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Abstract: In this study, magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts were
prepared by the sol–gel method at 300 ◦C, 400 ◦C, and 500 ◦C, respectively (named as CF300, CF400,
CF500, MF300, MF400, MF500, ZF300, ZF400, and ZF500). The characterization by X-ray diffraction
(XRD) revealed that the optimal calcination temperature was 400 ◦C. Then, CF400, MF400, and ZF400
were used to treat high-concentration ammonia nitrogen wastewater (HCAW, 1000 mg/L) at different
pH levels. The result showed that the optimal pH for CF400, MF400 and ZF400 to degrade HCAW
was 9.0, and CF400 required a shorter illumination time (80 min) than MF400 and ZF400 (120 min) to
completely remove ammonia nitrogen from HCAW. However, CF400 was unstable and decomposed,
and a blue substance was observed during the magnetic recovery experiment. The recovery rate of
ZF400 (66.7%) was higher than MF400 (53.2%) with no decomposition phenomenon, and the ammonia
nitrogen removal rate of ZF400 remained above 90% after five cycles. Additionally, the ammonia
nitrogen removal rate of ZF400 could reach 80.2% when the ammonia nitrogen concentration was
as high as 5000 mg/L. Therefore, compared with CF400 and MF400, ZF400 was more suitable for
treating HCAW.

Keywords: high-concentration ammonia nitrogen; photocatalyst; ferrite; stability; recovery rate

1. Introduction

Ammonia nitrogen refers to nitrogen in the form of ammonium salt or free ammonia,
which is one of the primary pollutants in the water environment [1,2]. High-concentration
ammonia nitrogen wastewater (HCAW) [3] could be generated by a wide range of sources,
such as landfill leachate [4,5], the livestock and poultry industry [6,7], fertilizer indus-
try wastewater [8,9], sludge digestion fluid [10], etc. The release of ammonia nitrogen
into natural water without proper treatment could not only exacerbate water eutrophi-
cation [11,12] and influence the growth of plants and aquatic animals [4,13–15], but also
severely suppress microbial activity [16]. In short, HCAW could potentially threaten human
health and destroy the ecological balance [17,18]. Therefore, seeking economically viable,
environmentally friendly, and highly efficient approaches to treat HCAW has become a
focal point of attention in the environment.
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The biological method is an economical and effective method to degrade low-concentration
ammonia nitrogen wastewater [19]. However, using biological methods to treat HCAW is
challenging due to the low C/N ratio and weak biodegradability [4,20]. As a result, the
further application of the biological method to degrade HCAW is hindered. In recent years,
the advanced oxidation method has been widely researched for removing pollutants as
it has advantages of a high reaction rate, good removal performance and environmental
friendliness [21,22]. Under the excitation of ultraviolet light or visible light, photocatalysts
could produce strong oxidizing free-radical products, such as hydroxyl radical (·OH)
and superoxide radical (·O2

−), which show potential application value in the treatment
of ammonia nitrogen wastewater. For instance, TiO2-CuO/HSC synthesized by Peng
et al. [23] exhibited efficient ammonia nitrogen removal performance to treat 100 mg/L
ammonia nitrogen wastewater with an ammonia nitrogen removal rate of 99.7% and 60.7%
under UV and sunlight, respectively. Lou et al. [24] used an La/Fe/TiO2 photocatalyst
with a large specific surface area to treat ammonia nitrogen wastewater (100.67 mg/L). The
results showed that a dosage of 1 g/L of the photocatalyst and 2 mmol/L of H2O2 could
effectively remove 78.3% of ammonia nitrogen at a pH of 9.9. Sun et al. [25] found that
palladium-modified nitrogen-doped TiO2 nanoparticles could remove 90% of ammonia
nitrogen from low-concentration ammonia nitrogen wastewater (25 mg/L).

To date, among the photocatalysts, magnetic ferrite nanosphere photocatalysts (MFNPs)
have captured the considerable attention of researchers because of narrow band gap semi-
conductor materials with unique magnetic, electrical, structural and dielectric properties,
which can facilitate the formation of active oxygen species and promote the pollutant
decomposition [26,27]. The general chemical formula of MFNPs is MFe2O4, where M
represents different metal cations, such as Mg2+, Zn2+, Ni2+, and Co2+, etc. [28]. For the
structure of MFNPs, M(II) and Fe(III) are located in the gaps of tetrahedra and octahe-
dra surrounded by oxygen in the crystal structure, respectively, which maintains good
stability and excellent magnetic properties [29]. Meanwhile, MFNPs possess diverse physic-
ochemical properties, such as abundant surface active sites and high catalytic activity [30].
Presently, MFNPs are used to treat many pollutants, such as organic matter [31] and heavy
metals [32]. It was found that the redox reactions involving ·OH, ·O2

− and hole (h+) could
remove 37% of tetracycline in wastewater, and uranium (VI) could be completely removed
by photoelectron reduction. The ZnFe2O4/AC synthesized by Ye et al. [33] could remove
90.0% of ammonia nitrogen (100 mg/L) under ultraviolet irradiation, and the photocatalytic
product was N2. Ajeesha et al. [34] found that the magnetic MgFe2O4 photocatalyst could
remove 86% of methylene blue after 180 min of illumination. Similarly, magnetic CuFe2O4
photocatalysts synthesized by K. Shetty et al. could remove 82% of malachite green [35].
To our best knowledge, few studies have been reported on the treatment of HCAW by
MFNPs [36].

In this study, magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts
were prepared by the sol–gel method [37]. Then, the effect of temperatures on the property
of magnetic nanosphere photocatalysts were studied to determine the optimal calcination
temperature. Magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts
calcined at 300 ◦C, 400 ◦C, and 500 ◦C were named as CF300, CF400, CF500, MF300,
MF400, MF500, ZF300, ZF400, and ZF500, respectively. It had been reported that the charge
properties of the catalyst surface could be affected by pH as it could change the migration
rate of h+ and photogenerated electrons (e−) [38]. Eventually, the ammonia nitrogen
degradation performance would be significantly interfered with as the ammonia nitrogen
redox in photocatalytic reactions involves the transfer of hydrogen ions [33]. Therefore, the
effects of pH on the degradation of magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere
photocatalysts prepared at the optimum calcination temperature to treat HCAW were
investigated. Finally, photocatalysts prepared at the optimum calcination temperature were
separated by a magnetic field after photocatalytic degradation under an optimal pH, and
photocatalytic recycling tests were conducted to assess the impact of recycling time on the
ammonia nitrogen degradation performance of the photocatalysts.
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2. Materials and Methods
2.1. Materials

The analytical reagents used in this study were provided by Sinopharm Chemi-
cal Reagent Co. (Damao Chemical Reagent Factory, Tianjin, China), including NH4Cl,
Zn(NO3)2·6H2O, Cu(NO3)2·6H2O, Fe(NO3)3·9H2O, Mg(NO3)2·6H2O, NaOH, HCl, HgI2-
KI-NaOH, KNaC4H4O6·H2O et al. NH4Cl was added into ultrapure water to prepare
HCAW (1000 mg/L). The initial pH of the HCAW was around 6.2.

2.2. Photocatalysts Synthesis

CF300, CF400, CF500, MF300, MF400, MF500, ZF300, ZF400, and ZF500 were syn-
thesized using the sol–gel method [37]. A total of 10 mmol Fe(NO3)3·9H2O and 5 mmol
Mg(NO3)2·6H2O, Cu(NO3)2·6H2O, Zn(NO3)2·6H2O were dissolved in 30 mL of deionized
water. Subsequently, 15 mmol of C6H8O7 was added to each vessel. Then, the mixed solu-
tion was stirred for 2 h at 60 ◦C with a stirring rate of 280 r/min to obtain a homogeneous
solution. A ceramic crucible was used to contain the slurry after 80 min of evaporation in
a water bath (95 ◦C). The slurry liquid contained in the ceramic crucibles were calcined
for 2 h in the muffle furnace at 300 ◦C, 400 ◦C, and 500 ◦C, respectively. After cooling to
room temperature, CF300, CF400, CF500, MF300, MF400, MF500, ZF300, ZF400, and ZF500
were obtained by grinding with agate. The optimum calcination temperature of different
photocatalysts used as the preparation temperature of MFNPs in subsequent experiments
was determined by photocatalyst characterization.

2.3. Characterization of CuFe2O4, MgFe2O4 and ZnFe2O4 Nanosphere Photocatalyst

The composition and crystal structure of CF300, CF400, CF500, MF300, MF400, MF500,
ZF300, ZF400, and ZF500 samples were analyzed by X-ray diffraction (XRD, Bruker, Karl-
sruhe, Germany). The morphology and size of the photocatalysts prepared at the optimum
temperature were analyzed by a scanning electron microscope (SEM, SU8010, Hitachi,
Tokyo, Japan). The elemental composition of photocatalyst composites was evaluated by
X-ray Photoelectron Spectroscopy (XPS Escalab 250Xi, Thermo Fisher, Waltham, MA, USA).
UV–vis absorption spectroscopy (DRS, JASCO, Tokyo, Japan) was used to investigate the
optical properties of the photocatalyst samples. TiO2 was used as the control sample in
the experiment. The actual scanning wavelength range was 200–800 nm, and the scanning
speed was 600 nm/min.

2.4. Photocatalytic Experiment of Magnetic Ferrite Nanosphere Photocatalysts

During the experiment, 0.15 g of CF400, MF400, and ZF400 was added into 100 mL
of the ammonia nitrogen solution, respectively. The light source was supplied by a xenon
lamp (CEL-S500L, Beijing Zhongjiao Jinyuan Technology, Beijing, China) with a voltage
and current of 14 V and 15 A, respectively.

Furthermore, the pH solution value plays an indispensable role in the photocatalytic
degradation of ammonia nitrogen wastewater. The effect of pH (6.2, 8.0, and 9.0) on the
ammonia nitrogen treatment performance of MFNPs was investigated. NaOH and HCl
solutions were used to adjust the pH. Before the photocatalytic degradation experiment
was conducted under the visible light source, the quartz reactor was initially placed on a
magnetic stirrer (280 r/min). Subsequently, the reaction vessel was shielded with tin foil
and left in the dark for 60 min to reach the adsorption and desorption equilibrium. Then,
the reaction vessel was put on the magnetic stirrer (280 r/min) at 30 cm from the xenon
lamp source for 160 min. Simultaneously, the circulating water-cooling system was used to
control the temperature of the reaction chamber at about 17 ± 2 ◦C. Samples were collected
every 40 min and filtered with filter paper. The ammonia nitrogen concentration of each
sample was determined by an ultraviolet spectrophotometer according to the standard
method [39] to investigate the performance of MFNPs treating HCAW. After confirming the
optimal pH, a control experiment was conducted to evaluate the stripping rate of HCAW
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without the addition of photocatalysts. The average values of triplicates were expressed as
the results to minimize the variation.

2.5. Photocatalysts Recovery and Stability Tests

A magnet was used to recover CF400, MF400, and ZF400 after settling for 30 min at an
optimal pH. Subsequently, the photocatalyst with the best stability and ammonia nitrogen
treatment performance was washed 5 times by ultrapure water and ethanol. Then, the
retrieved photocatalyst after centrifugation (5000 r/min) was dried in an oven at 80 ◦C and
utilized in the subsequent degradation experiment.

3. Results and Discussion
3.1. Characterization of MFNPs
3.1.1. XRD of MFNPs

The X-ray diffraction patterns of CF300, CF400, CF500, MF300, MF400, MF500, ZF300,
ZF400, and ZF500 calcined for 2 h are shown in Figure 1. No obvious characteristic
diffraction peaks were observed in CF300, MF300, and ZF300, indicating that the structure
developments were incomplete, and the substances mainly existed in an amorphous form.
The continuous change in lattice spacing might be due to defects in nanocrystals, disordered
intergranular structure, and the small size of CF300, MF300, and ZF300 photocatalysts
formed at low calcination temperatures of 300 ◦C. In the preparation experiment of Fe-Ti-Ox
catalysts at different temperatures, Song et al. [40] also found that the Fe-Ti-Ox catalyst
mainly existed in an amorphous form at a low calcination temperature without prominent
diffraction peaks. When the calcination temperature reached 400 ◦C and 500 ◦C, sharp and
strong X-ray diffraction peaks appeared in this study. It could be suggested that the struc-
ture of CF400, CF500, MF400, MF500, ZF400, and ZF500 tended to be complete. Comparing
the diffraction peaks of the obtained CuFe2O4, MgFe2O4, and ZnFe2O4 photocatalysts
with the standard card, it was observed that the diffraction peaks of these three groups
correspond precisely to the crystal facets <111>, <220>, <311>, <400>, <422>, <511> and
<440> in the standard card JCPDS 25-0283 [41]; <220>, <311>, <400>, <422>, <511> and
<440> in JCPDS 36-0398 [42]; and <220>, <311>, <400>, <422>, <511> and <440> in JCPDS
No.22-1012 [33,43] without any additional impurity diffraction peaks, suggesting that the
obtained three ferrite nanosphere photocatalysts had high purities. Similar XRD patterns of
the three ferrite nanosphere photocatalysts were observed when calcination temperatures
reached 400 ◦C and 500 ◦C, respectively. It could be concluded that calcination tempera-
tures higher than 400 ◦C could barely affect the formation of reaction products. To reduce
energy consumption, the ferrite nanosphere photocatalysts used afterwards were calcined
at 400 ◦C in this study.
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and ZF500 at different calcination temperatures ((A): CuFe2O4, (B): MgFe2O4, (C): ZnFe2O4).

3.1.2. SEM Analysis of CF400, MF400, and ZF400

The morphology of the CF400, MF400, and ZF400 sample were characterized by
SEM. The surfaces and profiles of CF400, MF400, and ZF400 are depicted in Figure 2.
Figure 2a–c demonstrate that CF400 had a nano-spherical raspberry-like structure with a
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relatively uniform particle size (Figure 2d). Each nanosphere with a large particle size of
approximately 100 nm comprised multiple 10–20 nm CF400 sub-nanospheres. Figure 2e–g
show that MF400 was formed by many nanoparticles with a rough surface. The particle
size fluctuated between 15 nm and 30 nm (Figure 2h). ZF400 had a small size (15–20 nm)
and spherical surface, as illustrated in Figure 2i–l, and the grains aggregated with plenty
of gaps. Table 1 shows the particle size information of CuFe2O4, MgFe2O4, and ZnFe2O4
photocatalysts prepared by the sol–gel method in previous studies, which were similar to
the MFNPs obtained in this study.
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Figure 2. SEM images of CF400, MF400, and ZF400 (CF400: (a–d), MF400: (e–h), ZF400: (i–l)).

Table 1. Particle sizes and shapes of CuFe2O4, MgFe2O4, and ZnFe2O4 photocatalysts prepared by
the sol–gel method.

Material Precursor Metal Temperature
(◦C)

Particles
Size (nm) Shape References

CuFe2O4

Cu(NO3)2·3H2O,
Fe(NO3)3·9H2O,

C6H8O7·H2O
150 56 spherical [44]

MgFe2O4

Mg(NO3)2.6H2O,
Fe(NO3)3·9H2O,

C2H4(OH)2, C6H8O7·H2O
350 12.63 spherical [45]

MgFe2O4

Mg(NO3)2.6H2O,
Fe(NO3)3·9H2O,

C2H4(OH)2, C6H8O7·H2O
600 33.32 spherical [45]

ZnFe2O4
Zn(NO3)2·6H2O,

Fe(NO3)3·9H2O, (C6H10O5)n 400 5–30 spherical [46]

ZnFe2O4

Zn(NO3)2·6H2O,
Fe(NO3)3·9H2O, C2H4(OH)2,

C6H8O7·H2O
450 10–20 spherical [47]
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3.1.3. XPS Analysis of CF400, MF400, and ZF400

XPS was used to further analyze the chemical states of atoms and surface composition
in CF400, MF400, and ZF400 (Figure 3). The CF400 sample contained Cu, Fe, O and C
elements. The MF400 sample contained Mg, Fe, O and C elements, and the ZF400 sample
contained Fe, Zn, O and C elements, indicating that magnetic CuFe2O4, MgFe2O4, and
ZnFe2O4 nanosphere photocatalysts were successfully prepared in this study. The C1s
signal peak detected in the XPS might be due to the adsorption of some gaseous impurities
on CF400, MF400, and ZF400 surfaces or the introduction of exogenous substances during
instrument testing.
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High-resolution XPS spectra experiments were conducted to further determine the
chemical states of Cu, Mg, Fe and O elements in CF400, MF400, and ZF400 (Figure 4). In
the Cu2p spectrum (Figure 4a), two characteristic peaks detected at binding energies of
953.0 eV and 933.0 eV corresponded to Cu2p1/2 and Cu2p3/2, respectively, suggesting
that the Cu element presented in the form of Cu2+ [48,49]. Figure 4b displays the Fe2p XPS
spectrum of CF400 with binding energies of Fe2p1/2 and Fe2p3/2 observed at 723.1 eV
and 709.9 eV, respectively. After a comparison with the standard spectrum, it could be
determined that the Fe element mainly existed in the form of Fe3+ [50,51]. Figure 4c shows
the XPS spectrum of O1s in the CF400, which exhibited a single peak at a binding energy of
529.4 eV, indicating that oxygen (O) primarily presented as O2− [52].

Figure 4d displays the Mg1s spectrum of the MF400 sample. An obvious peak was
observed at a binding energy of 1303.3 eV, indicating that the predominant presence
of the Mg element was Mg2+ [53,54]. Figure 4e represents the XPS spectrum of Fe2p.
The binding energies of Fe2p1/2 and Fe2p3/2 were measured as 724.3 eV and 711.6 eV,
respectively [55,56]. It could be concluded that the Fe element also existed in the form of
Fe3+ within the MF400. Figure 4f displays the XPS spectrum of O1s. The two conspicuous
feature peaks at 528.7 eV and 530.2 eV binding energies corresponded to the oxygen element
and adsorbed oxygen, respectively, in the MF400 sample [57]. The above analysis revealed
that Mg and Fe elements existed as Mg2+ and Fe3+, respectively, and the O element existed
as O2− and adsorbed oxygen within the synthesized MF400 sample.

In Figure 4g, characteristic peaks with binding energies of 1021.17 eV and 1044.26 eV
corresponded to Zn2p3/2 and Zn2p1/2, respectively, indicating that the zinc element
existed as Zn2+ (a typical oxidation state) in the ZF400 sample [31,58,59]. Figure 4h displays
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the XPS spectrum of Fe2p. Two distinct peaks detected at binding energies of 709.9 eV
and 723.1 eV corresponded to the Fe2p3/2 and Fe2p1/2 characteristic peaks, respectively,
demonstrating the presence of Fe3+ [60,61]. Figure 4i presents the XPS spectrum of O1s.
The characteristic peaks at 529.8 eV and 531.4 eV were attributed to the oxygen element
and adsorbed oxygen, respectively, in the ZF400 sample, which were consistent with those
reported in other literature [60]. The XRD, SEM, and XPS analysis suggested that CF400,
MF400, and ZF400 were successfully obtained in this study.
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3.1.4. DRS Analysis of CF400, MF400, and ZF400

The difference in light absorption could have a significant impact on the photocatalytic
performance of the sample. To assess the photocatalytic performance of CF400, MF400,
and ZF400, DRS was conducted with a scanning wavelength range of 200–800 nm. The
TiO2 was employed as a control material. The results are shown in Figure 5. As a common
semiconductor photocatalyst, TiO2 could not absorb the visible light. Yoriya S et al. [62]
confirmed that TiO2 could only utilize 4% of the ultraviolet fraction of the solar spectrum
and had low quantum efficiency, which significantly limited its solar energy utilization
rate. Meanwhile, it was impossible to transport all photo-generated charge carriers to the
surface for a reaction while increasing the recombination rate, which seriously restricted the
application of catalysts. Compared to TiO2 catalysts, CF400 could absorb the entire visible
light region, MF400 exhibited distinct characteristic peaks within the range of 320–650 nm,
and the absorption edge of ZF400 was 700 nm and displayed strong light absorption
characteristics in the ultraviolet–visible region. The absorption band edge of the ZnFe2O4
photocatalyst obtained in this study was similar to that of the ZnFe2O4 photocatalyst
synthesized by Liu et al. [63]. The above result indicated that the CF400, MF400, and ZF400
obtained in this study had better optical absorption properties than TiO2 catalysts.
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3.1.5. Photocatalytic Decomposition of Ammonia Nitrogen by CF400, MF400, and ZF400 at
Different pHs

Since the pH affects the photocatalytic performance of ammonia nitrogen significantly,
the effects of the pH (6.2, 8.0, and 9.0) on the ammonia nitrogen removal performance
of CF400, MF400, and ZF400 were investigated under visible light irradiation (Figure 6).
During the photocatalytic process, the ammonia nitrogen concentration barely changed
when the pHs were 6.2 and 8.0, respectively. Once the pH was adjusted to 9.0 and CF400
was introduced into the solution, ammonia nitrogen removal rates reached 100% after
60 min of adsorption–desorption and 80 min of exposure to visible light. MF400 and ZF400
could remove all ammonia nitrogen after 60 min of adsorption–desorption and 120 min of
visible light illumination when the pH was adjusted to 9.0. The result of the control test
demonstrated that ammonia-nitrogen-stripping contributed 15.1% to the total ammonia
nitrogen removal rate, indicating that the ammonia nitrogen degradation from wastewater
was dominantly attributed to the photocatalytic activity of CF400, MF400, and ZF400.
Previous studies consistently highlighted a preference for relatively high pH levels in the
catalytic oxidation of ammonia nitrogen as well [25,64–66]. To strike a practical balance
between treatment efficiency and the associated cost of alkaline substances, the optimal
pH for CF400, MF400, and ZF400 to treat HCAW was determined as 9.0 under visible light
irradiation in this study.
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3.1.6. Stability and Recyclability Analysis of CF400, MF400, and ZF400

As is well known, stability and recyclability are important parameters for presenting
the practical application of photocatalysts [31,67]. MFNPs possess excellent magnetic
properties which are conducive to external magnetic recovery [68]. In this study, CF400,
MF400 and ZF400 were collected and weighed after the photocatalytic degradation test at
an optimum pH of 9.0. The recovery rate of CF400 and ZF400 was similar (66.7%), while
MF400 had a relatively low recovery rate (53.2%). However, the solution turned pale blue
when CF400 precipitated completely, as shown in Figure 7a. A small amount of blue and
transparent crystalline solids were found at the bottom and surrounding the container after
drying the post-reaction solution (Figure 7b). The blue solid accounted for approximately
16.6% of the total solids. XPS analysis (Figure 4a) confirmed that Cu2+ was presented in the
blue crystals. As the Cu element in CF400 existed in the form of Cu2+ in the solution, the
stability of CF400 prepared in this study was poor.
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MF400 and ZF400 could completely remove ammonia nitrogen after 120 min of illu-
mination. In addition, the recovery rate of ZF400 (66.7%) was higher than that of MF400
(53.2%). Therefore, ZF400 was determined to be the most suitable photocatalyst to degrade
HCAW in this study.

To investigate the impact of recycling time on the ammonia nitrogen removal perfor-
mance of ZF400, the photocatalyst was recycled and reused for five cycles at an optimal
pH (9.0) during the photocatalytic experiment. The result showed that ZF400 could still
remove 90% of ammonia nitrogen at the fifth cycle (Figure 8), which was similar to the
findings of Guo et al. [69] and Cai et al. [70]. Hence, it could be concluded that the ZF400
obtained in this study had good recyclability under visible light irradiation.
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3.1.7. Treatment of Ammonia Nitrogen Wastewater with Different Concentrations by ZF400

The experiment was investigated under the optimum pH of 9.0. A total of 0.15 g of
ZF400 was added into the ammonia nitrogen solution with concentrations of 5000 mg/L,
1000 mg/L, 200 mg/L, and 20 mg/L, respectively. The results are shown in Figure 9.
Ammonia nitrogen from wastewater with ammonia nitrogen concentrations of 20 mg/L,
200 mg/L, and 1000 mg/L could be completely removed by ZF400 after adsorption and
desorption for 60 min in the dark, and 120 min under light. However, when the ammonia
nitrogen concentration reached 5000 mg/L, the ammonia nitrogen could not be completely
degraded under the above experimental condition. This could be attributed to the obstruc-
tion of active sites by pollutant molecules crowding on the surface of the photocatalyst
at a high concentration. Eventually, the decreased concentration of active substances on
the photocatalyst surface influenced the activity of photocatalysts to degrade ammonia
nitrogen [71]. Nonetheless, the removal rate was still as high as 80.2%. Generally, the ZF400
could efficiently remove ammonia nitrogen from wastewater with a high ammonia nitrogen
loading rate. Therefore, the ZF400 obtained in this study had a significantly practical value
in the field of HCAW treatment.
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4. Conclusions

Magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts were synthe-
sized at different temperatures by the sol–gel method. The composition and structure of
the synthesized photocatalysts determined by XRD revealed that the optimal calcination
temperature was 400 ◦C. The economical temperature of 400 ◦C was employed to prepare
CF400, MF400, and ZF400 to treat HCAW under varied pH conditions. Additionally, the
stability and recyclability of the magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere
photocatalysts were examined.

(1) There was no discernible characteristic diffraction peak at a calcination temperature
of 300 ◦C, suggesting that CF300, MF300, and ZF300 retained an amorphous structure.
As the temperature increased to 400 ◦C, the diffraction peaks of the three photocatalysts
became sharper and stronger without any impurity peaks, suggesting that the obtained
photocatalysts at 400 ◦C had high crystallinity in this study.

(2) Different pHs significantly influenced the photocatalytic removal rate of CF400,
MF400, and ZF400 to treat HCAW. When the pH was 9.0, magnetic CuFe2O4, MgFe2O4,
and ZnFe2O4 nanosphere photocatalysts could completely remove HCAW (1000 mg/L)
under visible light irradiation in this study.

(3) During the recovery process, CF400 showed poor stability. Both MF400 and ZF400
exhibited similar degradation performances after 120 min of illumination. The recyclability
of ZF400 was higher than MF400. ZF400 had an excellent ammonia nitrogen degradation
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performance even for high-concentration ammonia nitrogen wastewater (5000 mg/L).
ZF400 was the most suitable magnetic ferrite nanosphere photocatalyst for treating HCAW
wastewater.
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