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Abstract: Cities along rivers are threatened by floods and waterlogging, and the relationship between
rainstorms and floods is complex. The temporal and spatial distributions of rainstorms directly affect
flood characteristics. The location of the rainstorm center determines the flood peaks, volumes, and
processes. In this study, machine learning algorithms were introduced to analyze the rain–flood
relationship in Luzhou City, Sichuan Province, China. The spatial and temporal patterns of rainstorms
in the region were classified and extracted, and flood characteristics generated by various types of
rainstorms were analyzed. In the first type, the center of the rainstorm was in the upper reaches
of the Tuojiang River, and the resulting flood caused negligible damage to Luzhou. In the second
type, the center of the rainstorm occurred in the Yangtze River Basin. Continuously high water
levels in the Yangtze River, combined with local rainfall, supported urban drainage. In the third
type, the rainstorm center occurred in the upper reaches of the Yangtze and Tuojiang rivers. During
the flooding, rainfall from Yangtze River and Tuojiang River moved towards Luzhou together. The
movement of the rainstorm center was consistent with the flood routing direction of the Yangtze and
Tuojiang rivers, both of which continued to have high water levels. The flood risk is extremely high
in this case, making it the riskiest rainfall process requiring prevention.

Keywords: manifold learning; machine learning; spatial–temporal rainstorm distribution; feature
extraction; rainstorm/flood relationship; Luzhou

1. Introduction

Anticipating and predicting flood risks in advance is an urgent issue in urban flood
risk management [1,2]. However, the environmental effects of the large-scale expansion
of artificial surfaces are becoming more prominent [3,4]. The rapid expansion of urban
construction land has transformed outer rivers into inner rivers, reducing storage space,
increasing impermeable areas, and exacerbating urban waterlogging [5]. Urban flood
disasters are increasing annually. Consequently, there is a higher demand for flood control
and drainage systems in cities to defend against these disasters [6].

Riverfront cities are defined as cities that are either intersected by or located along
rivers. These cities are susceptible to both floods and waterlogging, and the relationship
between heavy rainfall and floods is complex [7]. Flooding and waterlogging in riverfront
cities interact with and constrain each other. When rivers experience a surge in floodwaters,
the high water levels make it difficult for the waterlogging to dissipate. Flood levels
serve as important boundary conditions that directly affect a city’s flood and drainage
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situations [8,9]. If heavy peak-season rainfall is combined with high river levels, the risk
of severe flood disasters in the city increases. The strong drainage capacity of urban
areas increases the pressure on river channels to accommodate floods, leading to a higher
risk. Riverfront cities in China are characterized by a high population density, large
industrial scale, and rapid economic development. As the economy grows, these cities
have experienced significant expansion. Therefore, it is crucial to address the main issue of
enhancing a city’s flood control and drainage capabilities while simultaneously defending
against floods and waterlogging. This requires studying the characteristics and patterns of
rainfall and floods that affect urban areas, summarizing the characteristics of rainfall and
floods in specific regions, and implementing integrated flood management at the basin,
regional, and urban level.

Flooding is primarily affected by the spatiotemporal characteristics of heavy rainfall.
The amount, intensity, and spatiotemporal distribution of a rainfall center are clearly
correlated with flood disasters on the underlying surface [10,11]. The direction of movement
of the heavy rainfall center directly affects the shape of the flood process and the change
in peak flow rate [12,13]. During the confluence period, when the average rainfall and
intensity are the same, the peak of the rainstorm in the middle or rear reaches can be more
than 30% larger than that of the uniform rainfall type [14]. Extracting and summarizing
the spatiotemporal characteristics of rainfall refinement, and fully understanding the
spatiotemporal variation laws of heavy rainfall and the corresponding flood characteristics
are of great significance for improving the level of urban flood risk management [15].

Traditional research on the spatiotemporal distribution of heavy rainfall has focused
primarily on single stations. Pilgrim and Cordery summarized the time and position
with the highest probability of rainfall peaks [16]. Keifer and Chu analyzed the intensity–
duration–frequency relationship of rainfall and concluded that rainfall for any duration is
equal to the design rainfall [17]. Huff studied heavy rainfall in Illinois, USA, and divided
the entire rainfall duration into four parts, summarizing the four periods with the highest
probability of peak rainfall during the rainfall process [18]. Although these results on
rainfall characteristics for single stations have been widely applied, they do not reflect the
comprehensive characteristics of dynamic changes in rainfall processes in time and space.

Over the past decade, machine learning technology has been increasingly applied,
owing to its data-driven approach [19]. It has been used to identify early disaster risks,
manage urban floods, and achieve initial results in other areas. Barzegar [20] improved the
accuracy of forecasts (up to three months) for Lake Michigan and Lake Ontario WLs by
coupling boundary-corrected (BC) maximal overlap discrete wavelet transform (MODWT)
data preprocessing with a hybrid convolutional neural network (CNN) long–short term
memory (LSTM) deep learning (DL) model. Prodhan [21] observed that MLMs have
achieved significant advances in the robustness, effectiveness, and accuracy of the algo-
rithms for drought modeling in recent years. Puttinaovarat [22] proposed a novel flood
forecasting system based on fusing meteorological, hydrological, geospatial, and crowd-
sourced big data in an adaptive machine learning framework, which was able to forecast
flood incidents happening in specific areas and time frames. Liu [23] proposed that the
rapid prediction of urban flooding can be achieved by using AI technology with numerical
simulation models. Amirreza [24] proposed a novel framework based on the stacking
ensemble machine learning (SEML) method, which increased the WS modeling accuracy
by >43%. Saeed Farzin [25] developed a model by employing data mining algorithms,
including an artificial neural network (ANN), an adaptive neuro-fuzzy inference system
(ANFIS), the M5 model tree, a least-square support vector machine (LSSVM) and a hybrid
of the LSSVM and firefly optimization algorithm (FFA), the scatter interpolation method,
and multicriteria decision making, namely, DID. This is presented for the modeling of
drugs removal to estimate the drug removal value with good accuracy and without a high
cost and several months of laboratory works. Mohammed [26] established four stand-alone
and hybridized ML-based FSMs to apply to studies on machine learning (ML)-based flood
susceptibility. BAO [27] build basin water and sediment collection simulation technologies,
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enabling the quantitative identification of basin water and sediment changes via coupling
machine learning technology with hydrological models. This technology is widely used.

Current methods for studying rain patterns are based on single stations only and do not
reflect the spatial and temporal variability of rainfall. The rainfall process is characterized
by variations in time and space and is a multidimensional process of change. And the
traditional analysis method cannot analyze the multidimensional characteristics. Machine
learning techniques are suitable for application to multidimensional nonlinear change
processes. Machine learning technology is an important part of AI technology. It has been
developed rapidly in recent years, and has been successfully applied in various fields, such
as computer vision, face recognition, and speech recognition.

In this paper, machine learning algorithms are introduced into spatiotemporal distri-
bution feature extraction of rainfall, which solves the traditional problem of analyzing only
single-station rainfall data and failing to realize rainfall spatiotemporal feature extraction.
Among them, manifold learning is an important algorithm in machine learning, a practi-
cal data processing algorithm in the field of machine learning that has been successfully
applied in feature classification and extraction [28]. This study introduces the isometric
mapping (Isomap) algorithm for manifold learning to analyze rainstorm features using
Luzhou City as a case to extract fine-grained features from high-resolution rainfall spatial
data via dimensionality reduction, classification, and feature extraction. The correspond-
ing flood features of different spatiotemporal rainfall features were analyzed to provide
technical support for urban flood control and drainage planning.

2. Data and Methods
2.1. Data

Luzhou City is located southeast of Sichuan Province. The Yangtze River runs from
west to east through the area, where it merges with Tuojiang. The region has abundant
precipitation, with an average annual rainfall of 1161 mm; the temporal and spatial distribu-
tions of rainfall are uneven. Seventy percent of the rainfall occurs from May to September.
Heavy rain usually begins in early May and ends in late September.

To objectively and comprehensively understand the temporal and spatial distribution
characteristics of rainfall in Luzhou, we analyzed 1 h interval heavy rainfall data from
1998 to 2021 at several rainfall stations. These stations include Lizhuang and Jiang’an
in the upstream Yangtze River in Luzhou, Hejiang downstream of Luzhou, Fushun on
the Tuojiang River upstream of Luzhou, and Fuzhi on the Laixi River, a tributary of the
Tuojiang River. The distribution of these stations is shown in Figure 1. The rainfall data
used in this article are from these stations.
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Before conducting the analysis, we first sorted the rainfall data, removed unreasonable
data, and then divided the rainfall events. Rainfall with a continuous duration of less than
2 h and a rainfall amount of less than 0.1 mm was considered invalid. First, the rainfall
events were divided according to this rule; strong rainfall processes with rainfall amounts
of 30 mm or more in one hour or 50 mm or more in six hours were then selected as research
samples. Based on the above criteria and processes, 134 strong rainfall processes were
screened between 1998 and 2021 to form a research sample set.

2.2. Methods

This study focused on the Isomap algorithm to analyze the dimensionality reduction
and feature extraction of rainfall sample data. The technical process is shown in Figure 2.
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2.2.1. Construction of a Dynamic Characteristics Matrix for Space–Time Distribution of
Heavy Rainfall

We established a sample set of rainfall processes, Ω, and obtained a mathematical
description of the spatiotemporal dynamic development characteristics of multiple rainfall
events as follows:

Ω = {X1, X2, . . . XN} (1)

where Ω is the historical sample set of heavy rain, N is the number of heavy rain events,
and Xj is the proportion matrix of the jth rainfall event,

Xj =


xj

11 xj
21 · · · xj

s1
xj

12 xj
22 . . . xj

s2
...

...
...

xj
1m xj

2m . . . xj
sm

 (2)
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in Equation (2), where xj
it is the percentage of precipitation at time t in the jth rainfall event

for the ith rain gauge out of all of the precipitation at that time for all rain gauges

xj
it = Rj

it/∑s
i=1 Rj

it (3)

where i ranges from 1 to s, t ranges from 1 to m, s is the number of rain gauges, and m is
the number of time intervals; Rj

it is the amount of rainfall at the ith rain gauge station at
time t during the jth rainfall event; s is the total number of rain gauge stations; and m is the
number of periods.

2.2.2. Dimensionality Reduction Analysis Based on the Isomap Algorithm

The Isomap algorithm is an unsupervised dimensional reduction method for nonlinear
data [29,30]. This is a transformation of the multidimensional scaling (MDS) algorithm and
reflects global information through local linearity in manifold learning algorithms. The
overall idea is to map each sample from a high-dimensional space to a low-dimensional
space while preserving the distance between samples. This allows “effective” features
with a lower dimension to express the main features of the original data [28]. In this
study, we used the Isomap algorithm for nonlinear dimensional reduction analysis of
high-dimensional data.

For the original sample set in space Ω = {x1, x2, . . . xN}, each sample, xi, contains
the rainfall time and space dimension, D, of a component. In other words, sample xi’s
dimension is D (including xi ∈ RD, i = {1, 2, · · ·N}). The Isomap algorithm was then used
to reduce the dimension to d (d� D), forming a new sample set in a low-dimensional space,
Ω′ =

{
x′1, x′2, . . . x′N

}
(where x′i ∈ Rd, d� D, i = {1, 2, · · ·N}). In a low-dimensional space,

the dimensions are reduced, but the number of samples remains N. The steps for the Isomap
algorithm are as follows:

(1) Build an adjacent graph, G, by defining input space X as any two samples of vectors
xi and xj. Calculate the Euclidean distance between them as d(i, j). Then, select
the k-nearest points of sample xi as its neighbors. If two samples, xj and xi, have
neighboring points, they are connected. The connection length is the Euclidean
distance between them, d(i, j). This operation is repeated on all points to obtain
graph G.

(2) In graph G, for any two sample vectors xi and xj, set the distance between them
as dG(i, j). Initialize dG(i, j) = d(i, j) if xi and xj are directly connected, other-
wise set dG(i, j) = ∞. Then, update dG(i, j). For all samples k = 1, 2, · · ·N in
graph G, calculate the shortest path via dG = min{dG(i, j), dG(i, k) + dG(i, k + 1)}.
After each iteration, we obtained the shortest path between the sample vectors as
DG(i, j) = {dG(i, j)}.

(3) Let B = DT
GDG and solve the eigenvalue decomposition of matrix B

B = ΦΛΦT (4)

where the feature vector corresponding to Λ = diag(λ1, λ2, · · ·λd) is V = {v1, v2, · · · vd},
and the feature vector corresponding to λj is vi

j. Subsequently, the p-th component of

the d-dimensional embedding vector yj is equal to
√

λjv
p
j . Based on this, the sample set
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Ω = {x1, x2, . . . xN} in the high-dimensional space RD is mapped to the low-dimensional
space Rd to represent Ω′:

Ω′ = [y1, y2, y3 . . . , yN ]d×N =



√
λ1v1√
λ2v2√
λ3v3
.
.
.√

λdvd


d×N

(5)

2.2.3. Dynamic Clustering Analysis

The dimensionality-reduced sample set was classified into r subsets, where the sam-
ples within each subset are similar, and the samples between subsets are different. Extract
the features belonging to each class by calculating the centroid of each subset. This study
primarily used dynamic clustering methods to classify samples after dimensionality reduc-
tion. The algorithm divides the overall sample sets into r subsets, where the samples within
each subset are the most similar, and the samples between subsets are the most different.

During the analysis, we started by randomly selecting r sample points as the initial
clustering centers for r subsets. The distance between all samples and these r initial
clustering centers was calculated, and each sample was assigned to the subset with the
closest center based on the distance. This automatically clustered all samples into subsets
and allowed us to obtain the initial classification category numbers and initial subsets.

Next, the average of all samples in each subset was calculated to obtain a new gener-
ation of clustering centers. We calculated the distance between all samples and the new
clustering center again, automatically clustered, obtained a new clustering center, and
calculated the average of all samples in each subset; this process was repeated to compare
the clustering centers and averages, Zp+1

j , of each subset C = {C1, C2, · · · , Cr} in the pth
generation and the p + 1st generation. If the difference between them was within an accept-
able range, the calculations were considered converged. This allowed us to obtain the final
subsets and clustering centers of each subset, which are the characteristics of the rainfall
spatial distribution.

3. Results and Discussion

The above algorithms were used to analyze 134 heavy rain samples from 1998 to 2021.
Based on this analysis, the spatiotemporal distribution of heavy precipitation in Luzhou
could be classified into three types. Each type of rainfall has different spatiotemporal
distribution characteristics, and the flood processes in the Changjiang and Tuojiang rivers
also have their own features. To analyze the flood characteristics corresponding to each
type of rainfall, we separately calculated the mean, highest, and lowest flood levels, i.e.,
Havg, Hmax, and Hmin, respectively, for each type of flood process:

Hjavg =
∑n

i=1 Hij

n
(6)

where j represents the number of flood events, n the number of periods of the j-th flood
event, and Hij represents the water level at the i-th moment:

Hjmax = max
(

Hij
)

Hjmin = min
(

Hij
)

(7)

where j represents the number of flood events, n represents the number of periods in the
j-th flood event, and Hjmax represents the maximum water level in the j-th flood event,
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i.e., the minimum water level in the j-th flood event, which expresses the magnitude of
change in each flood event.

The following figures illustrate the characteristics of different types of rainfall and floods.
1. Type 1 rainfall begins in the upper reaches of the Tuo River and moves downstream

to the city of Luzhou. It mainly occurs in the Tuo River Basin and affects the water level
of the Tuo River but has a relatively small impact on the water level of the Yangtze River
and poses a smaller threat to Luzhou. This type of rainfall occurs less frequently, with
22 occurrences from 1998 to 2021, accounting for 16.4% of the total sample, as shown in
Figure 3.

Historically, rainfall on 1 May 2008, and 2 June 2014, followed this pattern. Figures 4–7
display the actual rainfall and flood processes.

The high, mean, and maximum water levels were recorded for the floods caused by
the rainfall events of Type I, as shown in Figure 7.

Figures 4–7 demonstrate that the flood processes corresponding to the first typical
rainfall event were mostly single-peaked. As the rainfall center was located in the Tuojiang
River Basin, this type of rainfall mainly affected the flood level of the Tuojiang River. The
water level of the Tuojiang River fluctuated between 1 and 2 m because of the rainfall;
however, this had a negligible effect on the flood level of the Yangtze River. The Yangtze
River did not have a significant supporting effect on the Tuojiang River during this type of
rainfall; rainfall near Luzhou had a negligible effect on the flood level of the Yangtze River.
The flood level of the Yangtze River remained stable, with only small fluctuations in the
water level.
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2. Type 2 rainfall occurred in the Yangtze River Basin. This type of rainfall was
relatively concentrated, with heavy rainfall centered at stations such as Lizhuang and
Luzhou. They occurred more frequently during the flood season; a total of 64 events were
recorded from 1998 to 2021, accounting for 47.8% of the total sample size, as shown in
Figure 8.

Historically, the spatiotemporal characteristics of rainfall on 4 September 2006, and 16
July 2012, fell into this category. Figures 9–12 display the actual rainfall and flood processes.

Figures 9–12 show that the flood processes corresponding to the second type of typical
rainfall event are mostly single-peaked. As the rainfall center occurred in the Yangtze
River Basin, the water level in the Yangtze River was high and persisted for a long time,
significantly affecting the drainage of Luzhou City. The water level in the Tuo River was
also affected by the water level in the Yangtze River; the trend of the water level change
was consistent with that of the Yangtze River. The water level in the Tuo River fluctuated
significantly, with an average range of change of approximately 4–8 m.

3. Type 3 rainfall had two heavy rain centers located upstream of the Tuojian and
Yangtze rivers. The rainfall began upstream of the Tuojian River and was compounded
by rainfall upstream of the Yangtze River moving towards Luzhou. The heavy rain center
moved in the same direction as the floods in the Yangtze and Tuojian rivers, making it the
most unfavorable type of rainfall. This type of rainfall occurred mostly during the main
flood season from June to August in the Yangtze River Basin. From 1998 to 2021, there were
48 occurrences, accounting for 35.8% of the total number of samples, as shown in Figure 13.
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The spatiotemporal characteristics of rainfall on 18 July 2013, and 21 May 2018, belong
to this category. Figures 14–17 depict the actual rainfall and flood processes.

Figures 14–17 show that the flood process corresponding to the third type of rainfall
process was a single-peak type. The rainfall process in the upper reaches of the Tuojian River
overlapped with that in the upper reaches of the Yangtze River and moved towards Luzhou.
The direction of movement of the rainstorm center was consistent with the flood evolution
direction of the Yangtze and Tuojian rivers, which was the most unfavorable rainfall process.

In order to more clearly describe the characteristics of various types of rainfall and
the corresponding flood characteristics, this paper describes the spatial and temporal
characteristics of each type of rainfall and flood characteristics in the form of a table, as
shown in Table 1.
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Table 1. Comparison of different types of rainfall and flood characteristics.

Type of Rainfall Spatial and Temporal
Characteristics of Rainfall

Morphological Characteristics of
Flood Processes

Characterization of Maximum and
Minimum Flood Levels

Type I
The center of the storm moved
upstream from the Tuogang
River toward Luzhou

The flooding process is mostly of
the single-peak type, and this type
of rainfall mainly affects the flood
level of the Tuojiang River.

The water level of the Tuo River
fluctuated between 1 and 2 m due to
rainfall, and the flood level of the
Yangtze River remained stable.

Type II
The center of the storm moved
from the upper reaches of the
Yangtze River to Luzhou.

The flooding process was mostly a
single peak, and this type of
rainfall mainly affects the flood
level of the Yangtze River.

The water level of the Tuo River is
greatly influenced by the water level of
the Yangtze River. The water level of
the Tuo River fluctuated greatly, with
an average change of about 4–8 m.

Type III

The center of the storm moved
toward Luzhou from the
upper Yangtze River and the
upper Tuo River, respectively.

The flooding process was mostly a
single peak. The rainfall process in
the upper reaches of the Tuojian
River overlapped with that in the
upper reaches of the Yangtze River
and moved towards Luzhou.

The direction of movement of the
rainstorm center was consistent with
the flood evolution direction of the
Yangtze and Tuojian rivers, which was
the most unfavorable rainfall process.

The flood peak durations of the Yangtze and Tuojian rivers were relatively long, lasting
approximately 48 h. The water level of the Tuojian River was significantly affected by
the level of the Yangtze River flood and was superimposed by heavy local rainfall in the
basin. The water level of the Tuojian River remained high for a long period during this
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type of rainfall. Both the Yangtze and Tuojian rivers continued to remain at a high level,
representing an extremely high flood risk.

4. Conclusions

Riverside cities have complex flood relationships, in which external river floods
directly affect flood control and drainage within the city. This study distinguishes itself
from traditional research methods by introducing machine learning algorithms into the
analysis of rainfall–flood relationships. Starting with the temporal and spatial distribution
characteristics of rainfall in the region, the flood characteristics caused by different temporal
and spatial rainfall characteristics were analyzed. The conclusions are as follows:

1. Traditional methods of analyzing rainfall characteristics focus on rainfall data or
surface rainfall at a single station. However, rainfall processes are characterized by
spatial and temporal variation. Traditional methods cannot objectively express rainfall
variations in time and space. Machine learning technology can quantitatively describe
the dynamic temporal and spatial distributions of various types of rainfall. This is
consistent with the climatic characteristics of the region. By comparing the featured
rainfall process with the typical actual rainfall process, we found that the temporal
and spatial distribution characteristics of the two were similar, and that the featured
rainfall process was sufficiently representative of the actual rainfall process. Machine
learning techniques can be effectively applied in the study and extraction of rainfall’s
spatiotemporal distribution features.

2. Rainfall in the Luzhou area can be divided into three types according to the different
spatial and temporal distributions. And the flood characteristics formed by different
types of rainfall are also different. When analyzing flood characteristics, it is necessary
to study the spatial and temporal distribution characteristics of rainfall in the area in
order to obtain objective and reasonable conclusions.

3. River flooding had a negligible impact on urban flood control and drainage. When
the rainstorm center was located upstream of the Yangtze and Tuojing rivers, the
movement direction of the rainstorm center was consistent with the flood evolution
direction of the Yangtze and Tuojing rivers. The Tuojing River was significantly
affected by the top support of the Yangtze River, with flood level changes up to 7–8 m.
Both the Yangtze and Tuojing rivers maintained high water levels with a high risk
of flooding. This is the most unfavorable rainfall process and must be a focus for
flood prevention.

4. Although the rainfall–flood relationship obtained in this study applies only to Luzhou,
the proposed method is universal. At present, this study only considers Luzhou as an
example; the research scope can be further expanded to include the entire basin to
obtain more objective results. The results of this study can provide technical support
for urban storm risk management, as well as for the design of urban flood control and
drainage systems.
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