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Abstract: Precipitation modeling holds significant importance in various fields such as agriculture,
animal husbandry, weather derivatives, hydrology, and risk and disaster preparedness. Stochastic pre-
cipitation generators (SPGs) represent a class of statistical models designed to generate synthetic data
capable of simulating dry and wet precipitation stretches for a long duration. The construction of Hid-
den Markov Models (HMMs), which treat latent meteorological circumstances as hidden states, is an
efficient technique for simulating precipitation. Considering that there are many choices of emission
distributions used to generate positive precipitation, the characteristics of different distributions for
simulating positive precipitation have not been fully explored. The paper includes a simulation study
that demonstrates how the Pareto distribution, when used as the distribution for generating positive
precipitation, addresses the limitations of the exponential and gamma distributions in predicting
heavy precipitation events. Additionally, the Pareto distribution offers flexibility through adjustable
parameters, making it a promising option for precipitation modeling. We can estimate parameters in
HMMs using forward–backward algorithms, Variational Bayes Expectation-Maximization (VBEM),
and Stochastic Variational Bayes (SVB). In the Xilingol League, located in the central part of the
Inner Mongolia Autonomous Region, China, our study involved data analysis to identify crucial
locations demonstrating a robust correlation and notable partial correlation between the Normalized
Difference Vegetation Index (NDVI) and annual precipitation. We performed fitting of monthly dry
days ratios and monthly precipitation using seasonal precipitation and year-round precipitation
data at these crucial locations. Subsequently, we conducted precipitation predictions for the daily,
monthly, and annual time frames using the new test dataset observations. The study concludes that
the SPG fits the monthly dry-day ratio better for annual daily precipitation data than for seasonal
daily precipitation data. The fitting error for the monthly dry day ratio corresponding to annual
daily precipitation data is 0.053 (exponential distribution) and 0.066 (Pareto distribution), while for
seasonal daily precipitation data, the fitting error is 0.14 (exponential distribution) and 0.15 (Pareto
distribution). The exponential distribution exhibits the poorest performance as a model for predicting
future precipitation, with average errors of 2.49 (daily precipitation), 40.62 (monthly precipitation),
and 130.40 (annual precipitation). On the other hand, the Pareto distribution demonstrates the best
overall predictive performance, with average errors of 0.69 (daily precipitation), 34.69 (monthly
precipitation), and 66.42 (annual precipitation). The results of this paper can provide decision support
for future grazing strategies in the Xilingol League.

Keywords: stochastic precipitation generators; Hidden Markov Model; emission distribution;
Variational Bayesian; stochastic optimization; correlation analysis

1. Introduction

Stochastic weather generators are a family of statistical models that serve to produce
random simulations with statistical properties resembling those of actual weather data [1,2].
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Weather generators have the benefit of generating time series of any length, which can
serve to interpolate missing historical weather data or to create future weather scenarios.
The data generated by the weather generator can serve to simulate watershed hydrology,
ecology, and crop growth. Precipitation, temperature, wind speed, relative humidity,
and air pressure constitute the bulk of the weather information produced by weather
generators. Among them, precipitation data is the most significant variable in various
simulation applications due to its high spatial and temporal discontinuity [3] but also the
most challenging to simulate. Therefore, the stochastic generator simulation of precipitation
has been a hot research topic.

Establishing HMMs is a well-liked method for working with sequential data because
of their capacity to estimate and comprehend the underlying states of comparatively suc-
cinct models. Developed and explored since the late 1960s [4], HMMs are an attractive class
of models frequently used for constructing SPGs. HMMs depict generating a sequence
of hidden states from an underlying Markov chain, followed by observations from each
state, resulting in a sequence of observable data points. The Markov property of the state
process captures temporal dependencies in the data, while the emission process at each
time step characterizes spatial patterns within the data. The foundational work by Hughes
and Guttorp [5] introduced the use of HMMs for fitting daily precipitation, which later
evolved into non-homogeneous HMMs [6–8]. In non-homogeneous HMMs, the transi-
tion probabilities of the Markov process within the HMM vary with time, allowing for
more flexible modeling. Bellone et al. [9] presented different emission distributions for
precipitation amounts and precipitation occurrence models. Li et al. [10] conducted an
analysis using daily precipitation data from 47 stations spanning from 1961 to 2009 on the
Chinese Loess Plateau. Their study focused on the performance assessment of six differ-
ent precipitation probability distributions: exponential, gamma, Weibull, skewed normal,
mixed exponential, and hybrid exponential/generalized Pareto distributions. The results
indicated that the first-order Markov chain model was generally suitable for simulating
daily precipitation occurrence. Moreover, distribution functions with more parameters
performed better than those with fewer parameters [10]. Breinl et al. [11] used the stochastic
multi-site precipitation generator TripleM (Multisite Markov Model) to simulate precipita-
tion patterns and conducted a review of applications related to the SPG approaches. The
statistical analysis of such large-scale datasets requires parameter estimation techniques
that are computationally effective and adequately capture the dynamism of the underlying
processes. The maximum likelihood-based Baum–Welch algorithm is an unsupervised
learning algorithm that leverages the model’s Markov assumptions for efficient parame-
ter estimation in HMMs. However, it may encounter problems when dealing with large
datasets with intricate connections. Particularly with complex structural models, it may
result in overfitting problems [12]. Holsclaw et al. [13] modeled daily precipitation using a
Bayesian technique; however, Gibbs sampling-based Bayesian alternatives [14] are typically
computationally expensive.

As gridded remote sensing data, which tend to be highly correlated, become more
easily available, Variational Bayes (VB) is considered an attractive alternative for parameter
estimation. VB is scalable and can incorporate prior information. Blei et al. [15] provided
a review of VB methods. However, while there is a large amount of literature on VB
estimation implemented for state space models and HMM models [16–20], these studies
usually focus only on precipitation-positive distributions as a Gaussian distribution or
a mixture of Gaussian distributions. Kroiz et al. [21] determined the optimal parameter
configuration of the model by comparing the BIC scores when HMMs follow exponential
and gamma distributions for positive precipitation under different numbers of states and
mixture components, respectively, and by combining the background of the actual problem.
Then, Majumder et al. [22] outlined VB estimation for HMMs with semi-continuous emis-
sion and constructed an SPG for daily precipitation using a combination of two exponential
distributions. Stochastic Variational Bayes (SVB), which employs stochastic optimization
principles and a Stochastic Variational inference (SVI) algorithm, can further increase the
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efficiency of parameter estimation. Hoffman et al. [23] provided a review of the SVI algo-
rithm. Foti et al. [24] developed the SVI algorithm to learn the parameters of HMMs in a
time-dependent data setting. In this paper, we assume that the precipitation data of each
year has the same hidden weather state characteristics, i.e., exchangeability. We employ
a stochastic gradient optimization approach to sample data randomly. Subsequently, we
duplicate and fill the sampled data, enabling us to iterate parameter estimation using small
batches of data. This innovative approach significantly enhances the efficiency of parameter
estimation when compared to the traditional VBEM algorithm.

Conducting an in-depth study of precipitation patterns in the Xilingol League is essen-
tial for implementing a flexible grazing strategy in the region and ensuring the sustainable
use of its grasslands. Existing studies have mainly focused on stochastic simulation of
daily precipitation data during the rainy season [21,22], which has confirmed to a certain
extent the rationality of SPGs for daily precipitation simulation. However, the stochas-
tic simulation of annual daily precipitation data has not received due attention, and the
study of the emission distribution used to generate positive precipitation in HMM is also
lacking. Compared to prior research, this paper takes a quantitative approach to compare
the traditional exponential and gamma distribution models with the introduction of the
Pareto distribution featuring a stratified structure for generating positive precipitation. We
employ the VB method for parameter estimation and elucidate the characteristics and ad-
vantages of each distribution model for generating precipitation data. Compared with the
exponential and gamma distributions, the Pareto distribution model is more advantageous
for simulating heavy precipitation events. The reason is that the Pareto distribution model
can additionally set the probability interval of uniform distribution generating random
numbers in the precipitation generation model according to the overall trend of precip-
itation, which directly determines the upper limit of the precipitation sequence, i.e., the
maximum value of single-day precipitation. In this paper, building on the analysis of daily
precipitation during the rainy season, we extend the functionality of the SPG to enable its
efficient application in the stochastic simulation of annual daily precipitation data.

Our primary research objectives are as follows: (1) explore the different characteristics
of different emission distributions in simulating positive precipitation; (2) compare the
performance gap between the VBEM algorithm and SVB algorithm as parameter estimation
methods for precipitation simulation; (3) compare the performance difference of SPG in
simulating daily precipitation during the rainy season and annual daily precipitation;
(4) perform annual precipitation prediction on three selected sites in the Xilingol League.
Practically speaking, the SPG in this paper can generate daily precipitation time series
data of arbitrary length, based on which the frequency and intensity data of monthly
precipitation can be obtained. We could emphasize the significance of such data, espe-
cially for specific plants with brief growth cycles. Generally speaking, the SPG can aid
in addressing practical issues that involve simulating and predicting daily, monthly, and
annual precipitation.

2. Materials and Methods
2.1. Data Sources

Located in the central part of the Inner Mongolia Autonomous Region and the south-
eastern edge of the Inner Mongolia Plateau, the Xilingol League has a semi-arid and arid
continental monsoon climate in the middle temperate zone. It acts as a transitional region
between the humid area in eastern China and the arid region in northwestern China, as
well as the boundary between the agricultural and pastoral zones in northern China. The
main body of the Xilingol League is a typical warm grassland area in northern China. To
the east, there is the Daxinganling forest area, while to the south, it serves as an interlacing
zone for agriculture and animal husbandry. Based on the land use type map of the Xilingol
League in 2020 (Figure 1), it is evident that grassland dominates the region, encompassing
a vast area across all banners and counties within the league. This grassland covers approx-
imately 173,000 square kilometres, constituting roughly 86.3% of the region’s total land
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area. Therefore, analyzing and predicting precipitation in this region is crucial for studying
vegetation growth and grazing strategies.
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Figure 1. Land cover class of the Xilingol League in 2020.

We use daily precipitation data from the “China_1km_prep_year” dataset [25] for
the years from 2006–2019 and the GPM-IMERG dataset [26] from January 2021 to April
2023. Since the GPM-IMERG dataset has a spatial resolution of 10 km× 10 km, we utilized
ArcGIS 10.8 software to convert its spatial resolution to 1 km× 1 km to harmonize it with
the data from prior years. The topic beyond this paper is to study grazing strategies in
the Xilingol League. It also involves examining the growth of pasture grasses in the area,
which is affected by factors such as precipitation, air temperature, and surface humidity.
In addition to precipitation data, we introduced the annual mean temperature dataset,
the annual NDVI dataset, and the global 1 km surface soil moisture dataset [27]. The
annual mean temperature dataset is derived from the ERA5-Land dataset published by
organizations such as the European Union and the European Centre for Medium-Range
Weather Forecasts [28]; the annual NDVI dataset is obtained from the month-by-month
NDVI raster data from the MOD13A3 dataset at https://search.earthdata.nasa.gov/search
(accessed on 17 March 2023) and then obtained using the maximum synthesis method. For
the research conducted in this paper, these datasets will aid us in identifying the specific
regions where precipitation exhibits the highest correlation with the NDVI. These identified
areas will serve as our focal regions for studying precipitation.

2.2. Methodology Workflow

This workflow summarizes the key steps in our study, from data collection to results
interpretation, and illustrates the logical flow of our research process:

(1) We collected four kinds of raster datasets (Section 2.1) in TIFF format and cropped
them to an appropriate size according to the administrative map of the Xilingol League.
Then, we used ArcGIS 10.8 software to standardize the spatial resolution of all raster
datasets so that they correspond point-to-point.

(2) We stacked the processed daily precipitation datasets (from 2006–2020) to create
the annual precipitation dataset. Then, we conducted a correlation analysis on the annual
precipitation dataset and the NDVI dataset (from 2006–2020). Subsequently, based on
the four datasets, we performed partial correlation analysis with respect to the annual
precipitation dataset and NDVI dataset. We selected regions where both the correlation
and partial correlation of the two datasets are equal to or exceed 0.9 as the focal areas for
our precipitation research. We will present the results of the data analysis in Section 3.2.1.

(3) Using randomly generated simulated precipitation datasets and Bayesian Informa-
tion Criterion (BIC) scores, we determined the appropriate number of states and mixture

https://search.earthdata.nasa.gov/search
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components for fitting Hidden Markov Models (HMMs) to daily precipitation data. We
will detail this process in Section 3.1.1.

(4) In the core of our HMMs, we established distribution models corresponding to
three emission distributions: exponential distribution, gamma distribution, and a Pareto
distribution model with a hierarchical structure. These models were used to fit the daily
precipitation data. We will present the process of establishing the model in Section 2.3.

(5) We applied the three distribution models to three specific study areas selected from
the Xilingol League, and we will perform parameter estimation based on the corresponding
daily precipitation data (from 2006–2020). The parameter estimation methods used in this
paper are the VBEM and SVB algorithms. We will present the detailed process of parameter
estimation in Section 2.4.

(6) Finally, we conducted checks and validation of the model’s fitting and predic-
tion capabilities through simulation experiments in Section 3.1 and empirical analysis in
Section 3.2.

To provide a visual representation of our methodology, we have included the following
workflow diagram (Figure 2):

Figure 2. A workflow diagram illustrating the research methodology.

2.3. The HMM for Precipitation

Consider a Hidden Markov Model for precipitation events. Suppose y1:T = {y1, . . . , yT}
is a precipitation time series with length T and yt ≥ 0. The series is generated by a
set of potential hidden states s1:T = {s1, . . . , st, . . . , sT}, where each state st ∈ {1, . . . , K}.
For each state j and daily precipitation data at G locations, we define indicator variables
ltjgm that connect the hidden states to the emission distributions that generate precipita-
tion such that: ltjgmstj = I

{
ytg comes from the mth mixture component and st = j

}
, with

g = 1, . . . , G, and m = 0, 1, . . . , M. The number of states (K), locations (G), and mixture
components (M + 1) are assumed to be known. Since the weather state and mixing
components are unique for any given day, ltj =

(
ltj0, ltj1, . . . , ltjm

)
is encoded as a one-

hot vector and ltj0 indicating no-precipitation events. For each state j and location g,

ltjg =
(
ltjg0, . . . , ltjgm

)
follows a categorical distribution: p

(
ltjg | cjg, st = j

)
= ∏M

m=0 c
ltjgm
jgm ,

where pj(· | ·) ≡ p(· | ·, st = j) coheres with the distribution for state j, cjgm are the mixture
probabilities parameterizing ltjg, with cjgm ≥ 0 for all m, and ∑M

m=0 cjgm = 1.
Let x1:T = {x1, . . . , xT} be the precipitation time series in the observed data, where

X | Λ ∼ Exp(Λ) and Λ ∼ Gamma(γ, η). Then, the mth mixture component (where m > 0)
from state j follows a Pareto distribution with scale ηjgm and rate γjgm, i.e., Y = X + η ∼
Pareto(η, γ); the distribution of an observation from state j is given by
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p
(
ytg, ltjgm | ηjgm, γjgm, cjgm, st = j

)
= p

(
ltjgm | cjgm, st = j

)
· p
(
ytg | ηjgm, γjgm, ltjgm, st = j

)
=

M

∏
m=0

cjgm
γjgmη

γjgm
jgm

y
γjgm+1
tg

ltjgm

.

The specific processes of establishing the exponential and gamma distributions as
the emission distributions for generating precipitation can be respectively referred to the
research works of Majumder et al. [22] and Bellone et al. [9].

2.4. VB Parameter Estimation for the HMM

The complete data likelihood in our HMM for precipitation is given by:

p(y, s, l | Φ) = p(y, l | s, Φ) · p(s | Φ),

where p(s | Φ) is the distribution of the states, which factorizes into the distribution of
the initial state π1 = p(s1) and the distribution of the state transitions p(st+1 | st). For
j, k = 1, . . . , K, π1j = Pr[s1 = j] are the initial state probabilities and ajk = P[st+1 = k | st = j]

are the state transition probabilities. A =
((

ajk

))
is the K× K state transition probabilities

matrix, and C =
((

cjm
))

is the K× (M + 1) matrix of mixture probabilities. H =
((

ηjm
))

is a K×M matrix whose elements are the independently distributed rate parameters of
the gamma distributions. Similarly, Γ =

((
γjm
))

is also a K×M matrix whose elements
are the independently distributed scale parameters of the Pareto distributions, which are
part of the semi-continuous emissions in each state. Taken together, Φ = (π1, A, C, Γ)
parameterizes the HMM. We assign a prior on Φ, which factorizes into a product over
its components. That is, p

(
Φ | ν(0)

)
= p(π1) · p(A) · p(C) · p(Γ), where ν(0) are known

hyperparameters. We assign independent Dirichlet priors to the rows of A and to the rows
of C. Similarly, a Dirichlet prior is assigned to π1. Note that a Dirichlet distribution is sym-
metric if the elements that make up its parameter vector are equal. The parameter vector’s
concentration is defined as the sum of its elements. No prior information favoring one
component over another is present when the Dirichlet distribution is symmetric. Finally,
independent gamma priors are assigned to each element of H and Γ. That is,

p(π1) = Dirichlet
(

π1 | ξ(0)
)

,

p(A) =
K

∏
j=1

Dirichlet
(

aj | α
(0)
j

)
,

p(C) =
K

∏
j=1

G

∏
g=1

Dirichlet
(

cjg | ζ
(0)
jg

)
,

p(H) =
K

∏
j=1

G

∏
g=1

M

∏
m=1

Gamma
(

ηjgm | ι
(0)
jgm, δ

(0)
jgm

)
,

p(Γ) =
K

∏
j=1

G

∏
g=1

M

∏
m=1

Gamma
(

γjgm | υ
(0)
jgm, ω

(0)
jgm

)
,

where ξ(0) =
(

ξ
(0)
1 , . . . ξ

(0)
K

)
denotes prior parameters of initial state probabilities π1,

α
(0)
j =

(
α
(0)
j1 , . . . , α

(0)
jK

)
denotes prior parameters of state transition probabilities ajk, and

ζ
(0)
jg =

(
ξ
(0)
jg0, . . . , ζ

(0)
jgM

)
denotes prior parameters of mixture probabilities cjm. γjgm and

ηjgm are the shape and rate parameters of the gamma distribution followed by Λ, respec-

tively. When γjgm is determined, we assign a gamma prior to ηjgm, with ι
(0)
jgm and δ

(0)
jgm as
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prior parameters. Similarly, υ
(0)
jgm and ω

(0)
jgm are the two parameters of the gamma prior

corresponding to the shape parameter γjgm in the Pareto distribution when the scale pa-
rameter ηjgm is determined. The Pareto distribution here can be regarded as constructed
by hierarchical exponential and gamma distributions, so that in the gamma distribution
followed by Λ, the posterior η

(i1)
jgm of the rate parameter ηjgm is the fixed value in the Pareto

distribution when the scale parameter ηjgm is determined.
The variational family Q for the posterior is restricted to distributions, which are

separable in the following manner:

q(Φ, s, l) = qΦ(Φ) · qs,l(s, l),

qΦ(Φ) = q(π1) · q(A) · q(C) · q(Γ).

The VBEM algorithm involves a cyclic process of updating the posterior for the model
parameters, qΦ(Φ), and the posterior for the latent variables, qs,l(s, l). Algorithm 1 shows
the complete VBEM algorithm. Posterior updates of qΦ(Φ) and qs,r(s, l) can be derived as
closed-form expressions since our model is in the conjugate exponential family [17]. This
approach is known as mean-field variational Bayes, and the optimization of the Evidence
Lower Bound (ELBO) one parameter at a time, using all available data, is commonly
referred to as Coordinate Ascent Variational Inference (CAVI) [15]. Details of the M-step
(VBM) and E-step (VBE) for the VBEM algorithm can be found in Appendix A.

Algorithm 1 VBEM algorithm for HMMs

1: Initialize preparatory model parameters Φ(0)
p =

(
π
(0)
1 , A(0), C(0), H(0)

)
;

2: while (convergence criterion is not met) do
3: Compute the latent variables qtj and qjk with forward–backward algorithm;
4: Update the current estimate of preparatory model parameters

Φ(i1)
p =

(
π
(i1)
1 , A(i1), C(i1), H(i1)

)
;

5: end while
6: Initialize model parameters Φ(0) =

(
π
(i1)
1 , A(i1), C(i1), Γ(0)

)
with Φ(i1)

p ;
7: while (convergence criterion is not met) do
8: Compute the latent variables qtj and qjk with forward–backward algorithm;
9: Update the current estimate of preparatory model parameters qΦ(Φ);

10: end while

Stochastic Variational Bayes: Due to the necessity to compute posterior means for
the parameters and latent variables at each iteration, which necessitates a pass over all
of the data, the VBEM method might become constrained by the length of the data. The
stochastic variational Bayes (SVB) method, which converts the VBEM algorithm into a
stochastic gradient ascent algorithm for each parameter, is one of the stochastic optimization
techniques that can speed up computing. SVB employs an unbiased estimate of the gradient
at each iteration rather than computing gradients based on the complete dataset. Assuming
exchangeable data for each year, we randomly sample the data based on stochastic gradient
optimization. Afterwards, we replicate and fill the sampled data to enable iteration using
minibatches of data, and these results will serve as the initial values for the complete time
series iteration. Algorithm 2 gives the stochastic variational inference algorithm for HMMs.
Specifically, the VBE step remains unchanged, while the VBM step involves stochastic
gradient ascent with a step size of τ. In the VBM step, we scale the expectations of the latent
variables by a factor of N to encompass the entire dataset, and we outline the updating
process of the hyperparameters in Appendix B.
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Algorithm 2 Stochastic Variational Bayes for HMMs

1: Initialize preparatory model parameters Φ(0)
p =

(
π
(0)
1 , A(0), C(0), H(0)

)
;

2: Sample a subsequence xD ⊂ {x1, . . . , xT}, where D < T;
3: while (convergence criterion is not met) do
4: Set the step-size schedule τi1 appropriately;
5: Compute intermediate preparatory model parameters Φ̂p;
6: Update the current estimate of preparatory model parameters

Φ(i∗1 )
p =

(
1− τi∗1

)
Φ(i∗1−1)

p + τi∗1
· Φ̂p;

7: end while
8: Initialize model parameters Φ(0) =

(
π
(i∗1 )
1 , A(i∗1), C(i∗1 ), Γ(0)

)
with Φ(i∗1 )

p ;
9: while (convergence criterion is not met) do

10: Set the step-size schedule τi appropriately;
11: Compute intermediate preparatory model parameters Φ̂;
12: Update the current estimate of preparatory model parameters

Φ(i) = (1− τi)Φ(i−1) + τi · Φ̂;

13: end while

Assessing Convergence: We compute and track the ELBO at each iteration to assess
the convergence of the VBEM algorithm. The ELBO for our model can be expressed as:

ELBO(q) = Eq(s,l) log p(y, s, l) +Eq(Φ) log p(Φ) + H(q(s, l))−Eq(Φ) log q(Φ),

where H(q(s, l)) is the entropy of the variational posterior distribution over the latent
variables. This simplifies to [18,19]:

ELBO(q) = log q(y | Φ̃)− KL(q(π1)‖p(π1))− KL(q(A)‖p(A))

− KL(q(C)‖p(C))− KL(q(Γ)‖p(Γ)),

where log q(y | Φ̃) is calculated using Equation (A3) in the forward algorithm of Appendix C,
and the analytic formula for KL divergence is listed in Appendix D. We employ this
relationship to calculate the ELBO at each iteration, and we declare convergence once the
change in ELBO drops below a predetermined threshold.

3. Results
3.1. Simulation Study

In this paper, we use randomly generated precipitation data with a time length of
1380 as the original data. If the daily precipitation is sorted from largest to smallest, the
range of the first six precipitation amounts is [48.19, 101.15] in mm, and the range of the
remaining precipitation amounts is within 26.64 mm. Setting up the precipitation data in
this way not only allows for assessing the average level of precipitation generated by the
precipitation generator but also the accuracy of its generation of the heavy or torrential
precipitation fraction. Table 1 shows the correspondence between precipitation levels
and daily precipitation, with reference to the classification of rainfall levels by the China
Meteorological Administration (CMA). Due to the random nature of the precipitation
generated by the stochastic precipitation generator, we generated 100 datasets based on the
results of the variational posterior, and the following evaluation metrics are taken from the
average of the evaluation results of the 100 datasets.
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Table 1. The correspondence between precipitation levels and daily precipitation.

Precipitation Level Daily Precipitation Amounts Ranges

Light Precipitation <10 mm
Moderate Precipitation [10 mm, 25 mm]

Heavy Precipitation [25 mm, 50 mm]
Torrential Precipitation [50 mm, 100 mm]

Heavy Storms [100 mm, 200 mm]
Torrential Storms >200 mm

3.1.1. BIC Scores for Daily Precipitation

The model selection problem seeks an optimal balance between model complexity and
the model’s ability to describe the datasets. Bayesian information criterion (BIC), introduced
by Schwarz, is derived to serve as an asymptotic approximation to a transformation of
the Bayesian posterior probability of a candidate model [29]. BIC is a statistical method
for choosing the most suitable model from a finite set of models. Its widespread use is
attributed to its computational simplicity and strong performance across various modeling
frameworks, even in cases where prior distributions are difficult to define in Bayesian
applications. In situations with large sample sizes, the model preferred by BIC ideally
aligns with the candidate model that is a posteriori most likely, meaning it is the model that
the data at hand makes most plausible. The definition of BIC or BIC scores for the models
is available in Appendix E.

The Bayesian Information Criterion (BIC) scores of the models are used to measure
the model goodness of fit, where a lower BIC score indicates a better model fit. However,
Bellone [30] has previously demonstrated that the theoretical underpinnings of the most
common likelihood-based techniques are untenable in a sequential selection setting, such as
the BIC used in this paper, and should not be used as the sole criterion for model selection.
However, its results can also be used as a reference for model selection and cross-sectional
analysis with other metrics.

Table 2 presents the BIC scores obtained when utilizing the exponential, gamma, and
Pareto distributions as models for generating positive precipitation within HMMs. We also
compared the different numbers of states and mixture components for each distribution
to find the optimal state transfer matrix and mix probability matrix of the fitting model
through simulation.

Table 2. BIC scores for daily precipitation in HMMs.

Number of
Hidden States

Exponential Distribution Gamma Distribution Pareto Distribution
C = 3 C = 4 C = 3 C = 4 C = 3 C = 4

3 6124.92 6118.54 6490.61 6503.58 5679.57 5680.50
4 6131.62 6120.89 6465.26 6519.02 5711.61 5700.50
5 6624.81 6493.07 6617.57 6626.71 5690.45 5691.82
6 6595.85 6472.56 6669.12 6619.91 5695.55 5692.39

3.1.2. RMSE for Heavy Precipitation Weather

Considering the variability of precipitation in different regions in the actual problem,
we choose the precipitation amount ranked in the top 10 to evaluate extreme weather pre-
cipitation. The evaluation index is the Root Mean Squared Error (RMSE). Similar to the BIC
table, we replace its value with the RMSEs of the 10 extreme weather precipitation amounts.

Table 3 shows the RMSEs of the 10 extreme weather precipitation amounts for the
three positive precipitation distribution models. The result indicates that the Pareto dis-
tribution consistently exhibits the lowest RMSE across various combinations of hidden
states and mixture components. Unlike the exponential and gamma distributions, the
Pareto distribution is closer to the true value (where the true value refers to the randomly
generated original precipitation data with a time duration of 1380) for high precipitation
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with the number of hidden states of 5 and 6, while the high precipitation generated by
the exponential and gamma distributions is further away from the true value. The result
indicates that for model fitting of high precipitation levels, the exponential and gamma
distributions are more suitable for model fitting with 3-state and 4-state, while the Pareto
distribution is more suitable for model fitting with 5-state and 6-state.

Table 3. RMSEs for heavy precipitation weather in HMMs.

Number of
Hidden States

Exponential Distribution Gamma Distribution Pareto Distribution
C = 3 C = 4 C = 3 C = 4 C = 3 C = 4

3 44.94 44.79 67.01 68.61 21.70 21.74
4 45.05 44.36 64.09 68.79 25.30 23.94
5 82.85 73.09 72.80 76.05 3.15 4.84
6 80.58 71.87 78.19 80.80 4.45 3.11

3.1.3. Scatter Plot Regression of Daily Precipitation

Based on the evaluation results of both BIC and RMSE metrics, we select the ap-
propriate number of states and mixture components for the three positive precipitation
distributions to serve as the kernel of the random precipitation generator in this paper. We
observe the regression fit of the simulated precipitation data and the precipitation data
generated by the stochastic precipitation generator by plotting the scatter plot of the two
data types. The number of hidden states and mixture components for HMMs considers the
BIC score and the RMSE of high precipitation amounts.

Note that the scatter plot is labeled with the RMSE of all data with a time step of
1380, reflecting the overall deviation of the simulated precipitation data generated by the
stochastic precipitation generator from the original precipitation data. As shown in Figure 3,
the Pareto distribution model has the lowest RMSE, indicating the best fit for the overall
precipitation. The scatter plot also illustrates that almost all the precipitation generated by
the Pareto distribution model is concentrated within 26.64 mm, aligning closely with the
true value. In contrast, a significant portion of the precipitation generated by the gamma
distribution model falls in the range of 25–45 mm, showing a more significant deviation
from the true value, which is uncontrollable. Moreover, the exponential distribution
model not only shares the same limitations as the gamma distribution model in fitting
heavy precipitation but also performs poorly in representing torrential precipitation. The
Pareto distribution model effectively addresses these shortcomings, offering controllable
precipitation generation across all levels.
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Figure 3. Regression scatter plots of original precipitation data against simulated precipitation data for
the three distributions. (a) Exponential distribution; (b) gamma distribution; (c) Pareto distribution.
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3.2. Analysis of Daily Precipitation in the Xilingol League
3.2.1. Annual Precipitation and NDVI Correlation Analysis

In this paper, we conducted correlation analysis and bias correlation analysis between
precipitation and NDVI in the Xilingol League. The data used are annual precipitation
raster data, annual NDVI raster data, annual average temperature raster data, and annual
average surface soil moisture raster data for the Xilingol League region from 2006 to 2020.

From the correlation graph of NDVI and annual precipitation that passed the sig-
nificance test (Figure 4), we observe the following patterns: certain concentrated areas,
primarily in the north and west, with a few in the northeast and southwest, exhibit a notably
strong positive correlation (r > 0.75) between NDVI and annual precipitation, covering
approximately 2.2% of the region; approximately 37.1% of the areas display a significant
positive correlation (r > 0.5) between NDVI and annual precipitation; there are minimal
instances of significant negative correlation (r > 0.5) between NDVI and annual precipita-
tion. In summary, around 37.1% of the areas show a significant positive correlation (r > 0.5)
between NDVI and annual precipitation, while there are hardly any areas with a significant
negative correlation between NDVI and annual precipitation. From the bias correlation
graph of NDVI and annual precipitation that passed the t-test (Figure 4), we observe the
following: the number of areas with a significant correlation between NDVI and annual
precipitation, as determined by the t-test, has significantly reduced, accounting for 13.8%;
the number of areas with a significant strong positive correlation has also decreased to
some extent, accounting for 1.2%. Furthermore, in this paper, we will focus on the regions
with strong positive correlation or partial correlation that have passed the significance test
or t-test to predict future precipitation patterns.

Correlation coefficient

Partial correlation

coefficient

< 0

0 - 0.25

0.25 - 0.5

0.5 - 0.75

> 0.75

< 0

0 - 0.25

0.25 - 0.5

0.5 - 0.75

> 0.75

0 130 26065 km 0 130 26065 km

Figure 4. Plot of correlation coefficients between NDVI and annual precipitation that passed signifi-
cance test (left) and plot of second-order partial correlation coefficients that passed t-test (right) in
the Xilingol League from 2006–2020.

The final selection of raster point information to be analyzed and predicted for precip-
itation is shown in Table 4.
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Table 4. The regions with a significant, strong positive correlation and partial correlation between
NDVI and annual precipitation that have passed the significance test and t-test, respectively.

Location Longitude Latitude Correlation Coefficient Partial Correlation Coefficient

1 114◦21′ E 44◦51′ N 0.90 0.90
2 115◦52′ E 44◦59′ N 0.91 0.93
3 115◦54′ E 44◦59′ N 0.93 0.90

3.2.2. Seasonal Precipitation Sequences

In this paper, we analyze seasonal precipitation series generated by the exponential and
Pareto distributions using box plots compared to the actual observation values. Based on
our simulation results, we choose 3-state and 4-state models for the exponential distribution
and 5-state and 6-state models for the Pareto distribution. It is worth noting that the results
we present in this paper rely on precipitation data obtained from 100 groups of simulations,
so encountering more outlier points is to be expected. The following figures illustrate
precipitation patterns at the location 114◦21′ E, 44◦51′ N as an example.

Figure 5a shows that the upper and lower quartiles of monthly precipitation totals
are lower than the actual observation value, and the median and maximum values are
higher than the actual observation value for each condition of the exponential distribution
model. In general, the upper quartiles, lower quartiles, and median are closer to the actual
observation value. Among them, the maximum value of monthly precipitation under the
4-state and 3-component conditions is closer to the actual observation value than the other
conditions. Therefore, the precipitation series generated under the 4-state and 3-component
conditions is the most similar to the actual observation value. Figure 5b shows that the
Pareto distribution model has less than the actual observation value for each indicator
of total monthly precipitation for all conditions. On the whole, the precipitation series
generated under the 6-state and 4-component conditions are more similar to the actual
observation values.
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Figure 5. Box plots of seasonal monthly precipitation totals generated by the exponential distribution
model for each condition (a) and the Pareto distribution model for each condition (b), with LOC1
representing the actual observation value at location 1 in Table 4.

Figure 6a shows that the simulations of the model constructed by both distributions
for the proportion of seasonal monthly dry days are significantly different from the actual
observation values. Figure 6b shows that the upper and lower quartiles of the precipitation
series of the exponential distribution at position 1 are closer to the actual observation
value, and the median of the precipitation series of the Pareto distribution is closer to the
actual observation value; the upper and lower quartiles of the precipitation series of the
Pareto distribution at locations 2 and 3 are closer to the actual observation value, and the
median of the precipitation series of the exponential distribution is closer to the actual
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observation value. In summary, the seasonal monthly precipitation totals generated by the
two distributions have mutual advantages and disadvantages in terms of upper and lower
quartiles and median indicators. The exponential distribution model performs better in
terms of minimum values, and the Pareto distribution model performs better in terms of
the number and range of outlier points. In contrast, the performance on the number and
range of anomaly points is the indicator we are more interested in, i.e., the generation of
heavy precipitation under extreme weather conditions.
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Figure 6. Box plots of the proportion of seasonal monthly dry days (a) and seasonal monthly
precipitation totals (b) at three locations generated by the exponential distribution model and the
Pareto distribution model under optimal conditions.

3.2.3. Annual Precipitation Sequence

Figure 7a shows that the two distributions perform better for the generation of annual
precipitation series compared to seasonal precipitation series in terms of the proportion
of monthly dry days. Among them, the upper quartile of the Pareto distribution model
is closer to the actual observation value at all three positions, and from the comparison
of the medians, the Pareto distribution model is closer to the actual observation value at
position 1, and the exponential distribution model is closer to the actual observation value
at positions 2 and 3. Figure 7b demonstrates that, at all locations, the upper quartile of the
exponential distribution model aligns more closely with the actual observation value, while
the median and lower quartile of the Pareto distribution model are in better agreement
with the actual observation value. Additionally, the Pareto distribution model displays
significantly fewer outliers, and the range of its values better matches the actual observation
values compared to the exponential distribution model.

On the whole, for the time series of annual precipitation, the Pareto distribution model
fits better than the exponential distribution model for the average level of precipitation
as well as the intense precipitation. To improve the iteration rate of parameter estimation,
we introduce the SVB method. In this paper, stochastic gradient optimization with step
size τi = (1 + i)−0.9 is run for the first 500 iterations, followed by 200 iterations using the
CAVI method on all data to ensure convergence. The initial value of the CAVI method
before iteration is the value of the stochastic gradient optimization with 500 iterations,
which theoretically runs about 15 times faster than the CAVI method (this multiple is
equal to the number of years of precipitation data), so it can significantly increase the
rate of parameter estimation. Figure 8 presents box plots of the proportion of dry days
and precipitation generated from the parameters estimated using the SVB method and
the CAVI method in the Pareto distribution model. Figure 8 reveals that the parameters
estimated through iteration with stochastic gradient optimization on mini-batches of data
have minimal impact on the final generated results and, in some cases, even yield better
performance for certain metrics at specific locations. Therefore, the introduction of the SVB
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method is necessary when it is necessary to generate precipitation sequences for a large
number of location points.
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Figure 7. Box plots of the proportion of monthly dry days (a) and total monthly precipitation (b)
for the year at the three locations generated by the exponential distribution model and the Pareto
distribution model under optimal conditions.
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Figure 8. Box plots of the proportion of monthly dry days throughout the year (a) and total monthly
precipitation throughout the year (b) at three locations generated from the parameters estimated
using the SVB method and the CAVI method in the Pareto distribution model.

We used daily precipitation data from 2006 to 2020 to train our models. The previ-
ous work validated the suitability of the Pareto distribution model through two indicators:
monthly precipitation and the ratio of sunny days from 2006 to 2020. The theoretical basis for
this approach was developed, drawing from the research conducted by Majumder et al. [22].
Next, we assessed the performance of each distribution model in predicting precipitation
using observed data from January 2021 to April 2023. The evaluation metrics for model
prediction performance include Root Mean Square Error (RMSE) for simulated daily precip-
itation, monthly precipitation, annual precipitation, and the actual ground truth data. We
generated 100 sets of daily precipitation sequences for the years 2006 to 2030 using each of
the three models. By calculating the RMSE for annual precipitation from 2006 to 2020, we
ultimately selected the precipitation sequence corresponding to the minimum RMSE out of
the 100 sets as the optimal result for each model.

From Table 5, we observe that the gamma distribution model exhibits the lowest
RMSE values for monthly and annual precipitation at location 1, but it does not signifi-
cantly outperform the Pareto distribution model. Overall, the Pareto distribution model
demonstrates a clear advantage in predicting precipitation across the three time dimen-
sions of year, month, and day. The best prediction is achieved for annual precipitation at
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location 3. In contrast, the exponential distribution model performs the worst, particularly
in predicting annual precipitation at location 1 and monthly precipitation at location 2.
Figure 9 illustrates the fitting of daily precipitation by different distribution models at the
three locations. It is evident that the Pareto distribution model outperforms other distri-
bution models across all three locations. The exponential distribution model exhibits the
poorest overall performance (reflected in the RMSE values for daily precipitation in Table 5),
particularly in predicting daily precipitation exceeding 20 mm. The gamma distribution
model shows less stable performance in predicting daily precipitation exceeding 20 mm,
which deviates from the simulation results presented in Section 3.1.3, indicating lower
generalization ability of the gamma distribution model for predicting daily precipitation.
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0

10

20

30

0 10 20 30 40

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

RMSE = 2.38

0

10

20

30

0 10 20 30

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

RMSE = 2.34

0

10

20

30

0 10 20 30

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

(a) Exponential distribution

RMSE = 0.83

0

10

20

30

40

0 10 20 30 40

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

RMSE = 1.25

0

10

20

30

0 10 20 30

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

RMSE = 1.52

0

10

20

30

0 10 20 30

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

(b) Gamma distribution

RMSE = 0.55

0

10

20

30

40

0 10 20 30 40

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

RMSE = 0.68

0

10

20

30

0 10 20 30

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

RMSE = 0.85

0

10

20

30

0 10 20 30

original

s
im

u
la

te
d

Year−Month

2021−01
2021−02
2021−03
2021−04
2021−05
2021−06
2021−07
2021−08
2021−09
2021−10
2021−11
2021−12
2022−01
2022−02

2022−03
2022−04
2022−05
2022−06
2022−07
2022−08
2022−09
2022−10
2022−11
2022−12
2023−01
2023−02
2023−03
2023−04

(c) Pareto distribution

Figure 9. Regression scatter plots of original daily precipitation data against simulated daily precipi-
tation data for the three distributions from January 2021 to April 2023.

It is important to note that Table 5 shows the Pareto distribution has the lowest
RMSE values for daily precipitation, while the RMSE values for monthly and annual
precipitation may not be the lowest. This difference is due to our calculation of RMSE for
daily precipitation based on sorted daily precipitation data. Therefore, the RMSE values
for daily precipitation do not necessarily reflect the model’s predictive performance in the
other two time dimensions. However, to accurately display the corresponding dates for
daily precipitation, the data visualized on the scatter plot (Figure 9) has not undergone
sorting. In addition, based on the fitting of regression lines to precipitation data points in
Figure 9: for days with relatively high daily precipitation (exceeding 20 mm), simulated
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precipitation data and actual observed data share similar colors, indicating that they belong
to the same month or adjacent months. However, for data points with values that are close
to each other, their distances from the regression line are relatively far, suggesting that the
simulated precipitation data corresponding to the actual observed data did not occur on
the same day.

Table 5. RMSEs of precipitation in three time dimensions of day, month, and year from January 2021
to April 2023.

Location Distribution Daily Precipitation Monthly Precipitation Annual Precipitation

1 Exponential 2.76 35.66 154.59
1 Gamma 0.83 26.82 63.63
1 Pareto 0.55 35.21 81.64
2 Exponential 2.38 46.38 167.72
2 Gamma 1.25 36.54 123.8
2 Pareto 0.68 36.14 110.97
3 Exponential 2.34 39.82 68.9
3 Gamma 1.52 34.32 50.95
3 Pareto 0.85 32.72 6.64

3.2.4. Analysis of Annual Precipitation Trends

We compiled the annual precipitation data for 2006–2030 at the three locations in the
Xilingol League. Figure 10 presents the annual precipitation computed based on actual
historical daily data from 2006 to 2022 and the annual precipitation calculated from daily
precipitation sequences simulated by the three distribution models from 2006 to 2030. The
selection of the predictive distribution models relies on the RMSE for annual precipitation
in 2021 and 2022. At location 1, the gamma distribution model corresponds to the lowest
RMSE, while at locations 2 and 3, the Pareto distribution model exhibits the lowest RMSE.
Therefore, the primary choice for predicting annual precipitation for the years 2023 to 2030
is the distribution model corresponding to the minimum RMSE.

Based on the predictive results, it is clear that annual precipitation at all three locations
falls within the range of approximately 200 mm to 400 mm. According to the primary
predictive model at location 2 (Pareto distribution model), annual precipitation for the years
2026 to 2030 consistently falls below 300 mm, suggesting the need for precautions against
the potential impact of reduced natural precipitation on grass growth and adjustments in
grazing strategies. Additionally, at location 2, the exponential distribution model generates
an unusual prediction of 109.51 mm for the year 2027. This prediction somewhat indicates
the potential for reduced natural precipitation. Furthermore, the exponential distribution
model predicts a historical peak (467.86 mm) in annual precipitation at location 3 in
the year 2029, indicating the necessity of precautions against the potential impact of
heavy precipitation on grass growth and adjustments in grazing strategies. In contrast,
the predictive results for location 1 appear relatively stable, suggesting a lesser need for
additional control measures.

For those interested in analyzing pasture growth and obtaining more ecological in-
sights through seasonal variations in precipitation, they can compile monthly precipitation
data and frequency statistics based on the available daily precipitation data.
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(a)

(b)

(c)

Figure 10. Annual precipitation trends (2006–2030) at three Xilingol League locations: (a) Location 1;
(b) Location 2; (c) Location 3.

4. Conclusions

In the simulation experiments section of this study, the researchers employed the
Hidden Markov Model (HMM) framework, incorporating three emission distributions:
the exponential distribution, gamma distribution, and Pareto distribution. They used
Bayesian Information Criterion (BIC) to determine the appropriate order for the state
transition matrix and the mixture probability matrix required for accurately generating
daily precipitation sequences. Specifically, for the exponential and gamma distributions,
state transition matrices of orders 3 and 4 were found suitable for model fitting. In the
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case of the Pareto distribution, we chose state transition matrices of orders 5 and 6 for
model fitting. In the empirical research section, we chose locations within the Xilingol
League where annual precipitation significantly affects NDVI as our research subjects.
Building on the work of Majumder et al. [22], we first validated the suitability of the Pareto
distribution model for fitting daily precipitation using rainy-season daily precipitation
data from 2006 to 2020, which involved calculating monthly precipitation and dry days
ratios. Subsequently, we further validated the Pareto distribution model’s suitability for
fitting daily precipitation using full-year daily precipitation data, calculating monthly
precipitation and dry days ratios.

Finally, we evaluated the predictive performance of the Stochastic Precipitation Gener-
ator (SPG) using observed precipitation data from January 2021 to April 2023. Our findings
indicate that, compared to the other two distributions, the Pareto distribution exhibited
relatively better overall predictive performance across daily, monthly, and annual time
dimensions. However, as analyzed from the results in Figure 9, none of the emission
distributions could precisely allocate precipitation amounts to each individual day. Even
the optimal Pareto distribution model could only provide a rough indication of when heavy
or torrential precipitation might occur within a given month. Despite this limitation, when
it comes to predicting extreme precipitation events or monthly and annual precipitation,
Hidden Markov Models (HMMs) with Pareto distribution as the emission distribution may
be the best candidates for Statistical Precipitation Generators (SPGs) in the Xilingol League.
Nevertheless, this conclusion should be further validated at other locations.

5. Discussion

In Section 3.2 of this paper, we employed Hidden Markov Models (HMMs) to fit daily
precipitation data in the Xilingol League. Building upon the theoretical foundations laid
out by Bellone et al. and Majumder et al., we used three different distributions to simulate
the generation of positive daily precipitation. In comparison to prior work, we extended
the theoretical derivation process for the application of the hierarchical Pareto distribution
model and conducted parameter estimation using the Variational Bayesian method. The
rationality of this distribution model’s parameter estimation algorithm and its applicability
in fitting daily precipitation were validated both in the simulation study (Section 3.1) and
empirical research (Section 3.2). During the process of model and algorithm validation,
we introduced continuous precipitation data for the entire year to further ascertain the
applicability of the Stochastic Precipitation Generator (SPG). Additionally, this paper
explored the performance of SPG in practical forecasting, compared the actual effects
of the three distribution models in predicting precipitation across daily, monthly, and
annual timeframes, and drew corresponding conclusions (Section 4). These findings have
practical implications for guiding future grazing strategies in the Xilingol League region.
In summary, we have comprehensively demonstrated the performance of the Stochastic
Precipitation Generator (SPG) in generating random precipitation from both a model
innovation and application expansion perspective, providing a more comprehensive view
compared to previous research efforts.

Our research operates under the presumption of temporal stationarity, which involves
considering two types of stationarity. Within a year’s data, stationarity is the first. This is
tackled by focusing solely on seasonal data, an approach that aligns with previous studies.
Moreover, we assume that the states remain constant from one year to the next, allowing
for the interchangeability of precipitation data for the same month across different years.
Stochastic optimization has made use of this premise. This assumption appears reason-
able, as it is unlikely that the fundamental climate conditions have undergone substantial
changes over the 15-year period covered by our data. However, a more thorough investiga-
tion is required to confirm this assumption for long periods during which climatic patterns
may undergo alterations. From the research results presented in this paper, it is evident
that SPG still exhibits certain limitations. Figures 6 and 7 demonstrate that the HMMs,
with parameters estimated using the VBEM algorithm, closely simulate the percentage of
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monthly dry days in the annual data’s time dimension compared to the historical data,
especially when contrasted with the time dimension of the rainy season data. The conclu-
sion also implies that the SPG’s ability to simulate precipitation frequency during the rainy
season or non-continuous precipitation frequency is not ideal. Furthermore, as discussed in
Figure 9, it is evident that the daily precipitation data generated by SPG cannot accurately
correspond to specific dates. In other words, the precipitation sequences generated by
SPG cannot serve as daily weather forecasts. This assumption is logical since precise daily
rainfall predictions require real-time synchronization of various meteorological factors.

Future precipitation modeling efforts will emphasize explicitly incorporating spatial
dependencies by increasing the emission distribution using copula functions. While ex-
isting models capture the spatial patterns in the data to some extent, parameterizing the
dependence will help identify the state or domain where it exerts the most substantial
influence. It is especially crucial for precipitation modeling due to its less smooth spatial
distribution compared to temperature. Majumder et al. [31] used copula to estimate spatial
correlations in HMMs, but this was conducted within the framework of maximum likeli-
hood estimation using the Baum–Welch algorithm rather than in a Bayesian context. We
would also like to use the reduced climate model output as a covariate of the model, as
Robertson et al. [6] did. This method has two advantages—it would allow us to tune its
behavior, and we would also be able to specify a more complex non-flush HMM (NHMM)
in which the Markov chain parameters can vary according to month or even season [22,32].
However, it is essential to note that NHMM introduces additional computational complex-
ity. The transition matrix parameters tend to be associated with covariates via logistic or
probit link functions, and the final model may no longer belong to the family of covariate
indices. From the perspective of the practical problem under study, we would like to
achieve multivariate time series prediction, i.e., to study the growth of forage-based on
multi-scale precipitation data, multiple meteorological factors and grazing strategies in
different regions of the Xilingol League, and thus be able to propose reasonable scenarios
for future grazing strategies in the region. We may use background knowledge such as
Long Short-Term Memory (LSTM) networks and transformer-based modeling frameworks
in deep learning.
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Appendix A. VBEM Algorithm

The complete data likelihood can be expressed as

p(y, s, l | Φ) =
K

∏
j=1

{
π1j
}s1j

T

∏
t=1

K

∏
j=1

G

∏
g=1

{
pj
(
ytg, ltjg | Φ

)}stj
T−1

∏
t=1

K

∏
j=1

K

∏
k=1

{
ajk

}stjst+1,k

= exp

{
K

∑
j=1

s1j log π1j +
T

∑
t=1

K

∑
j=1

G

∑
g=1

{ M

∑
m=1

stjltjgm
[

log cjgm + log γjgm + γjgm log ηjgm

−(γjgm + 1)ytg
]
+ stjltjg0 log cjg0

}
+

T−1

∑
t=1

K

∑
j=1

K

∑
k=1

stjst+1,k log ajk

}
,

(A1)

where stj = I{st = j} denotes the daily state, stj denotes the state at the initial date, cjg0
denotes the mixture probability when there is no precipitation, and stjst+1,k denotes a
typical state transition. Similarly, we write the prior as

p
(

Φ | ν(0)
)
=p(π1) · p(Γ) · p(C) · p(A)

= exp

{
K

∑
j=1

{(
ξ
(0)
j − 1

)
log π1j +

G

∑
g=1

M

∑
m=1

[
−ω

(0)
jgmγjgm +

(
υ
(0)
jgm − 1

)
log γjgm

]
+

G

∑
g=1

(
ζ
(0)
jg0 − 1

)
log cjg0 +

G

∑
g=1

M

∑
m=1

(
ζ
(0)
jgm − 1

)
log cjgm

+
K

∑
k=1

(
α
(0)
jk − 1

)
log ajk

}
− log h(0)

}
,

where h(0) = h
(

ν(0)
)

is the normalizing constant for the prior. Comparing this expression
with the canonical form for the conjugate exponential family, we arrive at the following
expressions for the natural parameters Θ(Φ), their sufficient statistics u(s, y, l), and the
hyperparameters ν(0) :

Θ(Φ) =



log π1j
log cjg0
log cjgm
log γjm

γjgm
log ajk,


, u(s, y, l) =



s1j
stjltjg0
stjltjgm
stjltjgm

ytgstjltjgm
stjst+1,k


, ν(0) =



ξ
(0)
j − 1

ζ
(0)
jg0 − 1

ζ
(0)
jgm − 1

υ
(0)
jgm − 1

ω
(0)
jgm

α
(0)
jk − 1


, (A2)

for m = 1, . . . , M, j = 1, . . . , K, k = 1, . . . , K.
Variational M-step (VBM): With the variational posteriors on hidden variables fixed

at qs,l(s, l), update the variational posterior qΦ(Φ) on the model parameters.
Since qΦ(Φ) is conjugate to the prior, the posterior distribution for each component of

Θ(Φ) in (A2) is obtained by updating the coordinates of ν(0) with the expected values of
the corresponding sufficient statistics u(s, y, l). To this end, we denote the expectations of
the latent variables in (A1) under qs,l(s, l) as

q1j = E
(
s1j
)
,

qtj = E
(
stj
)
,

qtjgm = E
(
ltjgm

)
,

qjk = E
(
stjst+1,k

)
,
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where j, k = 1, . . . , K, g = 1, . . . , G, and m = 0, 1, . . . , M. The variational updates at each
iteration of the VBM step are then given by

ξ
(i1)
j = ξ

(0)
j + q1j,

ζ
(i1)
jg0 = ζ

(0)
jg0 +

T

∑
t=1

qtjqtjg0,

ζ
(i1)
jgm = ζ

(0)
jgm +

T

∑
t=1

qtjqtjgm,

ηjgm = η
(0)
jgm + γjgm

T

∑
t=1

qtjqtjgm,

δjgm = δ
(0)
jgm +

T

∑
t=1

qtjqtjgmxtg,

α
(i1)
jk = α

(0)
jk +

T−1

∑
t=1

qjk,

ξ j = ξ
(i1)
j + q1j,

ζ jg0 = ζ
(i1)
jg0 +

T

∑
t=1

qijqtjg0,

ζ jgm = ζ
(i1)
jgm +

T

∑
t=1

qijqtjgm,

υjgm = υ
(0)
jgm +

T

∑
i=1

qtjqtjgm,

ωjgm = ω
(0)
jgm +

T

∑
t=1

ln

 qtjqtjgmxtg + η
(i1)
jgm

η
(I1)
jgm

,

αjk = α
(i1)
jk +

T−1

∑
t=1

qjk,

where η
(i1)
jgm = ηjgm/δjgm, v(0)jgm = ηjgm, and ω

(0)
jgm = δjgm. ξ

(i1)
j , ζ

(i1)
jg0 , ξ

(i1)
jgm, ηjgm, δjgm, and α

(i1)
jk

denote the hyperparameters after the first round of variational iterations. The superscript
i1 of the parameter indicates that the parameter has been iterated i1 times in the first
variational iteration, and the variational posterior estimates after the first iteration will be
used as the initial value of the second variational iteration. ξ j, ζ jg0, ζ jgm, υjgm, ωjgm, and αjk
denote the final estimated hyperparameters.

Variational E-step (VBE): With the variational posterior on the model parameters
qΦ(Φ) fixed, update the variational posterior qs,l(s, l) on the latent variables. The variational
posterior qs,l(s, l) has the same form as the known parameter posterior, i.e.,

qs,l(s, l) ∝
K

∏
j=1
{a∗1j}

s1j
T

∏
t=1

K

∏
j=1

G

∏
g=1

M

∏
m=0
{b∗tjgm}

stj ltjgm
T−1

∏
t=1

K

∏
j=1

K

∏
k=1
{a∗jk}

stjst+1,k ,

with the natural parameters Θ(Φ) replaced by their expectations under qΦ(Φ). Comparing
with (A1) , we obtain

a∗1j = exp
{
Eq log π1j

}
= exp

{
Ψ
(
ξ j
)
−Ψ(ξ.)

}
,

a∗jk = exp
{
Eq log ajk

}
= exp

{
Ψ
(

αjk

)
−Ψ

(
αj
)}

,
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where ψ(·) is the digamma function and ξ· = ∑K
j=1 ξ j, αj· = ∑K

k=1 ξ jαjk. Similarly,

b∗tjm =

{
exp

{
Eq log

[
cjg0
]}

if m = 0,
exp

{
Eq log

[
cjgm f

(
ytg | γjgm

)]}
if m > 0.

The expectations of the individual terms in b∗tjgm are:

c∗jgm = exp
{
Eq log cjgm

}
= exp

{
Ψ
(
ζ jgm

)
−Ψ

(
ζ jg·
)}

, where ζ jg· =
M

∑
m=0

ζ jgm,

γ∗jgm = exp
{
Eq log γjgm

}
= exp

{
Ψ
(
υjgm

)
− log ωjgm

}
,

γ̄jgm = Eqγjgm = υjgm/ωjgm.

Therefore,

b∗tjgm =

{
exp

{
Ψ
(
ζ jg0

)
−Ψ

(
ζ jg·
)}

if m = 0,

exp
{

Ψ
(
ζ jgm

)
−Ψ

(
ζ jg·
)
+ Ψ

(
υjgm

)
− log ωjgm − ytg

υjgm
ωjgm

}
if m > 0.

The quantities a1j, ajk, and b∗tj can now be incorporated into the forward–backward
algorithm, as outlined in Appendix C. This enables us to obtain the desired variational
posterior estimates for the state probabilities and cluster assignment probabilities. The
updates to the variational posterior on the latent variables are

qtj =
F̃tj · B̃tj

∑K
k=1 F̃tk · B̃tk

,

qjk =
F̃tj · a∗jk · b

∗
t+1,k · B̃t+1,k

∑K
j=1 ∑K

k=1 F̃tj · a∗jk · b
∗
t+1,k · B̃t+1,k

,

where F̃tj and B̃tj are the scaled forward and backward variable, respectively. The posterior
for the mixture assignments is given by

qtjgm ∝


1 if m = 0, ytg = 0,
0 if m > 0, ytg = 0 or m = 0, ytg > 0,
c∗jgm f

(
ytg | γ∗jgm, γ̄jgm

)
if m > 0, ytg > 0,

where c∗jgm f
(

ytg | γ∗jgm, γ̄jgm

)
= exp

{
Ψ
(
ζ jgm

)
−Ψ

(
ζ jg
)
+ Ψ

(
υjgm

)
− log ωjgm − ytg

υjgm
ωjgm

}
.

Appendix B. Hyperparameter Update for SVB Algorithm

ξ
(i1)
j ←

(
1− τi1

)
ξ
(i1−1)
j + τi1

(
ξ
(0)
j + q1j

)
,

ζ
(i1)
jg0 ←

(
1− τi1

)
ζ
(i1−1)
jg0 + τi1

(
ζ
(0)
jg0 + N ·

D

∑
t=1

qtjqtjg0

)
,

ζ
(i1)
jgm ←

(
1− τi1

)
ζ
(i1−1)
jgm + τi1

(
ζ
(0)
jgm + N ·

D

∑
t=1

qtjqtjgm

)
,

η
(i1)
jgm ←

(
1− τi1

)
η
(i1−1)
jgm + τi1

(
η
(0)
jgm + N ·

D

∑
t=1

qtjqtjgmγjgm

)
,

δ
(i1)
jgm ←

(
1− τi1

)
δ
(i1−1)
jgm + τi1

(
δ
(0)
jgm + N ·

D

∑
t=1

qtjqtjgmxtg

)
,
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α
(i1)
jk ←

(
1− τi1

)
α
(i1−1)
jk + τi1

(
α
(0)
jk + N ·

D−1

∑
t=1

qjk

)
,

ξ
(i)
j ← (1− τi)ξ

(i−1)
j + τi

(
ξ
(i1)
j + q1j

)
,

ζ
(i)
jg0 ← (1− τi)ζ

(i−1)
jg0 + τi

(
ζ
(i1)
jg0 + N ·

D

∑
t=1

qtjqtjg0

)
,

ζ
(i)
jgm ← (1− τi)ζ

(i−1)
jgm + τi

(
ζ
(i1)
jgm + N ·

D

∑
t=1

qtjqtjgm

)
,

υ
(i)
jgm ← (1− τi)υ

(i−1)
jgm + τi

(
υ
(0)
jgm + N ·

D

∑
t=1

qtjqtjgm

)
,

ω
(i)
jgm ← (1− τi)ω

(i−1)
jgm + τi

ω
(0)
jgm + N ·

D

∑
i=1

ln

 qtjqtjgmxtg + η
(i1)
jgm

η
(i1)
jgm

,

α
(i)
jk ← (1− τi)α

(i−1)
jk + τi

(
α
(i1)
jk + N ·

D−1

∑
i=1

qjk

)
.

The hyperparameters ξ
(i1)
j , ζ

(i1)
jg0 , ζ

(i1)
jgm, η

(i1)
jgm, δ

(i1)
jgm, α

(i1)
jk denote the hyperparameters

after the first round of stochastic variational iterations with step size i1. These variational
posterior estimates obtained after the first iteration will serve as the initial values for the
second round of stochastic variational iterations. On the other hand, ξ

(i)
j , ζ

(i)
jg0, ζ

(i)
jgm, υ

(i)
jgm,

ω
(i)
jgm, α

(i)
jk denote the hyperparameters after the second round of stochastic variational

iterations with step size i. These variational posterior estimates obtained after the second
stochastic variational iteration will, in turn, serve as the initial values for the first variational
iteration in Appendix A.

Appendix C. Variational Forward–Backward Algorithm

Majumder et al. [22] laid the theoretical foundation for the Variational Forward–
Backward Algorithm. The forward variable is defined as the joint probability of the partial
observation sequence up to a time t and the state st at that time point:

Ftj = p(y1, . . . , yt, st = j).

1. Initialization: For all j = 1, . . . , K, define

F1j = π1 · p(y1 | s1 = j),

c1 =
1

∑K
j=1 F1j

and normalize

F̃1j = c1 · F1j.

2. Recursion: For t = 2, . . . , T and for each state k = 1, . . . , K, use the recursion

Ftk =

[
K

∑
j=1

F̃t−1,j · p(st = k | st−1 = j)

]
p(yt | st = k) and normalize

F̃tj = ct · Ftk where

ct =
1

∑K
j=1 Ftj

.
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Note that F̃tj =
(
∏t

τ=1 cτ

)
Ftj. Using the definitions provided, this gives us

q(y | Φ) =
K

∑
j=1

FTj =
1

∏T
t=1 ct

, (A3)

where q(y | Φ) is the normalizing constant for the variational posterior of the latent
variables. It is important to note that the forward algorithm is employed as a component
of the E-step during the optimization process, with the parameter values in Φ set to
their means, denoted as Φ ≡ Φ. Therefore, q(y | Φ) can also be equivalently expressed
as p(y | Φ̃).

The backward variable is defined as the probability of generating the last T-t observa-
tions, given that the system is in state j at time t :

Btj = p(yt+1, . . . , yT | st = j).

The backward algorithm has similar steps but works its way back from the final time
point.

1. Initialization: for each state j, set

BTj = 1, and

B̃Tj = cT · BTj.

2. Recursion: for t = T − 1, . . . , 1 and each state j, calculate

Btj =
K

∑
k=1

p(st+1 = k | st = j) · B̃t+1,k · p(yt+1 | st+1 = k),

B̃tj = ct · Btj.

The two algorithms can be run in parallel. Once both variables are calculated, we
obtain

qs(st = j | y1, . . . , yT) ∝ F̃tj · B̃tj, and

qs(st = j, st+1 = k) ∝ F̄tj · p(st+1 = k | st = j) · p(yt+1 | st+1 = k) · B̃t+1,k.

Appendix D. Analytic Formula for KL Divergence

KL(q(π1)‖p(π1)) =
K

∑
j=1

{[
ξ j − ξ

(0)
j

][
Ψ
(
ξ j
)
−Ψ

(
K

∑
j=1

ξ j

)]
+ log

∣∣∣Γ(ξ
(0)
j

)∣∣∣− log
∣∣Γ(ξ j

)∣∣}

+ log

∣∣∣∣∣Γ
(

K

∑
j=1

ξ j

)∣∣∣∣∣− log

∣∣∣∣∣Γ
(

K

∑
j=1

ξ
(0)
j

)∣∣∣∣∣,
KL(q(A)‖p(A)) =

K

∑
j=1

{
K

∑
k=1

{[
αjk − α

(0)
jk

][
Ψ
(

αjk

)
−Ψ

(
K

∑
k=1

αjk

)]
+ log

∣∣∣Γ(α
(0)
jk

)∣∣∣− log
∣∣∣Γ(αjk

)∣∣∣}

+ log

∣∣∣∣∣Γ
(

K

∑
k=1

αjk

)∣∣∣∣∣− log

∣∣∣∣∣Γ
(

K

∑
k=1

α
(0)
jk

)∣∣∣∣∣
}

,

KL(q(C)‖p(C)) =
K

∑
j=1

{
M

∑
m=1

{[
ζ jgm − ζ

(0)
jgm

][
Ψ
(
ζ jgm

)
−Ψ

(
M

∑
m=1

ζ jgm

)]
+ log

∣∣∣Γ(ζ
(0)
jgm

)∣∣∣− log
∣∣Γ(ζ jgm

)∣∣}

+ log

∣∣∣∣∣Γ
(

M

∑
m=1

ζ jgm

)∣∣∣∣∣− log

∣∣∣∣∣Γ
(

M

∑
m=1

ζ
(0)
jgm

)∣∣∣∣∣
}

,



Water 2023, 15, 3600 25 of 26

KL(q(Γ)‖p(Γ)) =Ψ(υjgm) ·
[
υjgm − υ

(0)
jgm

]
+ log

[
Γ
(

υ
(0)
jgm

)]
− log[Γ(υjgm)] +

[
ω
(0)
jgm −ωjgm

]
·

υjgm

ωjgm

+ υ
(0)
jgm ·

[
log ωjgm − log ω

(0)
jgm

]
.

Appendix E. Bayesian Information Criterion

Neath and Cavanaugh [29] have provided comprehensive theoretical underpinnings
for BIC. Here, we briefly outline its formal definition and how we apply it in our research.
The BIC for candidate model Mk is defined as

BIC = −2 ln L
(
θ̂k | y

)
+ k ln(n).

In practice, BIC is computed for each of the models Mk1 , Mk2 , . . . , MkL , and the model
corresponding to the minimum value of BIC is selected.

Under the assumption that the model errors are independent and follow a normal
distribution, and the boundary condition that the log-likelihood of the derivative with
respect to the true variance is zero, this takes the following form:

BIC = n ln
(

σ̂2
e

)
+ k ln(n),

where σ̂2
e is the error variance, calculated as σ̂2

e = 1
n ∑n

i=1(yi − ȳ)2. Note that “error” is the
difference between the actual observed value and the predicted value, while “variance” is
the average of the squares of these errors.
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