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Abstract: Combined with visible light remote sensing technology and InSAR technology, this study
employed the fundamental principles of the frequency ratio model, information content model,
and analytic hierarchy process to assess the susceptibility of the study area. Nine susceptibility
assessment factors such as elevation, slope, aspect, water system, vegetation coverage, geological
structure, stratum lithology, rainfall, and human activities were selected, and the factor correlation
degree was calculated by using the relative area density value of the landslide. The frequency ratio
model and information content model were selected to carry out landslide susceptibility zoning, and
the accuracy of the two models was verified by the ROC curve and density method. The results
indicate that the information content model performed relatively well. Therefore, the information
model, combined with the analytic hierarchy process and fuzzy superposition method using the
landslide point density map, was chosen to evaluate landslide susceptibility. The study area was
divided into five levels of landslide hazard, ranging from low to high, using the natural discontinuity
point method. The results show that the area of each hazard zoning is 197.48, 455.72, 408.21, 152.66,
and 16.22 km2 from low to high, and the proportion of landslides in the corresponding area is 0.17%,
1.60%, 3.88%, 8.41%, and 16.65%, respectively. It can be seen that with the increase in the hazard level,
the proportion of landslides also increases significantly, which verifies the accuracy of the hazard
results. Additionally, four representative landslides in the study area were selected for analysis
to understand their characteristics and underlying mechanisms. The results revealed that these
landslides were notably influenced by the density of the Jinsha River and the surrounding roads. The
susceptibility assessment outcomes for geological disasters align well with the current situation of
landslide occurrences in the Tuoding river section, demonstrating high accuracy. This study provides
a scientific foundation for effective prevention and control measures against local landslide disasters.

Keywords: landslides; susceptibility assessment; frequency ratio model; information quantity model;
Tuoding; GIS; InSAR

1. Introduction

A landslide is a geological phenomenon that occurs in hilly terrains, resulting in sig-
nificant ramifications on human lives and financial resources. It possesses the potential to
inflict substantial damage on both the ecosystem and society within a specific geographical
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area [1–3]. As the world’s population grows, due to the increase in human engineering
activities, and the complex and changeable world climate, the impact of landslides on
human beings is progressively growing, and its frequency of attention has also increased
year by year. At present, the landslide has become the second-largest geological disaster
in the world after the earthquake disaster, which seriously endangers human engineering
activities and the safety of human life and property [4–9]. Landslide hazard assessment is
very important for disaster prevention and mitigation. The Tuoding section of the study
area is located in the upper reaches of the Jinsha River, northwest of Yunnan and the south-
east edge of the Qinghai–Tibet Plateau. Under the special tectonic background in the region,
there is a complex high ground stress field, strong tectonic activity, frequent occurrence of
geological disasters such as landslides, and complex and changeable climatic conditions.
These geological hazards frequently lead to river blockages, triggering landslides and
earthquakes, as well as the formation of dammed lakes that can result in devastating floods.
These events pose a significant threat to the safety of residents living downstream of the
affected river [10,11]. The Baige landslide and river blocking occurred twice in the upper
reaches of Jinsha River, resulting in the destruction of a large number of houses and a direct
economic loss of about 963.5 million US dollars [11]. In addition, there exist numerous
historical landslide formations on both banks of the Jinsha River [12,13], threatening the
lives of downstream residents and buildings. Therefore, it is necessary to carry out the
study on the susceptibility assessment of potential landslides along the Jinsha River.

At present, domestic and foreign scholars mainly use artificial neural network [14],
logistic regression [15], frequency ratio [16], weight of evidence [17], and other methods
to evaluate landslide susceptibility. The United States and some European countries were
the first to study landslide susceptibility. The United States Geological Survey (USGS)
commenced landslide susceptibility assessment during the 1970s, and developed a variety
of assessment models, such as the weighted stability index model (WIS), the physical
stability index model (PSI), etc. These models take into account multiple factors such as
topography, geology, and climate, and have high accuracy. In addition, European countries
have also conducted in-depth research on landslide hazard zoning, and countries such as
Germany and France have also proposed corresponding assessment methods, such as the
landform evolution influence factor method (FOSM). The earliest systematic exploration
results can be traced back to 1964. Dobrovony analyzed and interpreted the geological
map, topographic map, and geomorphic features of the Anchorage area, and classified the
sensitivity of the local landslide [18]. Regmi et al. evaluated the susceptibility to landslides
through GIS techniques using Bayes’ theorem based on weights of evidence [19]. During
the 1976 International Engineering Geological Congress, the attribution of natural disasters
to geological phenomena was established, and the term “geological disaster” was formally
defined for the first time. The analysis and research work of landslide disasters has also
become more clear. In the 1980s, the geographic information system officially entered the
stage of landslide hazard classification. The powerful data analysis function of the system
made the study of landslide hazards gradually transform from qualitative research to quan-
titative research, making the evaluation methods more diverse and scientific. Brand E W
used quantitative methods to try to calculate the susceptibility of disasters, expounded the
development of landslide geological disasters in Hong Kong, and put forward suggestions
for susceptibility management and prevention [20]. Wei chen combined GIS technology to
use a new hybrid computational intelligence model on different mapping units to evaluate
landslide susceptibility [21]. Bourenane validated and compared the landslide susceptibil-
ity maps (LSMs) produced by applying four geographic information system (GIS)-based
statistical approaches including frequency ratio (FR), statistical index (SI), weights of evi-
dence (WoE), and logistic regression (LR) for the urban area of Azazga [22]. Based on the
distribution characteristics and scale of landslides in the field survey, the study area was
divided into susceptibility zones by using the superposition analysis function of GIS. This
study made the landslide susceptibility assessment more systematic for the first time. In
the 1990s, geographic information technology developed rapidly. GIS technology, with its
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powerful spatial analysis ability, provides a powerful means for the extraction of landslide
disaster characteristics and the calculation of landslide susceptibility. It has been combined
with various types of machine learning and artificial intelligence to make landslide suscep-
tibility zoning more and more scientific [23–25]. Basofi used the analytic hierarchy process
combined with the natural discontinuity method in the process of landslide susceptibility
assessment in Indonesia, and achieved good results [26].

In recent years, the focus of research on landslide susceptibility assessment has shifted
from exploring new models to utilizing a combination of GIS and various mathematical
statistical models, along with advanced technologies such as InSAR, satellite and aerial
photography, and machine learning. Skillful integration of these technologies enables more
scientific and rational discovery and interpretation of landslides (including potential ones),
enhances the reliability of data, and improves the accuracy of susceptibility assessment
results [27]. For example, Liu Jing successfully employed GIS in combination with UAV
technology to assess landslide susceptibility in Zhouqu County, Gansu Province, yielding
positive outcomes [28]. Novellino A utilized InSAR technology and machine-learning
methods in the process of landslide susceptibility assessment within the study area, show-
casing their effectiveness [29]. In the regional landslide susceptibility assessment conducted
by Fang Ranke, machine-learning methods are comprehensively summarized, and novel
insights for susceptibility assessment are proposed [30].

The advancements in InSAR technology have opened up possibilities for landslide
susceptibility assessment [31]. InSAR technology has been utilized for surface deformation
monitoring since 1969 and has proven effective in identifying various geological disasters
such as earthquakes, surface subsidence, and landslides. This technology plays a crucial
role in our efforts toward disaster prevention and mitigation [32–36]. Currently, domestic
research primarily focuses on identifying indicators for landslide susceptibility assessment
and improving assessment methods. For instance, Wu Shuren et al. successfully evalu-
ated landslide susceptibility in Fengdu County, Chongqing, using a geological disaster
information system and information quantity method [37]. Fan Linfeng and other scholars
employed a weighted information model to assess landslide susceptibility in Enshi City,
Hubei Province [38]. Li Wenyan and colleagues compared the frequency ratio and informa-
tion quantity models in their study of landslide susceptibility in certain areas of Gaolan
County, Gansu Province [39]. Foreign research generally possesses a mature theoretical
framework and diverse evaluation models, but the applicability of these models is limited
by geological and climatic conditions. Domestic research, on the other hand, places more
emphasis on practical application and has achieved significant results through the continu-
ous improvement and optimization of evaluation methods. When combined with optical
imagery and on-site field investigations, this approach can effectively verify and validate
the accuracy of the findings [40–43].

The objective of this study is to utilize ALOS-2 and Sentinel-1A data to detect potential
landslides in the Tuoding section of the Jinsha River and assess the suitability of the data.
The study is conducted in three stages: (a) SBAS-InSAR technology is employed to analyze
the long-term phase changes, while multi-period Google Earth images are utilized to
identify potential landslides. This approach helps reduce result uncertainties. (b) Field
investigations are carried out to verify the identification results and analyze the genetic
mechanisms of typical landslides. (c) Based on the findings from ALOS-2 and Sentinel-1A,
the deformation characteristics of specific landslides such as Shentingla (STL), Kongzhigong
(KZG), Dingzhui (DZ), and Duila (DL) are analyzed. Finally, the reliability and applicability
of the ALOS-2 and Sentinel-1A data are validated.

2. Study Area

The study region is situated within Tuoding Lisu Township, Deqin County, Diqing
Tibetan Autonomous Prefecture, northern Yunnan Province (Figure 1a). The area is 28 km
east of Shangri-La City, 13 km west of Xiaruo Lisu Township, 19 km south of Tacheng Town,
and 30 km north of Nixi Township. Jinsha River passes through the study area from north to
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south. The left bank is Wujing Township, and the right bank is Tuoding Lisu Township. The
study section flows through Shengli, Baishugong, Chigutang, Guilong, Badong, and other
places. The specific range is (99◦18′41′′–99◦36′14′′ E), (27◦18′23′′–27◦58 ′30′′ N) rectangular
area, with an area of 1230.36 square kilometers. The residents in the area are mainly Lisu
people, and there are Tibetan, Han, and other population distributions. Tuoding Township
is connected with Shangri-La City and surrounding major towns through national highways
G214 and G215.
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Figure 1. (a) The geographical location of the study area; (b) the geological map of the study area
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The study site is situated within the tectonically active region where the Indian plate
subducts beneath the Eurasian continental plate. The tectonic compression is strong, and
the vegetation in the area is developed, which is a heavy forest area. The region’s robust
topographical uplift has resulted in the formation of a V-shaped, deeply incised valley,
characterized by prominent denudation processes and glacial erosion, thus rendering it an
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alpine canyon landform [42]. The river width of the study area is usually between 60 m and
100 m. The study area is an incised river section, with high mountains and deep slopes. The
villages in the area are distributed in strips on both sides of the Jinsha River. The elevation
of the study area is 1862~4502 m, and the height difference is 2640 m.

The geological formations exposed within the investigated region comprise Cenozoic
Quaternary (Q) Holocene and Pleistocene strata, Tertiary (E) Eocene Lumeiyi Formation
strata, Mesozoic Triassic (T) Upper Zhongwo Formation, Middle Beiya Formation and
Hewanjie Formation, Lower Lamei Formation, Permian (T) Upper Basalt Formation, Pale-
ozoic Carboniferous (C) Lower Formation, Devonian (D) Lower Xiaoyangpo Formation,
Middle Lingpaishan Formation and Guangtoupo Formation, Lower Ranjiawan Formation
and Hailuo Formation, and Cambrian (∈) Lower Tacheng Formation and Yangpo Forma-
tion. The stratigraphic age spans from the Cenozoic to the Paleozoic, and there are many
types of strata. The missing strata are Cretaceous (K), Jurassic (J), and Ordovician (O).
The distribution patterns of the geological strata within the study area exhibit discernible
regularities, and the strata gradually become older from W to E. Different series are usually
in fault contact. The fault is a sub-fault of the eastern branch fault zone of Jinsha River in F1
and the Zhongdian–Longpan–Qiaohou fault zone in F2, while the strata in the same series
are generally in integrated contact (Figure 1b).

The seasonal performance of the study area is that the rainy season of the basin is from
May to October every year. Influenced by both the southwest and southeast monsoons, the
study area experiences an abundance of atmospheric moisture, resulting in concentrated
precipitation. The mean annual precipitation measures 954.0 mm, while the average annual
evaporation stands at 2179 mm. Furthermore, the region exhibits an annual mean runoff of
1360 m3/s, accompanied by an average annual temperature of 12.6 ◦C. According to the
“China ground motion parameter zoning map”, the peak acceleration of the ground motion
of the class II site in Tuoding Township, Deqin County, Diqing City, Yunnan Province is
0.20 g. The ground motion response spectrum within the study area exhibits a distinctive
peak at a period of 0.40 s, corresponding to a seismic intensity of VIII on the scale. The
predisposition to slope instability on both sides of the river, as well as the recurring incidents
of landslides, can be attributed to a confluence of factors, including robust tectonic activity,
ongoing fluvial incision erosion, prolonged weathering processes, a complex high ground
stress field, and the effects of free surface unloading [43].

3. Research Methods
3.1. Data Collection

SBAS-InSAR is a time-series InSAR technology based on multi-scene SAR images. The
principle of this technology is to collect a specific number of SAR images. The number of
interference pairs can be limited according to the set spatial and temporal baseline threshold
range. The existing SAR image data are combined according to the set threshold to obtain a
series of short spatial baseline differential interferograms, which can well overcome the
influence of time decorrelation. Finally, the SVD method can also be used to obtain the
time series of the deformation rate and deformation. This method can be used to form
interference pairs of SAR images for a long period of time, thereby increasing the number
of interference pairs and increasing the time density of deformation monitoring. In the
long-term deformation monitoring work, the time sampling rate is effectively improved,
and the influence of atmospheric error can be suppressed to a certain extent. At present,
this method has been widely used in the study of the slow creep process of landslides and
the slow deformation of the interseismic deformation of fault zones, which is of great help
in the analysis of the slow evolution of disaster bodies.

The SBAS-InSAR methodology was employed in this study, utilizing ascending orbit
data from ALOS-2 and Sentinel-1A satellites, in conjunction with digital elevation model
(DEM) data. ALOS-2, launched by the Japan Aerospace Exploration Agency (JAXA) in
May 2014, provided the satellite imagery, while Sentinel-1A, launched by the European
Space Agency in October 2014, contributed additional satellite data. The DEM used in this
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investigation was acquired through the Shuttle Radar Topography Mission (SRTM) sensor,
featuring a spatial resolution of 30 m [3].

ALOS-2, the sole operational L-band SAR satellite, operates at a frequency of 1.2 GHz
with a wavelength of approximately 23.5 cm. It acquires observation data independent
of weather conditions and time constraints. The L-band wavelength enables penetration
through vegetation, making it particularly suitable for monitoring surface deformation
in densely forested areas. It offers a resolution of 10 m and an incident angle of 36.28◦.
Due to satellite imaging schedules, the data acquisition intervals are irregular. On the
other hand, Sentinel-1A is a C-band radar satellite with a wavelength of around 5.6 cm.
While it has limitations in densely vegetated regions, it can effectively penetrate clouds
and remains unaffected by weather and climate conditions. Sentinel-1A is employed in
various applications such as monitoring flood areas, landslides, and forest fires. It operates
in interferometric wide (IW) swath imaging mode, with VV polarization and an average
incident angle of 33.91◦. The ground resolution is 5 × 20 m [3]. Specific details pertaining
to the satellite data utilized are presented in Table 1.

Table 1. Basic information on the ALOS-2 and Sentinel-1A images.

Satellite ALOS-2 Sentinel-1A

Level L1.1 L1.1
Time overlap 7 September 2014–26 June 2020 17 January 2017–2 January 2021
Wavelength 23.5 cm 5.6 cm

Band L-band C-band
Polarization HH VV
Resolution 10 m 5 × 20 m

We applied SBAS-InSAR technology for the identification of 65 landslides within the
Tuoding segment of the Jinsha River (Figure 2). To ascertain the precision of potential
landslide identifications, a field investigation was conducted, during which our research
team visited the study area on 25 April 2021 and conducted a 17-day field geological survey
on the identified landslides. The main object of the survey was the large-scale gravity
geological disasters that occurred in the early stage, including 17 accumulation bodies from
the downstream to the upstream. Based on the ArcGIS platform, combined with the remote
sensing images and elevation maps of the study area, the three-dimensional geological
model of the study area is shown in Figure 3.

3.2. Field Investigation and Analysis of Typical Landslide Formation Mechanism

We focused on the analysis of four typical landslides: Shentingla (STL), Kongzhigong
(KZG), Dingzhui (DZ), and Duila (DL). The STL, TGLK, DZ, and DL landslides were
analyzed by remote sensing image interpretation and InSAR technology (Figure 4). On-site
investigations and sample analyses were conducted to gain an in-depth understanding of
the landslide formation mechanisms.

The STL landslide is distributed on the left bank of the Jinsha River under study; the oc-
currence of the STL bedrock layer is mostly located between 227–300◦∠29–58◦ (Figure 5a,b),
while the slope of the deposit along the river is 240–250◦. Therefore, the bank slope structure
is a moderately inclined slope intersecting with the slope at a small angle. In addition, at
the bottom of the field investigation, a group of structural planes in the nearly vertical steep
slope are more developed. Hence, it can be deduced that the accumulation body undergoes
slip-bending failure as its genetic mechanism. The presence of the steep structural plane
in this group can be attributed to the tensile fracture resulting from the bending arch of
the lower rock mass when it slides toward the bank of the Jinsha River. Subsequently, the
slope slows down and encounters obstruction from the terrain ahead. The KZG, DZ, and
DL landslides are situated along the tight bank of the studied Jinsha River. The bedrock
lithology in the KZG area is medium-thin schist or dolomite. The occurrence of the rock
stratum is 102–135◦∠39–60◦. The geological stratum exhibits a gentle intersection with the
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slope surface at a shallow angle, forming a subsequent slope area outside the central and
steeper slope region. The surface rock layer is characterized by a relatively fragmented
structure and displays a moderate degree of weathering. Based on the above bedrock
rock mass structure and bank slope structure characteristics, the genetic mechanism of
the Kongzhigong deposit is bedding sliding (Figure 5c,d). The No. 1 accumulation body
of the DZ landslide is located at an altitude of more than 2500 m. It was once located
in the range of glacier movement. The alternating freeze–thaw cycle during the glacial
and interglacial periods is the main reason for the formation of the No. 1 accumulation
body (Figure 5e). The No. 2 accumulation body is formed by the overall deformation of
the landslide body along the fragile sliding surface. In area 2, there are obvious landslide
platforms and landslide back walls. The overall shape of the accumulation body is the
tongue-shaped terrain uplifted in the ditch, which has the topographic characteristics of
the accumulation of landslide materials in the ditch. The No. 3 accumulation body is
distributed along the steep slope of the rear edge of area 3, with a large width, but a thin
thickness, and the arrangement of the fragments is irregular, no sorting, mainly angular,
with typical characteristics of near-source accumulation. The elevation of the front edge of
the platform (about 2067 m) is much higher than that of the front edge of the opposite bank
(about 1952 m), so the No. 4 accumulation body is not the remnant of the opposite bank
landslide dam. In the study area of the DL landslide, there are houses with cracks in the
wall, and a crack is developed in the east–west wall. The extension length of the crack is
about 3 m, and the opening width increases gradually from the upper part to the lower part.
The upper part is closed, and the bottom opening width can reach 5 cm (Figure 6). The rock
mass belongs to the thin layer structure, and the strength of the rock layer is low. The weak
bedding phyllite slips downward under the action of the surface accumulation body and
its own gravity. The front edge of the phyllite extends to the bottom of the ditch, and the
front edge is squeezed and uplifted by the rear rock layer. On the whole, the accumulation
body should be the traction failure caused by the sliding bending of the bedding phyllite.
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Elevation data, derived from SRTM 30 m DEM, along with slope and aspect data, 
obtained from DEM sources, were utilized in this study. River and road data were sourced 
from the National Geographic Information Resource Catalog Service System (www.web-
map.cn, accessed on 5 October 2021) (Table 1). These selected factors exhibit a strong cor-
relation with landslide occurrences. In order to determine the dominant interval of each 

Figure 6. The cracks in the middle and upper reaches of the old accumulation body in the old area.

3.3. Selection of Evaluation Factors

The process of selecting factors for landslide susceptibility assessment offers a wide
array of options, and the choice of pertinent factors can be guided by historical landslide
survey data or the relevant literature specific to the study area. Furthermore, it is feasible
to consider a broad spectrum of factors associated with landslide occurrences based on
the literature references and subsequently discern the most suitable ones for the present
study during the landslide susceptibility evaluation process. By analyzing the development
characteristics and formation mechanism of geological disasters in Tuoding Township, the
susceptibility assessment indexes of geological disasters in Tuoding Township are divided
into two levels: dominant factors (environmental conditions for landslide formation) and
inducing factors (landslide triggering conditions). The dominant factors include elevation,
slope, slope direction, water system, vegetation coverage, stratigraphic lithology, and
geological structure [44–47]. Two evaluation indexes were selected for inducing factors:
human activities and rainfall [48,49] (Figure 7).
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Elevation data, derived from SRTM 30 m DEM, along with slope and aspect data,
obtained from DEM sources, were utilized in this study. River and road data were
sourced from the National Geographic Information Resource Catalog Service System
(www.webmap.cn, accessed on 5 October 2021) (Table 1). These selected factors exhibit a
strong correlation with landslide occurrences. In order to determine the dominant interval

www.webmap.cn
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of each factor affecting landslide susceptibility, it is necessary to analyze the susceptibility
of each factor interval. Most of the previous studies used the number of landslides or
landslide area indicators in each interval of the factor for analysis. However, this method
cannot well explain the distribution of landslides with the change in the impact factor value.
Therefore, in this paper, the relative area density (Dij) of the landslide is used to represent
the activity degree of the landslide in each interval of different factors. Its equation is as
follows [3,8,13,36]:

Dij =
Aij/A
Sij/S

(1)

where Dij is the relative area density value of the landslide in the j sub-classification under
the i factor; Aij represents the landslide area in j grade under i factor; Sij is the total area of
the ith factor j sub-classification; and A and S represent the total area of the landslide and
the total area of the study area, respectively.

We calculate the size of the landslide correlation degree (Dij), and assigned each level to
1, 2, 3, 4, and four sub-level reclassification data according to the order of the landslide area
density values from small to large for subsequent susceptibility weighting calculations. In
consideration of the dimensions of the study area, all grid data employed in the computation
process were rescaled to a uniform 30 m resolution. Detailed classifications for each factor,
the respective areas encompassing various landslide grades, and the resultant Dij values
are meticulously presented in Tables 2 and 3, as well as Figure 8, respectively.

Table 2. Correlation degree and ranking table of each factor.

Factors Correlation Rank

Elevation 8.54 1
Slope 6.34 2

Aspect 4.78 3
Distance from river 4.51 4

Vegetation cover 4.42 5
Distance from fault 4.01 6

Lithology 3.87 7
Distance from road 3.69 8

Precipitation 2.93 9

Table 3. Statistical table of correlation degree and reclassification of each factor.

Factors Classification Aij (km2) Aij/A Sij (km2) Sij/S Dij Value

Elevation (m)

2600− 19.12 49.01% 245.76 19.97% 2.454 4
2600–3200 10.44 26.77% 334.00 27.15% 0.986 3
3200–3800 2.30 5.91% 362.79 29.49% 0.200 1

3800+ 7.14 18.32% 287.81 23.39% 0.783 2

Slope (◦)

18− 9.09 23.30% 256.76 20.87% 1.117 3
18–30 15.03 38.53% 403.78 32.82% 1.174 4
30–42 10.97 28.12% 382.23 31.07% 0.905 2
42+ 3.92 10.05% 183.37 14.90% 0.674 1

Aspect (◦)

90− 9.92 25.44% 302.04 24.55% 1.036 4
90–180 8.75 22.43% 290.64 23.62% 0.950 1
180–270 10.94 28.05% 339.00 27.55% 1.018 3

270+ 9.39 24.07% 294.45 23.93% 1.006 2

Distance from
river (m)

200− 1.97 5.06% 34.28 2.79% 1.817 2
200–500 4.64 11.90% 49.80 4.05% 2.940 3
500–800 4.56 11.70% 48.22 3.92% 2.984 4

800+ 27.83 71.34% 1098.03 89.24% 0.799 1
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Table 3. Cont.

Factors Classification Aij (km2) Aij/A Sij (km2) Sij/S Dij Value

Vegetation cover (%)

0.25− 7.63 19.56% 149.28 12.13% 1.612 4
0.25–0.5 10.01 25.67% 201.89 16.41% 1.564 3
0.5–0.75 12.30 31.53% 370.81 30.14% 1.046 2

0.75+ 9.06 23.24% 508.87 41.36% 0.562 1

Distance from
road (m)

200− 6.80 17.44% 102.35 8.32% 2.097 3
200–500 7.48 19.18% 110.76 9.00% 2.130 4
500–800 4.64 11.88% 102.68 8.35% 1.424 2

800+ 20.09 51.50% 914.52 74.33% 0.693 1

Distance from
fault (m)

500− 11.31 28.99% 253.27 20.59% 1.409 4
500–1000 9.00 23.07% 225.78 18.35% 1.257 3

1000–1500 7.15 18.33% 189.30 15.39% 1.191 2
1500+ 11.58 29.69% 561.96 45.67% 0.650 1

Lithology

Weak rock 5.16 13.22% 281.50 22.88% 0.578 3
Medium hard

rock mass 5.56 14.25% 343.55 27.92% 0.510 2

Loose accumulation 28.05 71.90% 591.61 48.08% 1.495 4
Hard soil rock 0.24 0.62% 22.25 1.81% 0.345 1

Precipitation (mm)

920− 1.79 4.58% 123.36 10.03% 0.457 1
920–950 5.80 14.86% 303.49 24.67% 0.602 2
950–980 17.87 45.80% 530.77 43.14% 1.062 3

980+ 13.56 34.76% 272.68 22.16% 1.568 4

3.4. Selection of Susceptibility Assessment Model
3.4.1. Frequency Ratio Model

The frequency ratio model has reached a relatively advanced stage in the assessment
of landslide susceptibility [48]. Empirical evidence has demonstrated that this approach
effectively captures the relative importance of different factors contributing to landslide
occurrences when on-site landslide data are collected. As a result, the assessment outcomes
are more accurate and well supported. This methodology is particularly suitable for
conducting quantitative assessments of landslide susceptibility in areas prone to toppling
events. The method calculates the probability of landslides within each classification
interval of a specific factor and then aggregates the frequency ratios across intervals to
determine the factor’s influence on landslides, known as the landslide susceptibility index
(LSI). The calculation equation for this model is [3,8,13,36]:

FRij =
Nij/N
Mij/M

(2)

where FRij is the frequency ratio of j-graded under i-factor; nij is the number of graded
landslides under factor i; mij is the number of grids classified by j under factor i; and N and
M represent the total number of landslides and the total number of grids in the study area,
respectively.

Considering different influence factors FRij, for a specific spatial location, it is assumed
that the interval it belongs to is F, and the susceptibility index of landslide disaster LSI in
this spatial location is obtained by adding the frequency ratios of different factors. The
current factor landslide susceptibility index can be obtained by summing the frequency
ratio of each factor [3,8,13,36]:

LSI = ∑ FRij (3)

where LSI is the landslide susceptibility evaluation index.
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(d) distance from river; (e) vegetation cover; (f) distance from fault; (g) lithology; (h) distance from
road; and (i) precipitation.

3.4.2. Information Quantity Model

The information model has evolved from the principles and concepts established
in information theory. It is a method that uses the landslide density to calculate the
amount of information of landslide occurrence under each influence factor interval. It
realizes the zoning of landslide susceptibility by the weighted superposition of single-
factor information [49–53]. This method can not only objectively evaluate the contribution
of each influencing factor to the occurrence of landslides, but also more accurately and
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intuitively reflect the landslide-prone areas, and provide a scientific basis for the prediction
and prevention of geological disasters. The specific equation is as follows [3,8,13,36]:

Ixj → A = In
Qj/Q
Mj/M

= In
Qj/Mj

Q/M
(4)

where Ixj → A is the information value of the occurrence of event A (landslide) under the j
interval of x factor; qj is the number of landslide grids in the xj sub-interval; mj is the total
number of grids of sub-interval xj; and Q and M represent the total number of landslide
grids in the study area and the total number of grids in the study area, respectively.

The obtained information value of each interval is multiplied by the corresponding
number of landslides, and then the total weight index value of factor i can be obtained by
summing the internal factors [3,8,13,36]:

TWI(x) = ∑ Qj × Ixj → A (5)

where TWI(x) is the total weight value of the x factor.

3.4.3. Analytic Hierarchy Process

In the context of employing the analytic hierarchy process (AHP) to formulate the
judgment matrix, the conventional approach typically relies heavily on expert judgment to
assess and score the importance of each factor, which is subsequently used to calculate their
respective weights. In this paper, in order to prevent the problem of excessive subjectivity
of expert scoring, the correlation degree of each factor is sorted (Table 3), and the judgment
matrix is constructed by combining the method of expert scoring. The specific modeling
steps of the AHP are as follows: (1) develop the hierarchical structure of the target problem;
(2) create the judgment matrix, incorporating both expert scoring and factor correlation
rankings; (3) calculate the weights assigned to each factor based on the judgment matrix;
and (4) perform a consistency test to evaluate the reliability of the judgment matrix.

Steps (3) and (4) are calculated using Equations (6) and (7) [3,8,13,36,38].

CR = CI/RI (6)

CI =
λmax− n

n− 1
(7)

where CR is the random consistency ratio; CI is the consistency index; RI is a random
consistency index; λmax is the maximum eigenvalue of the judgment matrix; and n is the
order number.

3.5. Model Calculation
3.5.1. Frequency Ratio Model Calculation

To calculate the landslide susceptibility index of each factor, the frequency ratio
Equation (2) was utilized to determine the frequency ratio of each interval of the nine
factors. This was followed by using Equation (3) to generate Tables 4 and 5, which were
sorted accordingly.

Based on the outcomes of the frequency ratio model computations, the study area’s
susceptibility is classified into five distinct levels, namely, very low, low, moderate, high,
and very high susceptibility, using the natural breakpoint method. Subsequently, the
landslide susceptibility zoning map under the frequency ratio model is generated (Figure 9).
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Table 4. Frequency ratio index statistical table.

Factors Classification Nij Nij/N Mij (km2) Mij/M FRij LSI Index

Elevation (m)

2600− 34 52.31% 245.76 19.97% 2.619

4.449
2600–3200 14 21.54% 334.00 27.15% 0.793
3200–3800 6 9.23% 362.79 29.49% 0.313

3800+ 11 16.92% 287.81 23.39% 0.724

Slope (◦)

18− 10 15.38% 256.76 20.87% 0.737

4.031
18–30 28 43.08% 403.78 32.82% 1.313
30–42 15 23.08% 382.23 31.07% 0.743
42+ 12 18.46% 183.37 14.90% 1.239

Aspect (◦)

90− 16 24.62% 302.04 24.55% 1.003

4.002
90–180 11 16.92% 290.64 23.62% 0.716

180–270 19 29.23% 339.00 27.55% 1.061
270+ 19 29.23% 294.45 23.93% 1.222

Distance from
river (m)

200− 3 4.62% 34.28 2.79% 1.654

9.752
200–500 8 12.31% 49.80 4.05% 3.039
500–800 11 16.92% 48.22 3.92% 4.317

800+ 43 66.15% 1098.03 89.24% 0.741

Vegetation
cover (%)

0.25− 14 21.54% 149.28 12.13% 1.776

4.898
0.25–0.5 18 27.69% 201.89 16.41% 1.688
0.5–0.75 15 23.08% 370.81 30.14% 0.766

0.75+ 18 27.69% 508.87 41.36% 0.670

Distance from
road (m)

200− 11 16.92% 102.35 8.32% 2.034

7.138
200–500 20 30.77% 110.76 9.00% 3.419
500–800 6 9.23% 102.68 8.35% 1.105

800+ 28 43.08% 914.52 74.33% 0.580

Distance from
fault (m)

500− 19 29.23% 253.27 20.59% 1.420

4.451
500–1000 15 23.08% 225.78 18.35% 1.258

1000–1500 11 16.92% 189.30 15.39% 1.100
1500+ 20 30.77% 561.96 45.67% 0.674

Lithology

Weak rock 9 13.85% 281.50 22.88% 0.605

3.423
Medium hard

rock mass 9 13.85% 343.55 27.92% 0.496

Loose accumulation 46 70.77% 591.61 48.08% 1.472
Hard soil rock 1 1.54% 22.25 1.81% 0.850

Precipitation (mm)

920− 12 18.46% 123.36 10.03% 1.841

4.446
920–950 23 35.38% 303.49 24.67% 1.434
950–980 27 41.54% 530.77 43.14% 0.963

980+ 3 4.62% 272.68 22.16% 0.208

Table 5. Ranking table of frequency ratio susceptibility index.

Factors LSI Weight Rank

Elevation 4.449 9.55% 5
Slope 4.031 8.65% 7

Aspect 4.002 8.59% 8
Distance from river 9.752 20.93% 1

Vegetation cover 4.898 10.51% 3
Distance from fault 4.451 9.55% 4

Lithology 3.423 7.35% 9
Distance from road 7.138 15.32% 2

Precipitation 4.446 9.54% 6
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Figure 9. Landslide susceptibility assessment evaluation map of frequency ratio method.

3.5.2. Calculation of Information Quantity Model

To obtain this map, we first utilized Equation (4) to calculate the information quantity
of each sub-interval of the nine factors in this study. We then employed Equation (5) to
determine the total weight value (TWI) of each factor. After standardizing the output of
the TWI value using Equation (4) and converting it into an interval of 1–10, we repeated
this process for the TWI values using Equation (8) and converted them into intervals
of 1–10. This yielded the information value of each factor, which was used to generate
Tables 6 and 7 [3,8,13,36].

WFi =
TWIAi −MinTWIAi

MaxTWIAi −MinTWIAi
× 9 + 1 (8)

where WFi is the single-factor weight value, MaxTWIAi is the maximum total weight index
value, and MinTWIAi is the minimum total weight index value.

Table 6. Information content susceptibility index ranking table.

Factors WF Weight Rank

Elevation 10.000 20.93% 1
Slope 1.491 4.17% 8

Aspect 1.000 2.80% 9
Distance from river 4.769 13.33% 3

Vegetation cover 3.603 10.07% 5
Distance from fault 2.613 7.30% 7

Lithology 4.390 12.27% 4
Distance from road 4.798 13.41% 2

Precipitation 3.114 8.70% 6
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Table 7. Statistical table of information index and standardized weight index.

Factors Classification Information Value TWIj TWI WF

Elevation (m)

2600− 0.898 1716.233

1155.881 10.000
2600–3200 −0.014 −14.721
3200–3800 −1.609 −370.863

3800+ −0.245 −174.768

Slope (◦)

18− 0.111 100.579

77.540 1.491
18–30 0.160 241.082
30–42 −0.100 −109.503
42+ −0.395 −154.618

Aspect (◦)

90− 0.035 35.099

15.361 1.000
90–180 −0.051 −44.879

180–270 0.018 19.523
270+ 0.006 5.618

Distance from river (m)

200− 0.597 117.932

492.956 4.769
200–500 1.078 500.695
500–800 1.093 498.769

800+ −0.224 −624.440

Vegetation cover (%)

0.25− 0.477 364.343

345.195 3.603
0.25–0.5 0.447 447.846
0.5–0.75 0.045 55.317

0.75+ −0.576 −522.310

Distance from road (m)

200− 0.741 503.871

496.616 4.798
200–500 0.756 565.572
500–800 0.353 163.851

800+ −0.367 −736.678

Distance from fault (m)

500− 0.343 387.798

219.783 2.613
500–1000 0.229 205.855

1000–1500 0.175 124.977
1500+ −0.431 −498.847

Lithology

Weak rock −0.548 −282.774

444.992 4.390
Medium hard rock mass −0.673 −374.258

Loose accumulation 0.402 1127.896
Hard soil rock −1.064 −25.871

Precipitation (mm)

920− −0.783 −139.857

283.276 3.114
920–950 −0.507 −294.202
950–980 0.060 107.472

980+ 0.450 609.863

Combined with the information algorithm, the natural breakpoint method is used
to carry out five levels of landslide susceptibility zoning, and the landslide susceptibility
zoning map under the information model is obtained, as shown in Figure 10.

3.6. Model Comparison and Verification
3.6.1. ROC Curve Validation

The ROC curve is a valuable quantitative evaluation method used to effectively assess
the accuracy of model predictions. By plotting the ROC curve, we can calculate the AUC
value, which represents the area under the curve and ranges from 0.5–1. The closer the
AUC value is to 1, the more accurately the model predicts, as indicated by a curve that
is more curved toward the upper-left corner. In this study, we employed the ROC curve
to verify the prediction results of the two models. Figure 11 illustrates the verification
results, with AUC values of 0.792 and 0.806 for the two models, respectively. These results
indicate that the evaluation outcomes are more accurate, and that the information model’s
evaluation results are superior.
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3.6.2. Verification of Density Method

The landslide density verification method uses the ratio of the number of landslides
N to the area S in each prone interval to obtain the landslide density value in each zoning
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range. In theory, the numerical value should increase with the increase in the susceptibility
level, that is, the greater the susceptibility of the landslide, the greater the density of the
landslide, and the larger the slope of the broken line diagram, the more accurate the model
calculation results. The GIS platform is used to calculate the susceptibility zoning area
of the two models, and the number of landslide points in each region is counted by the
method of vector intersection. Table 8 presents a summary of verification of the density
method, and the density value is plotted by the broken line diagram to obtain the Figure 12.

Table 8. Verification summary table of density method.

Susceptibility
Classification

Frequency Ratio Model Information Model

Area (km2) Number Density Area (km2) Number Density

Very low 256.63 3 0.012 281.69 3 0.011
Low 303.92 9 0.03 402.83 14 0.035

Moderate 379.77 13 0.034 331.03 14 0.042
High 207.74 23 0.111 165.49 21 0.127

Very high 77.67 17 0.219 44.67 13 0.291
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3.7. Susceptibility Assessment and Analysis

After obtaining the susceptibility evaluation results of the information model and the
factor weights of the AHP, in order to make the results of the landslide hazard more reliable,
we also need to analyze the density of the landslide points. The specific procedure entails
the vectorization of the landslide points within the study area, followed by the utilization
of GIS’s density analysis function. A search radius of 1500 m is specified to generate a
landslide point density analysis map of the study area, which is illustrated in Figure 13.

Combined with the point density map, the superposition function of ArcGIS software
is used to analyze the fuzzy superposition of the landslide point density map and the
susceptibility data of the AHP + information method. The reclassification method still uses
the natural discontinuity method. The study region is stratified into five distinct categories
based on susceptibility levels, encompassing very low, low, moderate, high, and very high
susceptibility zones. Consequently, the resulting landslide susceptibility assessment map
for the study area is presented in Figure 14.
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3.8. Result Analysis

The landslide hazard assessment map and grid reclassification data are collated and
counted. The area of each grade is calculated by GIS software, and the landslide points in
each area are counted by using the function of vector intersection. The data pertaining to
the extent of each sub-level, the corresponding landslide areas within each sub-level, and
the proportional distribution of landslides across different regions are compiled to generate
the tabulated results presented in Table 9.

Table 9. Statistical table of landslide susceptibility assessment results.

Susceptibility
Classification

Percentage of
Region Area (km2)

Proportion of
Landslide

Landslide Area
(km2)

Landslide Ratio
in the Area

Very low 16.05% 197.48 0.88% 0.34 0.17%
Low 37.04% 455.72 18.72% 7.30 1.60%

Moderate 33.18% 408.21 40.58% 15.83 3.88%
High 12.41% 152.66 32.90% 12.83 8.41%

Very high 1.32% 16.22 6.92% 2.70 16.65%

Based on our calculations, the study area has a high-susceptibility area of 16.22 km2,
which accounts for 1.32% of the total area. Despite its small size, this area has the highest
proportion of landslides and is primarily located in the north-central part of the study
area, along the riverbanks and roads. The high-susceptibility area covers 152.66 km2

(12.4%) and is almost entirely coincident with the main rivers and the central eastern
tectonic fault zone, as well as the dense road network in the south. This area has a high
probability of landslide occurrence, with an 8.41% ratio of landslide occurrence. The
moderate-susceptibility area covers 408.21 km2 (33.18%) and is mainly distributed in the
northeast, central, and southern parts of the study area. The proportion of landslides in
this area is at a medium level, accounting for 3.88%. The lower-susceptibility area is the
largest, covering 455.72 km2 (37.04%) and is widely distributed throughout the study area
except for the middle part. The proportion of landslides in this area is relatively stable
at 1.60%. Lastly, the low-susceptibility area covers 197.48 km2 (16.05%), mainly located
in the marginal zone far away from the river, with the western region having the highest
distribution. The landslide area in this area accounts for only 0.17%, indicating a stable
state with the smallest landslide susceptibility. Overall, these findings provide valuable
insight into the distribution of landslide susceptibility in the study area and can be used to
inform effective prevention measures.

4. Discussion

InSAR technology is a reliable method for identifying potential landslides. Previous
studies have utilized Sentinel-1 and ALOS-2 satellite data for surface deformation moni-
toring, which we also used in this study to identify potential landslides in the study area.
However, while interpretation methods such as visible light remote sensing technology and
InSAR technology are generally scientific, their measurement accuracy can be impacted by
factors such as cloud cover and surface reflectance. This can result in individual landslide
data being accidental and unreliable. Therefore, we should not rely solely on remote sens-
ing technology for landslide data survey and instead aim to collect data through multiple
channels. Furthermore, we need to enhance the processing capacity of InSAR technology to
reduce interference and improve accuracy, ensuring that our survey work is more precise.
By doing so, we can obtain more reliable data to inform our analysis and decision-making
related to landslides.

The examination of factors contributing to landslide susceptibility zoning reveals
that regions characterized by very low susceptibility and low susceptibility are primarily
clustered in the western sector, and in the southeast part of the region, these areas are
characterized by high altitudes and dense vegetation, which in turn contribute to enhanced
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slope protection through the presence of vegetation on the slopes, and because of its high
altitude, rivers, and roads. It is difficult to affect these areas, making these places safer;
the high-susceptibility and higher-susceptibility areas are mainly concentrated on both
sides of the Jinsha River and near the highways along the river. This phenomenon can
likely be attributed to the persistent erosive forces exerted by the river along the base of
the slopes on both flanks, coupled with the adverse impacts stemming from construction
activities along the adjacent highways, which have resulted in damage and disruption to
the slopes. The slope is more fragile, and because the elevation of the region is lower, the
lower the vegetation in the low-altitude area closer to the foot of the slope on both sides is,
the rock mass is bare and vulnerable to erosion, so the landslide susceptibility is greater.
As a result, it is crucial to prioritize the protection of landslides on both sides of the river
and implement appropriate preventive measures to reduce the dangerous consequences of
landslides. By doing so, we can minimize the impact of landslides and ensure the safety of
the local population.

We organized and calculated the correlation between nine evaluation factors: elevation,
slope, aspect, distance from river, vegetation coverage, distance from road, distance from
fault, lithology, and precipitation. This allowed us to have a more intuitive understanding of
the relationship between each factor’s range and landslide occurrence, facilitating a deeper
understanding of local landslides. Based on the results of the landslide hazard analysis
and single-factor data in the study area, it is known that landslides in the study area are
mainly concentrated in areas with elevations below 2600 m, slopes of 18–30 degrees, aspects
of 0–90 degrees, distances from rivers of 500–800 m, distances from roads of 200–500 m,
vegetation coverage below 25%, distances from faults less than 500 m, and rainfall exceeding
980 mm. Areas with a higher overall landslide risk in the study area are concentrated
along the rivers and roads running north–south, as well as near geological faults. There
is still room for development in the selection of factors. Some factor data only reflect
the moment of collection and do not consider the impact of time. In future research, in
addition to ensuring the screening capability of factors, the timeliness of factors should also
be considered.

Based on the results of the landslide sensitivity analysis, the study area should pay
special attention to the banks of the Jinsha River, Jirenshui, Shenta, Lulu Ge, Guiba, and the
easternmost part of the study area near the Shangri-La region. Monitoring measures should
be strengthened and early preventive measures taken to reduce or avoid significant losses
caused by landslides to the local area. Local governments should develop prevention plans,
enhance mountain monitoring during heavy rainfall periods, and establish emergency over-
time systems during flood seasons. At the same time, it is necessary to regulate construction
work and strengthen supervision of the construction process to minimize disturbance to
local slopes caused by construction activities. This can enhance the understanding of the
hazards posed by rainfall and human engineering activities as landslide triggering factors,
effectively protect the interests of the local people, and minimize harm.

5. Conclusions

This paper employs InSAR technology to acquire surface deformation monitoring
data for the Topping River section in the study area. These data are utilized to identify
potential landslide boundaries, which are further validated through field investigations.
Vulnerability zoning of the nine influencing factors is conducted using the frequency ratio
model and information quantity model. The accuracy of the results is verified using the
ROC curve and density method, with the information quantity model outperforming the
frequency ratio model. The information quantity model’s calculation results, combined with
the analytic hierarchy process and superposition point density map, are utilized to perform
landslide susceptibility zoning in the study area. The results reveal five susceptibility
zones, ranging from low to high, with respective areas of 197.48, 455.72, 408.21, 152.66,
and 16.22 km2. The corresponding proportion of landslides in each zone is 0.17%, 1.60%,
3.88%, 8.41%, and 16.65%. As expected, the proportion of landslides significantly increases
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with higher susceptibility levels, confirming the accuracy of the susceptibility results.
Finally, this study analyzes the single-factor classification map of the study area based
on the susceptibility zoning results. This analysis provides a reasonable explanation for
the varying distribution of local landslide susceptibility. The insights gained from this
study contribute to the understanding of landslide susceptibility zoning and can inform
the development of effective preventive measures.

Author Contributions: Conceptualization, Y.R., J.C., W.L., R.H., T.W. and M.H.; Data curation, R.H.
and W.H.; Formal analysis, W.L., X.Z. and T.W.; Investigation, Y.R., J.C. and R.H.; Methodology, Y.R.,
W.L., X.Z., T.W., M.H. and W.H.; Resources, J.C. and X.Z.; Software, R.H., X.Z. and M.H.; Validation,
J.C., W.L. and W.H.; Writing—original draft, Y.R.; Writing—review & editing, Y.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 42007261), Natural Science Foundation of Fujian Province, China (Grant No. 2021J05026),
Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing
Jiaotong University (Grant No. SLK2021B09).

Data Availability Statement: The datasets generated and analyzed in the current study may be
obtained from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wen, H.; Liu, L.; Zhang, J.; Hu, J.; Huang, X. A hybrid machine learning model for landslide-oriented risk assessment of

long-distance pipelines. J. Environ. Manag. 2023, 342, 118177. [CrossRef]
2. Sergey, S.; Andrée, B. Satellite interferometry for regional assessment of landslide hazard to pipelines in northeastern British

Columbia, Canada. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103273.
3. Cao, C.; Zhu, K.; Song, T.; Bai, J.; Zhang, W.; Chen, J.; Song, S. Comparative Study on Potential Landslide Identification with

ALOS-2 and Sentinel-1A Data in Heavy Forest Reach, Upstream of the Jinsha River. Remote Sens. 2022, 14, 1962. [CrossRef]
4. The, U.S. Geological Survey. Landslide hazards. In USGS Fact Sheet Fs-071-00; The U.S. Geological Survey: Reston, VA, USA, 2000.
5. Courture, R. Landslide Terminology-National Technical Guidelines and Best Practices on Landslides; Open File 6824; Geological Survey

of Canada: Calgary, AB, Canada, 2011; p. 12.
6. Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation, Special Report

247-Transportation Research Board, National Research Council; Turner, A.K., Schuster, R.L., Eds.; National Academy Press:
Washington, DC, USA, 1996; pp. 36–75.

7. Brototi, B.; Aneesah, R.; Jonmenjoy, B. Comparative Assessment of FR and AHP Models for Landslide Susceptibility Mapping for
Sikkim, India and Preparation of Suitable Mitigation Techniques. J. Geol. Soc. India 2023, 99, 791–801.

8. Dai, C.; Li, W.; Lu, H.; Zhang, S. Landslide Hazard Assessment Method Considering the Deformation Factor: A Case Study of
Zhouqu, Gansu Province, Northwest China. Remote Sens. 2023, 15, 596. [CrossRef]

9. Hossein, M.; Ahmadi, A.D. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of
landslide susceptibility mapping. Environ. Sci. Pollut. Res. Int. 2023, 30, 82964–82989.

10. Yao, J.M.; Lan, H.X.; Li, L.P.; Cao, Y.M.; Wu, Y.M.; Zhang, Y.X.; Zhou, C.D. Characteristics of a rapid landsliding area along Jinsha
River revealed by multi-temporal remote sensing and its risks to Sichuan-Tibet railway. Landslides 2022, 19, 703–718. [CrossRef]

11. Tian, S.; Chen, N.; Wu, H.; Yang, C.; Zhong, Z.; Rahman, M. New insights into the occurrence of the Baige landslide along the
Jinsha River in Tibet. Landslides 2020, 17, 1207–1216. [CrossRef]

12. Yan, J.; Chen, J.; Zhou, F.; Li, Y.; Zhang, Y.; Gu, F.; Zhang, Y.; Li, Y.; Li, Z.; Bao, Y.; et al. Numerical simulation of the Rongcharong
paleolandslide river-blocking event: Implication for the longevity of the landslide dam. Landslides 2022, 19, 1339–1356. [CrossRef]

13. Meng, T.; Xu, X.; Liu, H. Landslide risk assessment in high altitude areas based on slope unit optimization: Taking the
Baigelandslide in Jinsha River as an example. J. Henan Polytech. Univ. Nat. Sci. 2021, 40, 65–72. (In Chinese)

14. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the
landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial
neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. (In Chinese) [CrossRef]

15. Zhang, Z.Y.; Deng, M.G.; Xu, S.G.; Zhang, Y.B.; Fu, H.L.; Li, Z.H. Comparative study on evaluation models of landslide
susceptibility in Zhenkang County. Chin. J. Rock Mech. Eng. 2022, 41, 157–171, (In Chinese with English abstract).

16. Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility mapping using frequency ratio model: The case of Gamo
highland, South Ethiopia. Arab. J. Geosci. 2021, 14, 1–18. [CrossRef]

17. Malka, A.N. Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models. Nat.
Hazards 2021, 107, 639–674. [CrossRef]

https://doi.org/10.1016/j.jenvman.2023.118177
https://doi.org/10.3390/rs14091962
https://doi.org/10.3390/rs15030596
https://doi.org/10.1007/s10346-021-01790-7
https://doi.org/10.1007/s10346-020-01351-4
https://doi.org/10.1007/s10346-022-01872-0
https://doi.org/10.1080/19475705.2017.1407368
https://doi.org/10.1007/s12517-021-06995-7
https://doi.org/10.1007/s11069-021-04599-8


Water 2023, 15, 3685 24 of 25

18. Dobrovolny, E. Landslide susceptibility in and near Anchorage as interpreted from topographic and geologic maps. Great Alsk.
Earthq. 1964, 735–745.

19. Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Modeling susceptibility to landslides using the weight of evidence approach: Western
Colorado, USA. Geomorphology 2010, 115, 172–187. [CrossRef]

20. Brand, E.W. Landslide risk assessment in Hong Kong. Landslide 1988, 1059, 1074.
21. Chen, W.; Li, Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 2020,

195, 104777. [CrossRef]
22. Bourenane, H.; Meziani, A.A.; Benamar, D.A. Application of GIS-based statistical modeling for landslide susceptibility mapping

in the city of Azazga Northern Algeria. Bull. Eng. Geol. Environ. 2021, 80, 7333–7359. [CrossRef]
23. Michael, M.; Zahor, Z. GIS-based analysis of landslides susceptibility mapping: A case study of Lushoto district, north-eastern

Tanzania. Nat. Hazards 2023, 118, 1085–1115.
24. Zhang, T.; Han, L.; Zhang, H.; Zhao, Y.-H.; Li, X.-A.; Zhao, L. GIS-based landslide susceptibility mapping using hybrid integration

approaches of fractal dimension with index of entropy and support vector machine. J. Mt. Sci. 2019, 16, 1275–1288. [CrossRef]
25. C.L, X.; Z.Y, S.; W.X, R. Geological hazard zoning in Beishan Mountain of Tianshui District. J. Lanzhou Univ. Nat. Sci. 2020,

56, 16–24.
26. Basofi, A.; Fariza, A.; Safitri, E.I. Landslide Risk Mapping in East Java, Indonesia, Using Analytic Hierarchy Process-Natural

Breaks Classification. In Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent
Systems (ISRITI), Yogyakarta, Indonesia, 21–22 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 77–82.

27. Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models.
Geomorphology 2006, 81, 166–184. [CrossRef]

28. Jing, L. 3D Modeling of landslide based on UAV Aerial Photography and Risk Assessment Research. Master’s Thesis, Lanzhou
University of Technology, Lanzhou, China, 2020.

29. Novellino, A.; Cesarano, M.; Cappelletti, P.; Di Martire, D.; Di Napoli, M.; Ramondini, M.; Sowter, A.; Calcaterra, D. Slow-moving
landslide risk assessment combining Machine Learning and In SAR techniques. Catena 2021, 203, 105317. [CrossRef]

30. Ranke, F.; Yanhui, L.; Zhiquan, H. A review of the methods of regional landslide hazard assessment based on machine learning.
Chin. J. Geol. Hazard Control. 2021, 32, 1–8.

31. Zhou, C.; Cao, Y.; Hu, X.; Yin, K.L.; Wang, Y.; Catani, F. Enhanced dynamic landslide hazard mapping using mt-insar method in
the three gorges reservoir area. Landslides 2022, 19, 1585–1597. [CrossRef]

32. Guo, R.; Li, S.M.; Chen, Y.N.; Yuan, L. A method based on SBAS-In SAR for comprehensive identification of potential landslide. J.
Geo-Inf. Sci. 2019, 21, 1109–1120. (In Chinese)

33. Crippa, C.; Valbuzzi, E.; Frattini, P.; Crosta, G.B.; Spreafico, M.C.; Agliardi, F. Semi-automated regional classification of the style of
activity of slow rock-slope deformations using PS InSAR and Squee SAR velocity data. Landslides 2021, 18, 2445–2463. [CrossRef]

34. Cascini, L.; Fornaro, G.; Peduto, D. Advanced low-and full-resolution DInSAR map generation for slow-moving landslide
analysis at different scales. Eng. Geol. 2010, 112, 29–42. [CrossRef]

35. Calvello, M.; Peduto, D.; Arena, L. Combined use of statistical and DInSAR data analyses to define the state of activity of
slow-moving landslides. Landslides 2017, 14, 473–489. [CrossRef]

36. Gao, B.; He, Y.; Zhang, L.; Yao, S. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: A case
study of Liujiaxia reservoir. Chin. J. Rock Mech. Eng. 2022, 42, 450–465. (In Chinese)

37. Wu, S.; Zhang, Y.; Shi, J.; Dong, C.; Lei, W.; Tan, C.; Hu, D. Assessments of landslide hazards in Fengdu County, Chongqing City,
Three Gorges reservoir region of the Yangtze River, China. Geol. Bull. China 2007, 26, 574–582. (In Chinese)

38. Fan, L.; Hu, R.; Zeng, F.; Wang, S.; Zhang, X. Application of weighted information value model to landslide susceptibility
assessment-a case study of Enshi city, Hubei province. J. Eng. Geol. 2012, 20, 508–513. (In Chinese)

39. Li, W.; Wang, X. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibil-
ity of loess gully region. J. Nat. Disasters 2020, 29, 213–220. (In Chinese)

40. Zhu, K.; Xu, P.; Cao, C.; Zheng, L.; Liu, Y.; Dong, X. Preliminary Identification of Geological Hazards from Songpinggou to
Feihong in Mao County along the Minjiang River Using SBAS-InSAR Technique Integrated Multiple Spatial Analysis Methods.
Sustainability 2021, 13, 1017. [CrossRef]

41. Yao, J.; Yao, X.; Liu, X. Landslide detection and mapping based on SBAS-InSAR and PS-InSAR: A case study in Gongjue County,
Tibet, China. Remote Sens. 2022, 14, 4728. [CrossRef]

42. Chen, J.; Peng, W.; Sun, X.; Wang, Q.; Han, X. Comparisons of several methods for landslide susceptibility mapping: Case of the
Benzilan and Waka Towns, Southwest China. Arab. J. Geosci. 2021, 14, 1622. [CrossRef]

43. Li, Y.; Chen, J.; Zhou, F.; Li, Z.; Mehmood, Q. Stability evaluation and potential damage of a giant paleo-landslide deposit at the
East Himalayan Tectonic Junction on the Southeastern margin of the Qinghai-Tibet Plateau. Nat. Hazards 2022, 111, 2117–2140.
[CrossRef]

44. Niu, P.F. Evaluation of Landslide Susceptibility in Zhouqu County Based on Comprehensive Index Model. Master’s Thesis,
MEng Hebei GEO University, Shijiazhuang, China, 2021. (In Chinese).

45. Mao, J.R. Geological Hazards Monitoring and Dynamic Susceptibility Assessment in the Bailong River Basin Based on Multi-
Source Remote Sensing. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2021. (In Chinese).

https://doi.org/10.1016/j.geomorph.2009.10.002
https://doi.org/10.1016/j.catena.2020.104777
https://doi.org/10.1007/s10064-021-02386-0
https://doi.org/10.1007/s11629-018-5337-z
https://doi.org/10.1016/j.geomorph.2006.04.007
https://doi.org/10.1016/j.catena.2021.105317
https://doi.org/10.1007/s10346-021-01796-1
https://doi.org/10.1007/s10346-021-01654-0
https://doi.org/10.1016/j.enggeo.2010.01.003
https://doi.org/10.1007/s10346-016-0722-6
https://doi.org/10.3390/su13031017
https://doi.org/10.3390/rs14194728
https://doi.org/10.1007/s12517-021-08092-1
https://doi.org/10.1007/s11069-021-05132-7


Water 2023, 15, 3685 25 of 25

46. Cui, S.; Yang, Q.; Pei, X.; Huang, R.; Guo, B.; Zhang, W. Geological and morphological study of the Daguangbao landslide
triggered by the Ms. 8.0 Wenchuan earthquake, China. Geomorphology 2020, 370, 107394. [CrossRef]

47. Xu, W.J.; Wang, L.; Cheng, K. The failure and river blocking mechanism of large-scale anti-dip rock landslide induced by
earthquake. Rock Mech. Rock Eng. 2022, 55, 4941–4961. [CrossRef]

48. Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13,
3907–3925. [CrossRef]

49. Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based landslide susceptibility mapping.
Sci. Rep. 2021, 11, 24112. [CrossRef]

50. Xin, Q.; Bolin, H.; Guangning, L.; Shichang, W. Landslide susceptibility assessment in the three gorges area, China, Zigui synclinal
basin, using GIS technology and frequency ratio model. J. Geomech. 2017, 23, 97–104. (In Chinese)

51. Zhang, X.D.; Ye, P.; Wu, Y. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective:
A review. J. Environ. Manag. 2022, 321, 115938. [CrossRef]

52. Zhang, X.D. Study on Geological Disaster Risk Assessment Based on RS and GIS in Yanchi County, Ningxia. Ph.D. Thesis, China
University of Geosciences, Beijing, China, 2018. (In Chinese).

53. Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and
topographic maps. J. Geophys. Res.-Solid Earth 1997, 102, 7547–7563. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.geomorph.2020.107394
https://doi.org/10.1007/s00603-022-02903-x
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.1038/s41598-021-03585-1
https://doi.org/10.1016/j.jenvman.2022.115938
https://doi.org/10.1029/96JB03804

	Introduction 
	Study Area 
	Research Methods 
	Data Collection 
	Field Investigation and Analysis of Typical Landslide Formation Mechanism 
	Selection of Evaluation Factors 
	Selection of Susceptibility Assessment Model 
	Frequency Ratio Model 
	Information Quantity Model 
	Analytic Hierarchy Process 

	Model Calculation 
	Frequency Ratio Model Calculation 
	Calculation of Information Quantity Model 

	Model Comparison and Verification 
	ROC Curve Validation 
	Verification of Density Method 

	Susceptibility Assessment and Analysis 
	Result Analysis 

	Discussion 
	Conclusions 
	References

