top of each reactor, connected to a
biogas sampling port and a U-shaped oil displacement technique that was recorded by an
electro-optic level switch and a programmable logic controller (PLC) to record the biogas
production. Two carbon felt electrodes (each with an area of 25 cm2) were submerged in
the MEC-AD reactor and were connected with an external power supply through titanium
wires in order to control the applied potential. A constant voltage of 1 V was applied
between the carbon felt electrodes in a two-electrode configuration. The applied voltage of
1 V was chosen as a reasoned value within the range of potentials (0.3–2 V) that have been
employed in other studies, aiming to optimize the MEC-AD process in terms of substrate
degradability and obtained methane yields [31–34].
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Figure 1. The schematic diagram of the AD and MEC-AD reactors.

The reactors were operated at a constant temperature of 30 ◦C and were constantly
stirred through magnetic stirring. The raw WAS was obtained from the Municipal Wastew-
ater Treatment Plant of Lykovrisi, in Attica, Greece, and its characteristics are presented in
Table 1. The reactors were operated for a total of 131 days with the raw WAS at different
organic loading rates (OLRs) of 1.1, 1.7, and 2.9 gCOD/(L × d).
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Table 1. The physicochemical characterization of the raw WAS used during the operation of
the reactors.

Parameter Units Value

pH - 6.8

Total alkalinity gCaCO3/L 4

Conductivity mS/cm 1.5

Total solids g/L 22

Volatile solids g/L 16

Total suspended solids g/L 21

Volatile suspended solids g/L 15

Soluble COD gO2/L 0.5–1

Total COD gO2/L 25

Acetic acid mg/L 110

Propionic acid mg/L 75

Iso-butyric acid mg/L 21

Butyric acid mg/L 15

Iso-valeric acid mg/L 10

Valeric acid mg/L 2

Ethanol mg/L 180

Total Kjeldahl nitrogen gN/L 1.25

Particulate organic carbon gC/L 8.5

2.2. Model Description

The modeling of the reactors’ operation was performed using the Aquasim 2.0 software
and the mathematical model ADM1. ADM1 includes the five stages of AD (degradation,
hydrolysis, acidogenesis, acetogenesis, and methanogenesis) along with the action of bi-
ological enzymes at each stage. The processes simulated in the model are divided into
biochemical and physicochemical. Biochemical processes are catalyzed by enzymes that act
intracellularly or extracellularly and are considered irreversible. In contrast, physicochemi-
cal processes involve ion exchange (acid/base balance) and liquid/gas transfer phenomena
(liquid/gas phase equilibrium) and are considered reversible reactions [24].

The model contains 26 variables which are required to fully define the system at a
given point. Among them, 12 refer to soluble components: monosaccharides, amino acids,
long-chain fatty acids (LCFAs), total volatile fatty acids (VFAs), hydrogen, methane, inor-
ganic carbon (dissolved CO2), inorganic nitrogen (dissolved ammonia), and soluble inerts.
In addition, 5 variables refer to suspended particles in the reactor: complex particulates,
carbohydrates, proteins, lipids, and particulate inerts. An additional 2 variables serve to
describe the acid/base balance of the described system; anion and cation concentrations.
Finally, 7 important variables for the model are those of biomass concentrations. Specifically,
for each soluble substrate (LCFAs, amino acids, sugars, valeric acid, butyric acid, propionic
acid, acetic acid, and hydrogen), the model considers a respective type of biomass that
metabolizes it (except for methane, which is the final product) [35]. Intracellular biochem-
ical reactions involving substrate consumption follow Monod-type kinetics. In contrast,
disintegration of particulates, hydrolysis (extracellular reactions), and biomass death are
represented by first-order kinetics. Dead biomass is retained in the system and is a compos-
ite particulate material that acts as a substrate that is gradually degraded. Inhibitory effects
shown in ADM1 include pH (affects the action and growth of all microorganisms), hydro-
gen (affects homoacetogenic bacteria, which facilitate the acetate production by reducing
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CO2 along with molecular H2), and free ammonia (affects acetoclastic methanogens, which
facilitate the methane production through acetate oxidation) [24].

The ADM1 model was developed and adapted to the experimental data of both reac-
tors during all operating phases in a continuous mode to simulate the draw–fill operation.
The modeling of the reactors was based on the carbon and nitrogen balance between solids
decomposition and biogas production. During the simulation, the experimental data en-
tered in the model for the feed as well as for both bioreactors were the reactor volume, the
inlet supply rate, the soluble chemical oxygen demand (sCOD) and total chemical oxygen
demand (tCOD), the soluble and particulate carbon, the soluble and particulate nitrogen,
and the total and volatile (suspended) solids (TS, VS, TSS, and VSS).

2.3. Model Setup and Equations

As the ADM1 includes multiple kinetic parameters that have a certain impact on
the process and the final products, certain assumptions were made in order to calibrate
the model before the parameter estimation and the sensitivity analysis. The simplified
assumptions can be summarized as follows: the disintegration of dead biomass follows
the same first-order kinetics as the rest of the complex particulates; all microorganisms
decay following first-order kinetics with a decay coefficient of kdec = 0.02 d−1; the complex
particulates disintegrate towards constant fractions of carbohydrates (fch = 0.2), lipids
(fli = 0.35), proteins (fpr = 0.2), and particulate inerts (fin = 0.25), as suggested by Batstone
and Keller, 2003 [24] (p. 46, Table 6.1); fractions of amino acids and sugars towards VFAs
and H2, as well as yields of biomass (Yi—kgCODX kgCODS

−1) on uptake of soluble
substrates, are considered constant, as suggested by Batstone and Keller, 2003 [24] (p. 46,
Table 6.1); the pH is set as constant and equal to 7 based on the experimental behavior of
the reactors, so no inhibitory actions are considered due to pH variations in the substrate
uptake processes; the uptake rates of butyrate and valerate are identical and metabolized
by the same microorganisms [36]; the solids retention time (SRT) is initially considered
equal to the hydraulic retention time (HRT), as the experimental reactors described by
ADM1 are continuously stirred.

The complete ADM1 algorithm for the biological kinetic rate expressions and coeffi-
cients is employed as initially described by Henze et al., 1986 [37] (pp. 506–507, Table 1).
In order to extract the functions of the degree of influence of the kinetic constants on
the soluble and particulate organic load, ADM1 varies each constant, one at a time, by a
small percentage (typically 1%), and the differences from the original calculation is used
to establish a new balance on the system. Due to the constant pH applied in ADM1, no
empirical inhibition expressions were employed, which are a direct consequence of high or
low pH in the reactors. Instead, noncompetitive inhibition, caused by hydrogen and free
ammonia inhibition, as well as substrate limitation inhibition, caused by total ammonia
limitation, are considered in the model [24,38].

3. Results and Discussion
3.1. Model Results and Validation
3.1.1. ADM1 Fit to the Experimental Data

The target variables which were selected for simulation using the ADM1 included
the reactors’ COD, carbon and nitrogen content, in both their particulate and soluble
form, along with the produced biogas and its methane content. Figures 2–5 present the
experimental and simulated values of the aforementioned parameters, following the carbon
and nitrogen mass balances of the reactors.
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The analysis showed an adequate fit of the variables studied for both reactors. Specif-
ically, the values of particulate (Figure 4a,b) and soluble carbon (Figure 4c,d), as well as
those of soluble COD (Figure 2c,d), soluble nitrogen (Figure 5c,d), and methane content
(Figure 3c,d), achieved the best fit, while some deviation was observed for the fitting of
tCOD (Figure 2a,b) and TKN (Figure 5a,b), which were slightly overrated (by 2 g/L) and
devalued (by 0.2 g/L), respectively. Accordingly, this deviation in the particulate parame-
ters (tCOD and TKN) resulted in an equivalent deviation in the simulated produced biogas
in both reactors (Figure 3a,b), which was slightly overestimated by approximately 0.5 L/d.
The deviation of tCOD can be explained by the presence of oxidizable inorganic compounds
in the raw WAS, which are not taken into account by ADM1, while the deviation of TKN
could be attributed to the fact that the content of amino acids in the raw WAS were not
measured, but were instead considered based on an average WAS composition. These
deviations appear to be marginally increasing as a function of the increase in OLR (from
1.1 to 2.9 gCOD/(L × d)), especially for the case of the AD reactor, which can be attributed
to the fact that a less efficient AD process occurs at high OLRs, as has been previously
observed [30].

Moreover, comparing the curves predicted by the model for both cases, the AD reactor
generates higher values for particulate carbon, tCOD, and TKN content (Figures 2a, 4a and 5a,
respectively), in comparison with the MEC-AD reactor (Figure 2b, Figure 4b, and Figure 5b,
respectively) for all OLRs examined, which is also the case with the experimental val-
ues. In addition, the generated values of soluble carbon, sCOD, and soluble nitrogen
(Figures 2d, 4d and 5d, respectively) appear slightly increased in the MEC-AD reactor
simulation, which is a direct consequence of the increased decomposition of particulate
matter and their hydrolysis towards their soluble forms. The results are in accordance with
previous studies that have focused on the effect of the applied potential on the enhancement
of the hydrolysis step in anaerobic digestion [4,5,15,30]. Furthermore, Figure 6 depicts the
predicted biomass concentrations in both reactors, where the simulation predicts that the
MEC-AD reactor yields marginally increased cumulative biomass concentrations. This
divergence became more apparent at high OLRs and reached a maximum divergence of
~0.4 g/L (Figure 6c).

Overall, the MEC-AD reactor exhibits a higher hydrolysis rate of particulate com-
pounds (tCOD, carbon, and nitrogen) towards their soluble forms and this is accurately
depicted through the ADM1 (Figures 2–5). The increased hydrolysis rate can be attributed
to both the enrichment of the microbial consortia present in the MEC-AD reactor and their
activity. Specifically, apart from the quantitative increase of the microbes in the MEC-AD
reactor (Figure 6), their variety is also larger, as additional exo- and endoelectrogens are
developed in the integrated system [39]. In addition, when an appropriately high volt-
age is applied, the bacteria metabolism can be improved and the cell rupture rate can
be decreased on both the anodic and the cathodic biofilms [16]. Moreover, the soluble
compounds (sCOD, carbon, nitrogen) produced from the hydrolysis step do not present
significant accumulation in the MEC-AD reactor, relative to the AD reactor, as they are
fitted in a similar concentration range. It has been shown that conductive carbon materials,
such as the carbon felt employed in the current study, can enhance the process efficiency
by providing more active sites, which can facilitate localized substrate accumulation. As a
result, the mechanism that underlies the higher efficiency of the MEC-AD reactor, in terms
of increased substrate oxidation and methane yield, is attributed to the increased direct in-
terspecies electron transfer (DIET) and the better ion migration in the electrolyte/electrode
interfaces [17,40].
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Figure 6. The simulated individual biomass (X—kgCODX m−3) concentrations (where aa is amino
acids; ac is acetate; c4 is butyrates; fa is fatty acids; h2 is hydrogen; pro is propionate; su is sugars)
in the (a) AD reactor and (b) MEC-AD reactor, and (c) the cumulative biomass concentration in the
reactors, as was obtained from ADM1.
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3.1.2. Estimation of Kinetic Parameters

Accordingly, the estimated parameters from the computational fitting were the Monod
kinetic constants (km and Ks) for all soluble substrates, as well as the first-order kinetic
constants for the disintegration of complex particulates and for the hydrolysis of carbohy-
drates, proteins, and lipids to sugars, amino acids, and LCFAs, respectively. Table 2 shows
the deduced kinetic values for both reactors, while the Monod reaction rates are depicted
in Figure 7.

The performed parameter estimation resulted in better kinetic processes for the MEC-
AD reactor, which agrees with the faster hydrolysis of particulate matter presented in
Figures 2–5. The obtained values for the Monod and first-order disintegration kinetic
constants were estimated by utilizing upper and lower value limits, which were set in-
dependently for each parameter, as has been previously described [24] (p. 47, Table 6.2).
Specifically, the vast majority of the Monod kinetic constants (km and Ks), which describe
the substrate uptake rate, were noticeably enhanced, resulting in both higher km and lower
Ks values for each substrate. The uptake rates of amino acids (Figure 7a), LCFAs (Figure 7c),
acetate (Figure 7e), and the butyrate and valerate (Figure 7g) are considerably enhanced in
the case of the MEC-AD reactor. Moreover, the uptake rate of sugars (Figure 7b) converges
at very high concentration values, whereas the uptake rate of propionate (Figure 7f) ap-
pears faster for the MEC-AD reactor at low concentrations and slightly higher for the AD
reactor in very high concentrations. Despite the faster substrate uptake rate in the majority
of the MEC-AD reactor variables, the H2 consumption is much faster in the AD reactor
(Figure 7d), which, however, does not compensate for the higher uptake rate of amino acids,
sugars, LCFAs, and VFAs in the MEC-AD reactor. These are the same parameters that are
considered to be limiting factors for the AD process [14], while the lower H2 consumption
of the MEC-AD reactor could be attributed to intermediate redox reactions that utilize H2,
such as the indirect electromethanosynthesis or the abiotic H2 production, which take place
on the biocathode and are not considered in the present model [41]. Nevertheless, the H2
concentration is considered in the ADM1 mass balances, which results in higher predicted
biogas production and CH4 content (Figure 3). In addition, the deduced values could be
interpreted as higher substrate-to-biomass and substrate-to-energy yields in the MEC-AD
reactor, which may be attributed to the fact that the same amount of metabolized substrate
results in more biomass and energy production, respectively, and, therefore, more metabolic
products and ultimately more methane. Furthermore, the MEC-AD reactor showed similar
first-order hydrolysis kinetic constants for the decomposition of carbohydrates, lipids, and
proteins to that of the AD reactor (Table 2), while a noticeable difference was obtained for
the disintegration of complex particulates (0.4 g/L for the MEC-AD reactor and 0.1 g/L
for the AD reactor). As a result, ADM1 perceives the faster disintegration of complex
particulates to be the most crucial parameter for the fitting to the experimental values,
which are distinguished by the potential application in the MEC-AD reactor.

The obtained results demonstrate the extent of the improvement of the MEC-AD
reactor kinetic parameters (Monod uptake and first-order disintegration) relative to the
AD reactor during raw-WAS treatment. The enhancement of the MEC-AD reactor kinetic
parameters is attributed to the presence of the electrodes. Specifically, the carbon felt
provides large porosity and increased active sites, which enable the attachment, growth,
and extracellular electron transfer of the bacteria [28]. Moreover, the applied potential
provides the activation energy for the oxidation of some organic substrates and the bio-
electrochemical reduction of CO2 to CH4. Combined with the fact that both the quantity
and variety of the microorganisms are enriched, the reduction of particulate and soluble
substrates is accelerated and the stability of the process is promoted.
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Figure 7. The substrates’ (S—kgCODS m−3) uptake Monod kinetic rate of (a) amino acids, (b) sugars,
(c) LCFAs, (d) H2, (e) acetate, (f) propionate, and (g) butyrate/valerate for the AD reactor (red) and
the MEC-AD reactor (black) as a function of each substrate concentration.
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Table 2. The substrates’ uptake Monod kinetic constants and the particulates disintegration
and hydrolysis first-order kinetic constants as they occur from the fitting of ADM1 to the
experimental values.

Substrate Uptake Monod Kinetic Constants Disintegration First-Order Kinetic Constants

AD MEC-AD AD MEC-AD

km
(kgCODS
kgCODX

d−1)

Ks
(kgCODS

m−3)

km
(kgCODS
kgCODX

d−1)

Ks
(kgCODS

m−3)
(d−1) (d−1)

Amino acids 83.3 0.4 86.3 0.4 Carbohydrates 19.9 19.9

Sugars 57.1 1.1 × 10−3 31.7 3.3 × 10−7 Lipids 0.1 0.1

LCFAs 21.6 1.6 23.7 1.5 Proteins 39.9 39.5

H2 69.3 6.7 × 10−8 10.1 1.4 × 10−5 Particulates 0.1 0.4

Acetate 6.4 1.1 × 10−4 12.6 1.1 × 10−2

Propionate 24.3 1.5 × 10−5 12.8 5.5 × 10−9

Butyrate/Valerate 29.9 7.9 × 10−1 29.7 2.9 × 10−2

3.1.3. Sensitivity Analysis of Kinetic Parameters

Figure 8 shows the sensitivity analysis for all kinetic parameters (Monod and first-
order disintegration constants), and the effect their variation causes on the sCOD and the
tCOD content of the reactors.

In general, higher values of each parameter function result in larger changes in the
calculated variables following the small change in the kinetic constants, which means that
the system is more susceptible to the respective change and has a greater sensitivity to
each kinetic constant. The spikes of some kinetic parameters, presented in Figure 8a–e, are
attributed to the changes in OLR values and appear to stabilize within a few days after the
reactors have reached a new steady state. Regarding the sCOD consumption, the Monod
and the first-order kinetic constants have a marginally increasing sensitivity as a function
of increasing OLR. However, the sCOD consumption shows the highest sensitivity to the
LCFAs uptake, which is a major limiting factor in AD, while the uptake of other substrates
influences the processes to a lesser extent (Figure 8a–d). The results indicate that the
disintegration of complex particulates is the most sensitive parameter to changes, resulting
in the highest variations of tCOD decomposition (Figure 8f). Moreover, the first-order
hydrolysis constant of lipids shows some sensitivity to changes, while the hydrolysis of
proteins and carbohydrates does not significantly affect the processes (Figure 8f).

3.2. Optimization of Raw-WAS-Fed MEC-AD by the ADM1
3.2.1. Organic Loading Rate

The obtained kinetic parameters from the ADM1 fit to the experimental data were
utilized in order to extract the predicted tCOD consumption and accumulation in the
reactors, in relation to varying OLR (from 1.2 to 12.4 gCOD/(L × d)). Figure 9 depicts the
results from the predicted differences between the two reactors.
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analysis of (e) sCOD and (f) tCOD as a function of the first-order disintegration kinetic constants 
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onate; su is sugars; dis is for complex particulates; li is for lipids; ch is for carbohydrates; pr is for 
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In general, higher values of each parameter function result in larger changes in the 
calculated variables following the small change in the kinetic constants, which means that 
the system is more susceptible to the respective change and has a greater sensitivity to 
each kinetic constant. The spikes of some kinetic parameters, presented in Figure 8a–e, are 
attributed to the changes in OLR values and appear to stabilize within a few days after the 
reactors have reached a new steady state. Regarding the sCOD consumption, the Monod 
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of increasing OLR. However, the sCOD consumption shows the highest sensitivity to the 

Figure 8. The sensitivity analysis of (a) sCOD and (b) tCOD as a function of the km Monod; the
sensitivity analysis of (c) sCOD and (d) tCOD as a function of the Ks Monod; and the sensitivity
analysis of (e) sCOD and (f) tCOD as a function of the first-order disintegration kinetic constants
(where aa is amino acids; ac is acetate; c4 is butyrates; fa is fatty acids; h2 is hydrogen; pro is
propionate; su is sugars; dis is for complex particulates; li is for lipids; ch is for carbohydrates; pr is
for proteins), as was obtained from ADM1.
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As shown in Figure 9, ADM1 predicts a linearly increasing additional consumption in
the MEC-AD reactor (from 0.2 to 1.5 gCOD/d), relative to the AD reactor, as a function of
increasing OLR (from 1.2 to 12.4 gCOD/(L × d)). This result is a direct consequence of the
higher disintegration rate of complex particulates (Table 2). Furthermore, the comparative
prediction shows that the MEC-AD reactor exhibits the highest divergence from the AD
reactor, at the OLR of 4.14 gCOD/(L × d), where the additional COD consumption rate
of the MEC-AD reactor, relative to the AD reactor, is 0.9 gCOD/d. At that OLR, the accu-
mulated COD in the AD reactor presents a maximum concentration (accumulation rate of
2.7 gCOD/d in addition to that of the MEC-AD reactor), while further increase in the OLR
results in a simulated deterioration of both processes. These results are in accordance
with previous findings indicating that the applied potential exploitation is enhanced at
relatively high OLR values and therefore high substrate availability [30,42,43]. Moreover,
the operation of the reactors at very high OLRs (>6.22 gCOD/(L × d)) and mesophilic
conditions results in the deterioration and instability of the processes, as a drop in alkalinity
and accumulation of VFAs can occur [44]. Although the OLR has no significant effect on
the AD kinetic processes, it is a crucial parameter that has to be optimized based on the
kinetic processes of the MEC-AD system. In particular, as shown in Figure 9, while the
MEC-AD reactor can greatly increase the additional tCOD consumption at very high OLRs
(additional consumption rate of up to 1.5 gCOD/d relative to the AD reactor), the optimal
operation (and therefore the best energy utilization and digestate quality) is predicted at
an OLR of 4.14 gCOD/(L × d). The results indicate that the optimization can significantly
improve the treatment performance and economic efficiency of the raw-WAS-fed MEC-
AD reactor as it achieves faster treatment times and better effluent quality relative to the
AD reactor.

The MEC-AD is a multifactorial process that depends on the cell layout, the electrode
materials, the substrate employed, and the operating conditions (temperature, OLR, ap-
plied potential, SRT). Limited studies have been conducted on the effect of OLR during
raw WAS treatment in mesophilic MEC-AD systems. Specifically, it has been shown that
the optimal MEC-AD operation under thermophilic conditions was obtained at an OLR of
18 gCOD/(L × d) [43]. In addition, an MEC-AD studied under psychrophilic conditions
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could overcome the process deterioration presented by an increased OLR of
4.5 gCOD/(L × d); however, amendment with granular activated carbon was employed [42].

Another crucial parameter that affects the treatment efficiency and methane yield is the
applied potential. For this purpose, a wide range of potentials have been studied (0.3–2 V)
which have yielded dissimilar results in terms of optimal operation [30]. This is mostly
attributed to the differences in the MEC-AD systems, as previously stated. In this context,
while the minimum theoretical applied voltage for MEC-AD systems is 0.14 V, this can lead
to inefficient substrate degradability or biogas upgrading. The optimal applied voltage
in several studies that have examined this effect is found to be in the range of 0.5–0.9 V;
however, the cell layouts and operating conditions greatly vary [18,31,45,46]. Among four
different models studied for a swine-manure-fed MEC-AD system, the ANN model was
superior and yielded the optimal methane yield at the applied potential of 0.9 V, while
no optimization of the OLR took place [28]. Moreover, the ANN model developed for the
optimization of the applied potential in an alkaline pretreated WAS-fed MEC-AD system
was optimized at the value of 0.63 V; however, the effect of the OLR was not taken into
consideration [29]. On the other hand, it has been reported that high voltages (≥1 V) can
improve AD by creating microaerobic conditions through in situ electrolytic oxygen, which
can lead to enhanced methane yield, while very high applied voltage (≥1.6 V) resulted
in inhibition of methane yield by causing microbial damage and lowering the microbial
activity [34].

3.2.2. Solids Retention Time

As has been previously described, the SRT of a reactor is a crucial parameter for
its operation, as it directly affects the stability and activity of the microbial populations
involved in the digestion process [46]. Moreover, taking into consideration that the SRT
is equal to the HRT during ideal reactor mixing, it stands to reason that the SRT deviates
from the HRT since some biomass can be withheld in the reactor. As a result, further
optimization of the kinetic parameters took place by simulating the MEC-AD’s operation
at an increased SRT, which was set equal to the HRT plus 1.5 d.

The results for the predicted values of the kinetic parameters are presented in Table 3.
These show that the majority of the kinetic parameters appeared to be improved relative to
the corresponding values at lower SRTs (Table 2). Specifically, the majority of km values
(for amino acids, sugars, LCFAs, and all VFAs) increased, indicating a faster maximum
uptake of each corresponding substrate, as a higher biomass concentration was present
in the MEC-AD reactor. The exception to this is the km value for H2 uptake, which
appeared to be slightly decreased relative to that at a lower SRT (Table 2). The fact that
H2 uptake was further reduced as a function of increased SRT infers that the increased
biomass concentration resulted in higher inhibition. This is due to the mass balances used
by ADM1 in order to extract the fit to the experimental data (Figures 2–5) and could be
attributed to the limited concentration of homoacetogenic bacteria, which utilize molecular
H2 towards CH4 production. Moreover, the increase of the SRT appears to have mixed
effects on the saturation constants (Ks) for each substrate, as the Ks values for the sugars and
propionate were improved, those for H2, acetate, and butyrate/valerate were deteriorated,
and the values for amino acids and LCFAs remained practically constant. Despite these
changes, which were also shown to have a limited sensitivity to the reactor operation
(Figure 8a–d), the overall Monod substrate uptake kinetics were better as a function of
increased SRT. Furthermore, the first-order disintegration constants also showed mixed
results, with a slightly decreased carbohydrate disintegration, a constant disintegration
of lipids, and improved disintegration of proteins and complex particulates. Specifically,
the disintegration of complex particulates, which was found to be the most sensitive
parameter to changes (Figure 8f) and the main cause of variation between the AD and
the MEC-AD reactors, increased drastically (0.7 g/L relative to 0.4 g/L for high and low
SRTs, respectively). Overall, the first-order disintegration constants, similarly to the Monod
constants, contributed towards an improved process at higher SRTs.
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Table 3. The substrates’ uptake Monod kinetic constants and the particulates disintegration and
hydrolysis first-order kinetic constants as they occurred from the fitting of ADM1 to the experimental
values of the MEC-AD reactor at an increased SRT.

Substrate Uptake Monod Kinetic Constants Disintegration First-Order Kinetic Constants

MEC-AD MEC-AD

km
(kgCODS kgCODX d−1)

Ks
(kgCODS m−3) (d−1) (d−1)

Amino acids 95.2 0.4 Carbohydrates 19.8

Sugars 51.2 4.7 × 10−3 Lipids 0.1

LCFAs 23.7 1.5 Proteins 31.7

H2 8.7 1.1 × 10−5 Particulates 0.7

Acetate 13.6 4.6 × 10−4

Propionate 23.3 9.1 × 10−4

Butyrate/Valerate 37.6 0.2

An effective way to significantly vary the SRT from the HRT is to incorporate recycling
in the reactor. Effluent recycling can prove advantageous in the treatment efficiency and
operation time of the process, as it enables increased SRTs that lead to faster WAS treatment
without significant washout of methanogenic bacteria, which have the highest generation
time relative to all other microorganisms [47]. In addition to the faster treatment time
and the higher efficiency (Table 3), the digestate quality is improved. In this context,
the digestate can have increased upcycling potential in order to completely utilize the
WAS resource. The effect of carbon biobased materials on the increased stability and
fertilizability of the digestate has been previously addressed [40]. Moreover, the MEC-AD
process could potentially be coupled with low-cost composited accelerants or salt additives,
which can lead to further improvements to the digestate quality, such as increased trace
elements, nutrients content, and fertility, therefore increasing the waste biomass utilization
potential [48,49].

4. Conclusions

The present study assessed the ADM1 framework efficiency, adaptability, and pre-
dictability in extracting the kinetic processes of a raw-WAS-fed MEC-AD reactor in com-
parison with an AD reactor. In addition, ADM1 was effectively used for the optimization
of the apparent Monod and first-order kinetic constants of the MEC-AD reactor. For this
purpose, the experimental dataset of two identical reactors (an AD reactor and an MEC-AD
reactor) that were operated for 131 d in continuous mode at different OLRs (1.1, 1.7 and
2.9 gCOD/(L × d)), was employed. The results from the fitting of particulate and soluble
compounds (COD, carbon, and nitrogen) and the produced biogas, along with its methane
content, showed that the obtained kinetics of the MEC-AD reactor improved significantly
in comparison with the conventional AD reactor. In particular, the effect of the applied volt-
age indicated a predominant contribution to the biomass yields and the disintegration of
complex particulates, resulting in a fourfold increase relative to the AD reactor. In addition,
the first-order disintegration kinetics of other particulate substances and the substrates’
Monod uptake kinetic rates were also improved, albeit to a lesser extent. In this context,
the disintegration of complex particulates appeared to be the most sensitive parameter to
changes, resulting in the highest variations of tCOD decomposition, which renders the
applied potential a crucial factor for the elimination of the hydrolysis as the rate-limiting
step of conventional AD systems. The optimization of the process operation as a function of
the OLR, based on the extraction of the kinetic parameters from the ADM1, showed that in
the case of the MEC-AD reactor, the highest divergence from the AD reactor in particulate
and soluble COD content was obtained at an OLR of 4.14 gCOD/(L × d). Moreover, the
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MEC-AD reactor performance and kinetic constants further improved as a function of an
increased SRT, which is attributed to its increased biomass yields, which also became more
apparent as a function of the increased OLR. Future research could be directed towards the
development of a modified model that includes the integration of the bioelectrochemical
interactions and redox reactions taking place on the electrodes, along with the existing AD
biochemical processes, as well as the development of a qualitative prediction of additional
microbial consortia, which facilitate the bioelectrochemical interactions. The results can
serve as a practical imprint of the potential that the MEC-AD system operating parameters
have on improving and accelerating WAS treatment.
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