
Citation: Woszczyk, M.; Stach, A.;

Nowosad, J.; Zawiska, I.; Bigus, K.;

Rzodkiewicz, M. Empirical Formula

to Calculate Ionic Strength of

Limnetic and Oligohaline Water on

the Basis of Electric Conductivity:

Implications for Limnological

Monitoring. Water 2023, 15, 3632.

https://doi.org/10.3390/w15203632

Academic Editor: Dimitrios

E. Alexakis

Received: 19 August 2023

Revised: 10 October 2023

Accepted: 12 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Empirical Formula to Calculate Ionic Strength of Limnetic and
Oligohaline Water on the Basis of Electric Conductivity:
Implications for Limnological Monitoring
Michał Woszczyk 1,*, Alfred Stach 2 , Jakub Nowosad 2 , Izabela Zawiska 3 , Katarzyna Bigus 4

and Monika Rzodkiewicz 1

1 Biogeochemistry Research Group, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland
2 Department of Geoinformation, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland
3 Past Landscapes Dynamics Laboratory, Institute of Geography and Spatial Organisation, Polish Academy of

Sciences, Twarda 51/55, 00-818 Warsaw, Poland
4 Department of Environmental Chemistry, Akademia Pomorska, Arciszewskiego 22a, 76-200 Slupsk, Poland
* Correspondence: woszczyk@amu.edu.pl; Tel.: +48-61-829-6194

Abstract: Ionic strength (I; mol·L−1) acts as one of the most important parameters of natural waters.
It is indispensable for obtaining ion activities and thus is crucial for describing chemical processes
in water solutions. Limnology, I, has many applications, but calculating the partial pressure of CO2

(pCO2) and the carbonate saturation index (SI) are among the most important examples. The determi-
nation of I requires the full ion composition of water to be recognized, and when the concentration of
some major ion(s) is/are missing altogether, the I value remains unknown. Because historical and
monitoring data are often incomplete, it seems useful to provide a method for the indirect assessment
of I. In this paper, we developed and tested an empirical model to estimate I on the basis of electric
conductivity at 25 ◦C (EC). Our model consists of two linear equations: (i) Imod = 15.231 × 10−6·EC −
79.191 × 10−6 and (ii) Imod = 10.647 × 10−6·EC + 26.373 × 10−4 for EC < 592.6 µS·cm−1 and for EC >
592.6 µS·cm−1, respectively. We showed that model performance was better than the hitherto used
EC–I relationships. We also demonstrated that the model provided an effective tool for limnological
monitoring with special emphasis on the assessment of CO2 emissions from lakes.

Keywords: hydrochemistry; lakes; conductivity; environmental monitoring; CO2 emission

1. Introduction

Global climate warming and accompanying hydrological changes (e.g., increase in
humidity) have widespread environmental effects, and inland water ecosystems are to
be significantly affected by these processes [1]. Owing to the contribution of lakes to
greenhouse gas (GHG) production and the cycling of biogenic elements [2–4], their role
in landscapes toward warming Earth has recently received much attention, and there has
arisen a need to collect highly resolved spatio-temporal data from lakes to more effectively
estimate GHG emissions and to trace the processes of adaptation in lakes to ongoing
environmental changes [5,6]. A shift from very detailed and multifaceted investigations of
single lakes to the extensive screening of many lakes over an appreciably short time requires
the development of new and/or adjusting existing methodologies of environmental data
collection and is inevitably associated with some simplifications to avoid using costly and
time-consuming analytical techniques. Obviously, simplification should not affect the
quality of data gathered significantly.

A plethora of information on the ecology and biogeochemistry of lakes is contained
in the basic properties of lake water, such as electric conductivity (EC), pH, as well as
major ion composition. Based on these data, not only can processes shaping lake water
composition be disentangled [7], but also trophic conditions can be assessed [8], and
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chemical sedimentation can be traced [9,10]. The chemical composition of lake water can
also be used to analyze the processes behind greenhouse gas production in lakes for CO2 in
particular. In the latter case, the ionic strength of lake water (I) is strongly required. In the
current paper, we propose a refined method to derive the ionic strength (I) of water from
the EC values.

Ionic strength (I) plays a central role in Debye–Hückel’s theory of electrolyte solutions.
Owing to the electric interactions between ions, chemical species in solutions tend to form
ion pairs. In seawater (I ≈ 0.7 mol·L−1), the effect of ion pairing is very strong, especially
for anions, as, for example, only 9.1% of CO3

2−, 39% of SO4
2− and 70% of HCO3

− exist as
free ions; the remaining are involved in more complex entities such as CaCO3

0, NaSO4
−,

MgHCO3
+, KSO4

−, etc. [11]. In fresh water (with I between 0.05 and 10−4 mol·L−1), the
share of free ions is considerably higher and is estimated to be 81–99% for HCO3

− and
SO4

2− and 46–96% for CO3
2− [12]. I affects the behavior of ions in solutions and thus

regulates dissolution/precipitation-related phenomena. Its fundamental use is to calculate
the ion activities or effective concentrations of chemical species that can be involved in
calculating chemical equilibria in water solutions and predicting chemical processes in
natural waters. There are many potential applications of I in hydrological, limnological
and hydrobiological studies; however, the assessment of carbonate saturation (and related
decalcification of water), as well as pCO2 estimations (and related assessment of hetero-
/autotrophy and diffusion of CO2 from water surfaces to ambient atmosphere), seems to
be among the most important.

The reliable determination of I requires the knowledge of the full ion composition of
water, including at least Ca2+, Mg2+, K+, Na+, as well as HCO3

−, Cl− and SO4
2−, which

constitute the most abundant components of natural solutions, and thus contribute greatly
to the total I value. In some limnological and hydrobiological studies, where data from
many lakes (or sampling sites) are collected, the analyses of these ions act as a laborious
and time-consuming task requiring the availability of sophisticated analytical facilities. On
the other hand, when historical hydrochemical records are used, one can often find them
incomplete (i.e., some ions are missing altogether), which makes I calculations impossible.
Therefore, some attempts have been made to obtain I indirectly from electric conductivity
(κ), which has been routinely measured during limnological monitoring [13–16]. This
attempt relies on a strong dependence of conductivity on the ionic composition of water
and I itself, which is expressed by the formula of McCleskey et al. [17] and Equation (1) is
shown below:

κ = ∑ λimi = ∑
(

λ0(T)− A·(T)·I 1
2

1 + B·I 1
2

)
·mi (1)

where λi is the ionic molal conductivity, mi is the speciated molality of the ith ion, λ0 and A
are temperature-dependent coefficients, and B is an empirical constant.

For the estimation of I on the basis of κ25 (conductivity standardized to 25 ◦C), and
hereafter, for the sake of simplicity referred to as EC, a few empirical formulae were de-
veloped [13,14,16,18,19]. These formulae describe the relationship between I and EC by
ordinary linear equations; however, it can demonstrate more complex patterns, and some
differences between chemical types of water may exist (Figure S1). This makes it difficult to
provide a universal equation that is appropriate for all natural waters. Therefore, the aim
of this research was to adjust existing formulae to derive I from EC in lake water and thus
provide limnologists and hydrobiologists with a simple tool for basic hydrochemical calcu-
lations. For this purpose, data from several European freshwater (salinity < 0.5 ppt; [20])
and oligohaline (salinity 0.5–5.0 ppt; [20]) lakes was collected to calculate the empirical
model depicting the relationship between EC and I in lakes. In addition, this paper shows
the advantages of using such a method in the analysis of spatial and historical limnological
data. The results of this study may have broad implications in limnological and hydro-
biological monitoring and, thus, may be useful in limnology as well as lake protection
and management.



Water 2023, 15, 3632 3 of 17

2. Materials and Methods
2.1. Data Collection

Hydrochemical data from lakes used in this study involved a series of EC, Ca2+, Mg2+,
K+, Na+, HCO3

−, SO4
2−, Cl− and NO3

− monitoring survey data from a number of natural
glacial and coastal lakes in Poland, Germany, Switzerland, and Sweden. The lakes covered
a salinity range from 0.01 to 5.4 ppt. Details on the location of lakes, data collection, and
availability are given in Figure 1 and Table S1.
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Figure 1. Distribution of data collection sites for this study. Consult Table S1 for coordinates and
more specific information on data collection and availability. (1−Lake Licheńskie; 2−L. Łódzko-
Dymaczewskie; 3−L. Dębno; 4−L. Trześniowskie (Ciecz); 5−L. Ostrowite; 6−L. Jeleń; 7−L. Płęsno;
8−Krzywce Wielkie; 9−Zielone; 10−L. Skrzynka; 11−L. Krzywce Małe; 12−L. Mielnica; 13−L.
Głowka; 14−L. Bełczak; 15−L. Resko Przymorskie; 16−L. Jamno; 17−L. Bukowo; 18−L. Kopań;
19−L. Wicko; 20−L. Gardno; 21−L. Łebsko; 22−L. Sarbsko; 23−L. Stechlin; 24−L. Rotsee; 25−L.
Edasjön; 26−L. Siggeforasjön; 27−L. Fiolen; 28−L. Tångerdasjön).

The procedure of data selection involves a few steps. After checking the completeness
of hydrochemical records (i.e., if each chemical species required was determined), the
ion charge balance (ICB) was calculated to assess the quality of measurements. After
eliminating outliers with an ICB error > 10%, the ratio of total dissolved solids (TDS;
mg·L−1) calculated from the ion composition of water (TDSIC) to the TDS obtained from
EC (TDSEC) was checked. TDSIC was presumed equal to the sum of the concentration of
major ions Ci, which is expressed as follows:

TDSIC

[
mg·L−1

]
=

n

∑
i=1

Ci (2)

The TDSEC was calculated using the formula (Equation (3) [21]), where

TDSEC

[
mg·L−1

]
= 0.65·EC (3)
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Because the factor of proportionality in Equation (3) varies between 0.55 and 0.90 [21–23]
and our database involves different hydrochemical types of water (Figure S2), the cut-off
range of TDSIC/TDSEC was set to −15/+35%. Such a procedure led us to select 864 records
to develop model equations.

2.2. Water Analyses

Most water chemical data included in the database were taken from the available
published reports; however some records were collected by the authors that had not been
published yet (Table S1). In such cases, the ion composition of water was analyzed using a
standard methodology. This involved ion chromatography for Cl−, SO4

2− and NO3
− (881

Compact IC Pro; Metrohm, Herisau, Switzerland), titration with 0.05 M HCl with regard to
methyl orange and phenolphthalein for HCO3

− and CO3
2− (ISO9963 [24] as well as AAS for

Ca2+, Mg2+, K+ and Na+ (NovAA300; Analytik Jena GmBH, Jena, Germany) [25]. Analytical
quality was verified with certified reference materials (Harbour water, NWHAMIL-20.2)
and an ion charge balance.

2.3. Chemical Calculations

Ionic strength (I; mol·L−1) was calculated on the basis of molarities mi and charges zi
of individual ions (Ca2+, Mg2+, K+, Na+, HCO3

−, SO4
2−, Cl− and NO3

−) with the formula
in Equation (4):

I =
1
2

i=n

∑
i=1

mi·z2
i (4)

The transport numbers (ti), approximating the contributions of individual ions in the
total conductivity of the mixed electrolyte solution, were assessed on the basis of ionic
molar conductivities of the ions (λi) and their molalities (Mi; mol·kg−1) using Equations (5)
and (6) [20]

ti =
λi·Mi

κ
=

λi·Mi

∑n
i=1 λi·Mi

(5)

where

λi = λ
◦
(T)− A(T)·I1/2

1 + B·I1/2 (6)

λ◦(T), A(T), and B are derived from empirical equations given by McCleskey et al. [20].
CO2 partial pressures (pCO2aq; bar) in lake water were determined computationally

on the basis of pH and the activity of HCO3
− [26–31]. The mathematical expression for this

calculation is as follows:

pCO2 ≈ [H2CO3] =
10−pH ·

[
HCO−3

]
K1

(7)

where K1 indicates the temperature-dependent equilibrium constant in H2CO3→H+ +
HCO3

− system and is obtained from the empirical formula reported by Kelts and Hsü [32].
Because Abril et al. [33] showed that the pCO2 obtained was highly affected by pH, al-
kalinity, and DOC, calculations were only performed for the samples with circumneu-
tral/alkaline pH and alkalinity > 1000 µmol·L−1, as recommended by Abril et al. [33].
CO2 saturation was expressed as ∆pCO2 in relation to pCO2 in equilibrium with atmo-
spheric CO2. Positive ∆pCO2 ∆pCO2 indicated supersaturation, while negative showed
undersaturation (and, thus, the absorption of CO2 from ambient air).

Activity coefficients γi were derived using the Debye–Hückel equation (Equation (8))
and temperature-dependent coefficients A and B, including the ionic radius (ri) and ion
charge (Zi) from [34]. Thus,

γi =
−A·Z2

i ·
√

I

1 + ri·B·
√

I
(8)
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The saturation index for calcite (SIcalc) was obtained from the activities of Ca2+, CO3
2−

(values in brackets in Equation (9)) and the calcite solubility coefficient was obtained at in
situ temperature Kc.

SIcalc =

[
Ca2+][CO2−

3

]
Kc

(9)

The Kc was computed using an empirical equation given by Tchobanoglous et al. [17].

2.4. Model Development

Our preliminary tests showed that the best fitting of the regression model of EC vs. I
could be achieved using segmented (and not ordinary linear) regression (also known as
piecewise regression or broken-stick regression [35,36]. To determine the optimal number
of segments, as well as to assess the reliability and stability of the model developed, the
bootstrapping method (i.e., random sampling with replacement) was used. From the initial
dataset, 1000 subsamples, encompassing 90% of the records, were randomly selected and
processed with the use of the “segmented” R package (ver. 1.6-2; [37,38]). An assessment of
the optimal number of segments was performed in two ways. The first approach used the
Bayesian information criterion (BIC), and the second used the Davies test [39].

For each of the 1000 subsamples, both ordinary linear regression (i.e., without break-
point) and two-segment linear regression models were fitted using the least squares method.
To compare models, the Akaike information criterion (AIC) and BIC [40,41] were used.
These methods were applied to assess the information loss by a given model as they mea-
sure a balance between the model quality (i.e., goodness of fit) and simplicity (i.e., the
number of parameters involved). In other words, AIC and BIC enable model overfitting
and underfitting to be avoided. The formula for the BIC is similar to that for the AIC, albeit
a difference exists between them with regard to “penalty” for the number of parameters
included. The use of AIC and BIC to create regression models was tested by Yang [42].
From [42], it follows that AIC acts as an asymptotic optimal for selecting a model with
the lowest mean squared error whenever the “true model” is not among the models com-
pared. BIC, on the other hand, is highly effective when one of the models tested is the
“true model”.

The statistical significance of the segmented model was tested using the Davies
test [38,43]. The reason for using this test as an alternative to classical methods was that it
provided a better estimation of p values. The p values obtained with classical tests seemed
to be 3- to 5-fold underestimated.

From the 1000 segmented regression models developed, the final model describing
the relationship between EC and I was calculated as a medoid, i.e., the multidimensional
median. The medoid was computed for five parameters, such as the position of the break
point, slope, and intercept of the first segment, as well as the slope and intercept of the
second segment of the regression models. Prior to calculations, data were standardized,
and calculations were performed using the “pam” function of the “cluster” R package [44].

2.5. Model Validation

Model validation was performed on 161 samples obtained from open-source databases
such as the Waterbase—Water Quality ICM—European Environment Agency: https:
//www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-icm-2 (accessed
3 October 2023), Water chemistry (Great Lakes nearshore areas: https://data.ontario.ca/
dataset/water-chemistry-great-lakes-nearshore-areas (accesses 3 October 2023), Water
Chemistry of lakes in the southwest Florida Water Management District: https://www.
swfwmd.state.fl.us/media/938 (accessed 3 October 2023) as well data from Lake Kierskie
(Poland) [45]. The data above encompassed EC and the major ion composition of water
samples. Based on these data, the ionic strength of the real solution was calculated (empiri-
cal I; Iemp). The validation results were expressed as the relative error (ε%; Equation (10))

https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-icm-2
https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-icm-2
https://data.ontario.ca/dataset/water-chemistry-great-lakes-nearshore-areas
https://data.ontario.ca/dataset/water-chemistry-great-lakes-nearshore-areas
https://www.swfwmd.state.fl.us/media/938
https://www.swfwmd.state.fl.us/media/938
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between the modeled I value (Imod) and empirical I value (Iemp) obtained from the analytical
concentration data (Equation (4)) using the following formula:

ε% =
Imod − Iemp

Iemp
·100% (10)

3. Results and Discussion
3.1. Data Characterization

The lake water sampled in this study displayed a wide spectrum of chemical composi-
tion and represented all major categories of water distinguished by Gibbs [8] (Figure S2).
The TDS varied in a broad range from 12 to 5375 mg·L−1, translating into an EC of 19 to
8242 µS·cm−1, respectively. Such a TDS range corresponded to limnetic and oligohaline
water [21]. However, the frequency distribution of samples in different TDS/EC intervals
was highly and positively skewed (Figure S3). The water between 250 and 818 µS·cm−1

was by far the most abundant group encompassing c.a. 67% of the dataset.
On the basis of EC, lake water can be classified as weakly (EC < 250 µS·cm−1), mod-

erately (250 < EC < 750 µS·cm−1), highly (750 < EC < 2250 µS·cm−1) and very highly
mineralized (EC > 2250 µS·cm−1) [46]. The first group encompassed Swedish lakes (no.
25–28 in Table S1), the lakes of the Bory Tucholskie area (no. 5–14 in Table S1), as well as
Lake Stechlin and Rotsee (no. 23–24 in Table S1). Moderately mineralized lakes were repre-
sented by Lake Licheńskie, Lake Łódzko-Dymaczewskie, Lake Dębno, Lake Trześniowskie
(no. 1–4 in Table S1), Lake Sarbsko and Rotsee (no. 22 and 24 in Table S1). Highly and
very highly mineralized water only occurred in coastal lakes of the Polish Baltic coast (no.
15–21 in Table S1). Weakly mineralized water displayed a similar ti for different ions, albeit
with slightly higher values for Ca2+ (Table 1). Comparable contributions from divalent
and monovalent ions to the total conductivity indicated that the EC of lake water was due
to the combined effect of Ca2+, Cl−, SO4

2−, HCO3
−, and Na+. Moderately mineralized

lake water also displayed similar total ti values for divalent and monovalent ions, but the
EC was primarily due to Ca2+ and HCO3

− with a minor role of other species (Table 1).
In highly and very highly mineralized water, monovalent ions by far predominated in
shaping conductivity. In the former group, the overall ti of monovalent ions was 0.65 and,
in the latter, 0.84 (Table 1). Respective contributions from the divalent ions ranged from
0.35 in highly mineralized lakes to 0.16 in very highly mineralized water. In general, anions
were more influential on conductivity than cations, albeit the role of NO3 was negligible in
all lakes studied (Table 1).

Table 1. Average transport numbers (ti) for the groups of lakes. The values given show the contribu-
tions of particular chemical species into the total electrical conductivity of the solution.

Lake
Mineralisation

EC ti

µS·cm−1 Na+ Ca2+ Mg2+ K+ HCO3− SO42− Cl− NO3−
Dival.
Ions

Monoval.
Ions

Weak <200 0.13 0.25 0.10 0.03 0.14 0.17 0.18 0.01 0.48 0.52
Moderate 200–750 0.07 0.32 0.09 0.01 0.27 0.12 0.11 0.00 0.46 0.54

High 750–2250 0.17 0.16 0.09 0.02 0.12 0.10 0.34 0.00 0.65 0.35
Very high >2250 0.27 0.04 0.07 0.01 0.03 0.05 0.53 0.00 0.84 0.16

3.2. Modeling Results

The identification of the optimal model describing the relationship between EC and
I required that the quality of models with n segments (where n ≥ 1) were checked. In
the “segmented” R package used in this study, the number of breakpoints, as well as the
optimum number of breakpoints, was assessed using BIC. The Davies test, in turn, enabled
a comparison between ordinary linear regression and double-/triple-segment models.

Both approaches were applied to 1000 random subsamples. Using BIC, a maximum
number of six segments were tested. The minimum BIC value, as well as the Davies test,
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indicated that the double breakpoint model (i.e., consisting of 3 segments) was optimal
for our dataset. However, while the Davies test unambiguously supported the double
breakpoint pattern as the best model, the BIC was less consistent. Indeed, the double
breakpoint model was also favored in this approach, but three-, four-, and even five-point
models were also obtained in several subsamples. In addition, in several other cases,
the BIC was inconclusive altogether, and any number of segments could be chosen as an
optimal fit. A very important result was that the first breakpoint (BP1) was concordantly
positioned with both methods in a narrow range of EC values around 592 µS·cm−1. From
Figure S4, it emerged that in 50% of the subsamples tested, the BP1 obtained was within an
<2 µS·cm−1 interval between 592 and 594 µS·cm−1, and in 80% of the subsamples, values
ranged between 590 and 597 µS·cm−1 (i.e., within 7 µS·cm−1-wide interval). The arithmetic
mean value of BP1 from 1000 models was 591.99 µS·cm−1 (Figure S4). However, because
the above number was non-existent in the dataset analyzed, BP1 was set to the nearest
“real” value, which was 592.6 µS·cm−1. Given that the precision of EC measurements
with digital conductometers is typically around 1% (relative to the mean BP1 value of
592.6 µS·cm−1, this translates into c.a. 6 µS·cm−1), the dispersion of results is totally within
the instrumental error. The reliability of the estimated BP1 value was further corroborated
by the similarity between the mean BP1 of 591.99 µS·cm−1 as well as the median BP1
(593.0 µS·cm−1) and modal BP1 values (593.3 µS·cm−1). On the other hand, the second
breakpoint, BP2, was more difficult to find. BIC put it at 4000–4500 µS·cm−1 while, from
the Davies test, it emerged that the BP2 was at 600, 1000–1500 and 2500–3000 µS·cm−1. This
variability could, in large part, be related to the fact that the distribution of the EC values in
the dataset was highly skewed, with EC > 4000 µS·cm−1 being rather underrepresented.
This fact could have affected the model’s stability. Considering the differences in the
positioning of the BP2, a decision was made that the double-segment regression model (i.e.,
with one breakpoint) was the most appropriate for the dataset analyzed.

Having chosen the double-segment model as the most suitable to explain the EC vs. I
relationship, its robustness was verified using an array of statistical tests. First, when the
AIC and BIC values for ordinary linear regression and double-segment regression were
compared (Figure S5), it became clear that the latter model was more advantageous than
the former. The increase in the number of parameters used in the model from 2 (for the
slope and intercept) for ordinary regression to 4 (2 values for slope and 2 values for the
intercept in segmented regression) was compensated by a reduction in the model error
(residuals) values. It is underlined that the differences between AIC and BIC values for
ordinary and segmented regression models were significantly higher than their distance
from the line of equality between both models (1:1 line in Figure S5). This corroborated that,
despite the appreciable variability in the quality of the models developed, the segmented
regression model was always better fitted to empirical data than ordinary linear regression.
Second, for each segmented regression model developed, the Davies tests were calcu-
lated [38,43] to verify the statistical significance of the differences between slopes for the
model segments. The results clearly show that the slopes were significantly different. The
probability (p values) that these differences were only due to chance was exceedingly low
and varied from 1.90−106 to 1.65−55, with 4.49−58 on average. The distribution of p values
was highly positively skewed (Sk = 22.82) and leptokurtic (kurtosis = 595.14). The median
of the probability distribution Me = 8.98−63 was considerably lower than the average.

We also found that the slopes and intercepts of the model segments showed inversely
proportional relationships, i.e., the increase in the slope/intercept of the first segment
(encompassing the lowest EC values) was accompanied by a decrease in the slope/intercept
of the second segment. However, these relationships were rather weak and non-linear. In
each of the 1000 random subsamples, the slope of the first segment was always higher than
the slope of the second segment. On the other hand, the intercept of the first segment was
always lower than that of the second segment.
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The final version of the relationship between EC and I emerging from our modeling
approach consisted of two linear segments with a breakpoint at 592.6 µS·cm−1. The
equations are parametrized as follows:

Imod = 15.231 × 10−6·EC − 79.191 × 10−6 for EC < 592.6 µS·cm−1 (11)

and
Imod = 10.647 × 10−6·EC + 26.373 × 10−4 for EC > 592.6 µS·cm−1 (12)

The fit of this model to empirical data is shown in Figure 2.
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Figure 2. Relationship between measured EC and modelled I. Data points used for model develop-
ment marked are as blue dots. Ordinary linear regression model for all data (without the break point)
given in green. Stepwise regression model fits for EC < 592.6 µS·cm−1 (Imod = 15.231 × 10−6·EC −
79.191 × 10−6) and for EC > 592.6 µS·cm−1 (Imod = 10.647 × 10−6·EC + 26.373 × 10−4) are in pink
and brown, respectively.

Deviations between the I predicted with ordinary linear regression and the values
obtained using the segmented model in relation to the average I in the empirical dataset
(0.0099 mmol·L−1) were different between −8.0 and +16.0%. The mean relative difference
between the models was +4.35% (with a standard deviation of 7.13), which indicated that,
in relation to segmented regression, the ordinary linear regression tended to overestimate
the values of I. The highest positive deviations (>+4%) were for EC < 312 µS·cm−1 as well as
for EC > 4500 µS·cm−1. The highest negative deviations (<−4%) occurred for EC between
500 and 1832 µS·cm−1.

The stepwise relationship between EC and I depicted by Equations (11) and (12)
makes the model substantially different from hitherto used empirical and ordinary linear
relationships [14,17,19]. As far as we are concerned, segmented regression is better suited
to empirical data not only for statistical reasons but also because it more reliably mirrors
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the influence of the major ion composition on the ionic strength and the conductivity of
natural waters. From Equation (4), it follows that polyvalent ions affect ionic strength more
strongly than monovalent ions because the I value is proportional to the square of the ion
charge. At the same time, as shown by [20], the conductivity is to a large degree controlled
by the valency of dissolved chemical species and, for example, for a 0.1 mol·L−1 HCO3

−

solution, the EC is around 3870 µS·cm−1, while the EC of the Ca2+ solution of the same
molarity is ca. 8300 µS·cm−1. Consequently, the changes in EC vs. I due to the increase in
concentrations of monovalent ions follow a less steep trend than for divalent ions (Figure 3).

Water 2023, 15, x FOR PEER REVIEW 9 of 17 
 

 

the values of I. The highest positive deviations (>+4%) were for EC < 312 μS·cm−1 as well 

as for EC > 4500 μS·cm−1. The highest negative deviations (<−4%) occurred for EC between 

500 and 1832 μS·cm−1. 

The stepwise relationship between EC and I depicted by Equations (11) and (12) 

makes the model substantially different from hitherto used empirical and ordinary linear 

relationships [14,17,19]. As far as we are concerned, segmented regression is better suited 

to empirical data not only for statistical reasons but also because it more reliably mirrors 

the influence of the major ion composition on the ionic strength and the conductivity of 

natural waters. From Equation (4), it follows that polyvalent ions affect ionic strength 

more strongly than monovalent ions because the I value is proportional to the square of 

the ion charge. At the same time, as shown by [20], the conductivity is to a large degree 

controlled by the valency of dissolved chemical species and, for example, for a 0.1 mol·L−1 

HCO3− solution, the EC is around 3870 μS·cm−1, while the EC of the Ca2+ solution of the 

same molarity is ca. 8300 μS·cm−1. Consequently, the changes in EC vs. I due to the increase 

in concentrations of monovalent ions follow a less steep trend than for divalent ions (Fig-

ure 3). 

 

Figure 3. Relationship between the conductivity and ionic strength of a hypothetical one-component 

solution for different major ions. The values of EC were calculated using the equation by [20] for a 

concentration range from 10−7 to 10−2 mol·L−1. Note that for monovalent ions, the slope of the trend 

line is lower than for divalent ions. 

From the Gibbs diagram (Figure S2), it emerges that the chemical composition of lake 

water varies greatly along the salinity (and conductivity) gradient. Highly mineralized 

water (>750 μS·cm−1) in our dataset was enriched in monovalent ions (Na+ and Cl− in par-

ticular) compared to weakly and moderately mineralized water, and consequently, these 

ions were the primary carriers of conductivity. The contributions of monovalent ions to 

the total EC of highly mineralized water were 0.65–0.84 (Table 1). On the contrary, at EC < 

750 μS·cm−1, the transport numbers for divalent ions, ti, were 0.52–0.54 (Table 1), thus in-

dicating that divalent ions (Ca2+ in particular) were more influential in shaping conduc-

tivity. Given the critical role that the ion composition had for EC and I of the solutions, it 

seems reasonable to conclude that a chemical change from Ca2+-dominated to Na+/Cl− 

dominated water accompanying an increase in salinity translated into the flattened EC vs. 

I trend at high conductivity values. 

3.3. Model Validation 

Figure 3. Relationship between the conductivity and ionic strength of a hypothetical one-component
solution for different major ions. The values of EC were calculated using the equation by [20] for a
concentration range from 10−7 to 10−2 mol·L−1. Note that for monovalent ions, the slope of the trend
line is lower than for divalent ions.

From the Gibbs diagram (Figure S2), it emerges that the chemical composition of lake
water varies greatly along the salinity (and conductivity) gradient. Highly mineralized
water (>750 µS·cm−1) in our dataset was enriched in monovalent ions (Na+ and Cl− in
particular) compared to weakly and moderately mineralized water, and consequently, these
ions were the primary carriers of conductivity. The contributions of monovalent ions to
the total EC of highly mineralized water were 0.65–0.84 (Table 1). On the contrary, at
EC < 750 µS·cm−1, the transport numbers for divalent ions, ti, were 0.52–0.54 (Table 1),
thus indicating that divalent ions (Ca2+ in particular) were more influential in shaping
conductivity. Given the critical role that the ion composition had for EC and I of the
solutions, it seems reasonable to conclude that a chemical change from Ca2+-dominated
to Na+/Cl− dominated water accompanying an increase in salinity translated into the
flattened EC vs. I trend at high conductivity values.

3.3. Model Validation

The mean relative error of I estimation with Equations (11) and (12), ε%, for the total
conductivity range was −3.4%; however, these values showed some variability with EC
(Figure 4A; Table 2). The lowest ε% was for EC < 1000 µS·cm−1 (encompassing most
freshwater lakes) as well as for 2500–7500 µS·cm−1 and, for these conductivity ranges, our
model gave much better adjustment to the data than other models (Figure 4A–E). On the
other hand, the model seems to underpredict the I for EC between 1000 and 2500 µS·cm−1

and for >7500 µS·cm−1. Slightly better results for these ECs were obtained using the
equation shown in [13].
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Figure 4. Relative error of the I estimation (ε) vs. EC range considered using the model developed
in this study (A) and the models by Ponamperuna et al. [18] (B), Griffin and Jurniak [13] (C) as
well as Tchobanoglous et al. [16]. The mean ε values for (A) were −3.4%, 19.7% for (B), −2.7%
for (C) and 21.6% for (D). Trendline (thick colored lines) was smoothed using the LOESS method
(local polynomials; Cleveland [47]) with the use of the linear function fitted by the method of least
squares and moving window encompassing 50% of data points. Graph (E) shows a comparison of the
smoothed error distributions of all methods. The colors in panel (E) are the same as in panels (A–D).

Table 2. Relative error of estimation for I on the basis of EC (ε%) with different empirical formulae.
The lowest values indicating the best prediction are marked in bold. The model equations developed
in this study provide better perditions throughout most of the conductivity range investigated.

Conductivity
[µS·cm−1] This Study Ponnamperuna

[18] #
Griffin and

Jurniak [13] &
Tchobanoglous

et al. [16] *

<250 1.1 13.1 −8.1 14.8
250–500 2.1 8.9 −11.5 10.7

500–1000 −3.5 11.0 −9.8 12.7
1000–2500 −12.6 11.3 −9.6 13.0
2500–5000 6.6 51.1 22.7 53.4
5000–7500 −6.9 34.5 9.3 36.6

>7500 −17.8 20.4 −2.2 22.3

Notes: # I = 0.016·EC [mmho]; & I = 0.013·EC [mmho]; * I = 2.5 × 10−5·TDS [mg·L−1].
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3.4. Potential Implications of the Model
3.4.1. Calculating γ Activity Coefficients for Major Ions

Activity coefficients are indispensable for obtaining effective concentrations of ions in
solutions and, thus, are of vital importance for chemical calculations and the modeling of
chemical processes in natural water. Despite the fact that there are at least a few approaches
to calculate γ, in each of them, ionic strength acts as a key variable. Using our model, we
calculated γ activity coefficients for four ions occurring in high concentrations in temperate
lakes (Ca2+, Mg2+, HCO3

−, CO3
2−), for temperatures between 0 and 30 ◦C and EC ranging

from 50 to 8000 µS·cm−1. The results of these calculations are shown in Figure 5 and
Tables S2–S5.

Water 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

1000–2500 −12.6 11.3 −9.6 13.0 

2500–5000 6.6 51.1 22.7 53.4 

5000–7500 −6.9 34.5 9.3 36.6 

>7500 −17.8 20.4 −2.2 22.3 

Notes: # I = 0.016·EC [mmho]; & I = 0.013·EC [mmho]; * I = 2.5 × 10−5·TDS [mg·L−1]. 

3.4. Potential Implications of the Model 

3.4.1. Calculating γ Activity Coefficients for Major Ions 

Activity coefficients are indispensable for obtaining effective concentrations of ions 

in solutions and, thus, are of vital importance for chemical calculations and the modeling 

of chemical processes in natural water. Despite the fact that there are at least a few ap-

proaches to calculate γ, in each of them, ionic strength acts as a key variable. Using our 

model, we calculated γ activity coefficients for four ions occurring in high concentrations 

in temperate lakes (Ca2+, Mg2+, HCO3−, CO32−), for temperatures between 0 and 30 °C and 

EC ranging from 50 to 8000 μS·cm−1. The results of these calculations are shown in Figure 

5 and Tables S2–S5. 

 

Figure 5. Ion activity coefficients γ for HCO3− (A), CO32− (B), Ca2+ (C) and Mg2+ (D) and different EC 

and t. Blue and red lines show γi values at t = 0 °C and t = 30 °C, respectively. The effect of temper-

ature is negligibly weak. 

For all ions, the γ coefficients decreased with increasing EC and temperature, albeit 

the fact that the effect of temperature seemed to be very weak, especially at low conduc-

tivities. This fact agrees with a theory, and for this reason, for the sake of simplicity, tem-

perature is sometimes eliminated from the expressions for γ [17]. The strongest tempera-

ture influence on γ was obtained for CO32− and showed an up to 4.1% decrease in γ, re-

spectively, at 30 °C. This species also showed the highest differences in γ over the EC range 

considered. The values of the γ coefficient for CO32− dropped from around 0.90 at 50 

μS·cm−1 to 0.36–0.39 at 8000 μS·cm−1. Divalent cations (Ca2+, Mg2+) also demonstrated a 

considerable decrease in activity resulting from enhanced I; however, the γ at a maximum 

EC was slightly higher than for CO32− and ranged from 0.41 to 0.45. On the other hand, the 

activities of HCO3− were much less affected by ionic strength. Over our EC range, the ac-

tivities of bicarbonates declined from 0.97 to 0.76–0.78. 

Figure 5. Ion activity coefficients γ for HCO3
− (A), CO3

2− (B), Ca2+ (C) and Mg2+ (D) and different
EC and t. Blue and red lines show γi values at t = 0 ◦C and t = 30 ◦C, respectively. The effect of
temperature is negligibly weak.

For all ions, the γ coefficients decreased with increasing EC and temperature, albeit the
fact that the effect of temperature seemed to be very weak, especially at low conductivities.
This fact agrees with a theory, and for this reason, for the sake of simplicity, temperature is
sometimes eliminated from the expressions for γ [17]. The strongest temperature influence
on γ was obtained for CO3

2− and showed an up to 4.1% decrease in γ, respectively, at 30 ◦C.
This species also showed the highest differences in γ over the EC range considered. The
values of the γ coefficient for CO3

2− dropped from around 0.90 at 50 µS·cm−1 to 0.36–0.39
at 8000 µS·cm−1. Divalent cations (Ca2+, Mg2+) also demonstrated a considerable decrease
in activity resulting from enhanced I; however, the γ at a maximum EC was slightly higher
than for CO3

2− and ranged from 0.41 to 0.45. On the other hand, the activities of HCO3
−

were much less affected by ionic strength. Over our EC range, the activities of bicarbonates
declined from 0.97 to 0.76–0.78.

3.4.2. Calculating Carbonate Saturation of Lake Water

As far as we are concerned, the γi values given in Tables S2–S5 can be applied to
hydrological/limnological monitoring. Below, we used these values to calculate SIcalc
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in lake water based on data from Lake Kierskie, Poland [45]. The calculations were run
using different approaches: (i) for the full ion composition of lake water which allowed
the true SIcalc values to be approximated, hereafter referred to as SIfull, (ii) using the
Langelier SI (LSI) calculator available at: https://www.lenntech.com/ro/index/langelier-
explanation.htm (accessed on 3 October 2023) (and applied by [45]) and (iii) using the γ
coefficients for HCO3

− and Ca2+ from Tables S2 and S4, respectively, to obtain modeled
SIcalc (SImodel). The idea behind these calculations was to check the recovery of SIfull with
different calculation methods.

From the results (Figure S6), it emerged that the SIcalc estimations based on modeled
γ values (SImodel) better reproduced the SIfull than the LSI. The regression equation for the
SIfull–SImodel relationship indicates that SImodel values systematically underestimated the
SIfull by c.a. 0.01 (0.01–0.02), while the LSI values were c.a. 0.25 (0.22–0.26) lower than
the SIfull.

3.4.3. Screening of Spatial Distribution of pCO2 in Lakes

In the summers of 2018, 2019, and 2020, we sampled 64 lakes across the Masurian and
Suwałki Lake Districts, Poland (Figure S7). In each lake, we measured physical–chemical
parameters (temperature, EC, pH) and HCO3

− concentrations on the surface water layer.
The model developed allowed the screening of one of the largest lakelands in Poland for
the distribution of the pCO2 values and potential tendencies for the absorption/emission of
CO2 from/to the atmosphere. One lake was excluded from the calculations (Lake Tyrsko)
because of its too-low alkalinity (860 µmol·L−1). From the calculations, it emerged that
pCO2 ranged from 0.09 to 7.05 mbar, translating into 3.28–247 µmol CO2·L−1. In 20 lakes,
the pCO2 obtained was slightly lower than the equilibrium of CO2 concentrations in lake
water of approximately 14.171 µmol·L−1 [48] (∆pCO2 from −11 to −0.2 µmol·L−1 below
equilibrium), arguing for their autotrophic character. The autotrophic lakes (i.e., absorbing
CO2 from the atmosphere) were primarily located in the Suwałki Lake District. On the
other hand, positive ∆pCO2, indicative of heterotrophy (i.e., emission of CO2 from the
ambient atmosphere), occurred in most lakes studied, though it varied in a broad range
from 233 to 0.1 µmol·L−1.

3.4.4. Temporal Changes in pCO2 in Lakes

Our method can also be used to trace temporal changes in pCO2 in lakes at different
timescales and seems to be particularly advantageous when using historical data to obtain
information on long-term CO2 trends where there is no possibility to measure CO2 directly.
Clearly, calculations can only be made for water that has a circumneutral and alkaline
pH and alkalinity above 1000 µmol·L−1, as recommended by [33]. To illustrate this based
on t, pH, EC and HCO3

− values for lake surface water, we have calculated pCO2 for a
group of five lakes near Konin (encompassing Lake Gosławskie, Lake Licheńskie, Lake
Ślesińskie and Lake Wąsosko-Mikorzyńskie, here referred to as Konin lakes), which since
the 1960s, has received heated water from nearby power plants and has thus become
thermally polluted [49]. The calculations showed that between 2015 and 2021, the pCO2
values in these lakes ranged between 0.23 and 6.91 mbar and there were no statistically
significant differences between the lakes (Figure S8). However, the pCO2 varied greatly
throughout each year with maximum values in winter and minimum during the spring and
summer. The pCO2 in Konin lakes implies that for the most part of the period studied, lakes
were heterotrophic (∆pCO2 > 0). Autotrophy occurred only sporadically during spring and
summer (Figure S8).

Similar calculations were performed for Lake Suminko (Kashubian Lake District,
Poland) and Lake Kierskie (Poznań Lake District, Poland) (Figure S9). For the former, we
used monitoring data collected between October 2007 and May 2010 by Tylmann et al. [50],
while the latter was monitored between November 2015 and October 2016 by Apolinarska
et al. [45]. The pCO2 in Lake Suminko and Lake Kierskie varied between 0.19 and 14.3 mbar
and from 0.22 to 10.5 mbar, respectively (Figure S9A,B) and thus were slightly higher than

https://www.lenntech.com/ro/index/langelier-explanation.htm
https://www.lenntech.com/ro/index/langelier-explanation.htm
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in Konin lakes, but displayed similar annual pattern. Lake Suminko displayed a relatively
long period of autotrophy between April and September 2009 as well as in April/May
2010 (Figure S9A), while Lake Kierskie was autotrophic between June and September 2016
(Figure S9B). For Lake Kierskie, we had the possibility to compare the modeled pCO2 with
the values calculated on the basis of the full chemical composition of lake water samples.
The relative error ε% obtained was between −0.24 and −0.95%.

3.4.5. Spatial CO2 Distribution in Lakes

The monitoring of greenhouse gas (GHG) emissions from lakes requires the careful
selection of representative sites in which long-term observations can be collected. Provided
that the distribution of CO2 in lake water is often highly irregular [51,52], the selection
of site(s) (or a number of sites) should be preceded by a screening of the lake studied
to recognize the variability of the gas and its distribution. Our method allows for the
relatively rapid collection of data on CO2 distribution throughout a water body. For the
sake of demonstration between March 2022 and February 2023, with the monthly resolution,
we collected hydrochemical data from three stations across Lake Licheńskie, and one of the
thermally polluted Konin lakes [49]. To check the effect of the input of heated, water on
CO2 productivity in Lake Licheńskie, we took water samples in front of the mouth of the
canal, delivering cooling effluents to the lake as well as in two thermally different parts of
the lake (Figure S10). From our results, it emerged that the sites studied indeed showed
differences in pCO2 values from 0.2 to 1.9 mbar in the least heated section to 0.6–5.5 mbar at
the inflow of PPK water to the lake (Figure S10); however, contrary to what was expected,
on a yearly basis, these differences were not statistically significant. Despite the fact that
the lake is net heterotrophic, some parts of the lake may temporarily show autotrophy (e.g.,
site L3 in Figure S10).

4. Conclusions

The paper outlines the empirical model for calculating the ionic strength (I) of natural
waters from electric conductivity. The model consists of two simple linear equations for
different EC ranges and is applicable for oligohaline and freshwater lacustrine systems;
however, the best results were obtained for EC < 1000 µS·cm−1. The performance of the
model at EC > 1000 µS·cm−1 could be improved by collecting more hydrochemical data
from oligohaline water. The method allows for a rapid determination of a number of
standard hydrochemical parameters such as ion activity coefficients, pCO2, and saturation
states for different minerals. This method is dedicated to limnological and hydrobiological
applications and can be used for the standard monitoring of biogeochemical processes
in the lake water column. It should be underlined, however, that the approach proposed
should only be used when data on the full ion composition of water samples is unavailable,
especially for pCO2 calculations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w15203632/s1, Figure S1. Electric conductivity (EC) vs. ionic strength
(I) in different types of fresh water; Figure S2. Chemical composition of water in the lakes of this
study according to Gibbs; Figure S3. EC (and TDS) frequency distribution in a database; Figure S4.
Histogram and descriptive statistics of the BP1 position in one breakpoint regression models obtained
for 1000 random samples taken from original dataset. Figure S5. Relationship between the model
fittings for segmented regression and ordinary linear regression in terms of Akaike information
criterion (AIC; left panel) and Bayesian information criterion (BIC; right panel) calculated for 1000
random subsamples from EC vs. I database; Figure S6. The application of the model developed
for calculating saturation index for carbonates in lake water; Figure S7. The results of screening of
∆pCO2 (difference between pCO2 in lake surface water and atmospheric CO2 concentration) for lakes
of NE Poland; Figure S8. Temporal changes in pCO2 in the surface water of the Konin lakes between
January 2015 and December 2021. Yellow arrows indicate periods of autotrophy (i.e., when pCO2 <
equilibrium pCO2; Figure S9. Temporal changes in pCO2 in the surface water of Lake Suminko (A)
and Lake Kierskie (B); Figure S10. Spatial and temporal changes in pCO2 in the surface water of Lake
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Licheńskie. the equilibrium CO2 concentrations in Polish lakes marked with a dotted line; Table S1.
Location of data collection sites, sampling strategy, and data availability; Table S2. Activity coefficient
γ for HCO3

− for different EC and t; Table S3. Activity coefficient γ for CO3
− for different EC and

t; Table S4. Activity coefficient γ for Ca2+ for different EC and t; Table S5. Activity coefficient γ for
Mg2+ for different EC and t. References [53–67] are cited in Supplementary Materials.

Author Contributions: Conceptualization, M.W.; methodology, M.W., A.S. and J.N.; software,
A.S. and J.N.; validation, A.S. and J.N.; formal analysis, M.W. and A.S.; investigation, M.W., I.Z.,
M.R. and K.B.; data curation, M.W. and A.S.; writing—original draft preparation, M.W. and A.S.;
writing—review and editing, I.Z., J.N. and M.R.; visualization, M.W. and A.S.; project administration,
M.W.; funding acquisition, M.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was funded by NATIONAL SCIENCE CENTER (NCN, Poland); grant no.
2018/29/B/ST10/00076 awarded to M.W. Research on Masurian lakes was supported by the NCN
grant no. 2016/23/D/ST10/03071.

Data Availability Statement: The paper uses data from different sources, encompassing its own
unpublished results, including open repositories and repositories with a limited access. Therefore,
the dataset cannot be shared publicly; however, they are available on request. Data from LLD, LD, LT
and LL are available from the corresponding author. Data from Lake Kierskie can be obtained from
prof. Karina Apolinarska (Institute of Geology, AMU, Poznań) and data from Lake Suminko can be
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