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Abstract: Water body extraction techniques from remotely sensed images are crucial in water re-
sources distribution studies, climate change studies and other work. The traditional remote sensing
water body extraction has the problems of low accuracy and being time-consuming and laborious,
and the water body recognition technique based on deep learning is more efficient and accurate than
the traditional threshold method; however, there is the problem that the basic model of semantic
segmentation is not well-adapted to complex remote sensing images. Based on this, this study adopts
an OCNet feature extraction network to modify the base model of semantic segmentation, and the
resulting model achieves excellent performance on water body remote sensing images. Compared
with the traditional water body extraction method and the base network, the OCNet modified model
has obvious improvement, and is applicable to the extraction of water bodies in true-color remote
sensing images such as high-score images and unmanned aerial vehicle remote sensing images. The
results show that the model in this study can realize automatic and fast extraction of water bodies
from remote sensing images, and the predicted water body image accuracy (ACC) can reach 85%.
This study can realize fast and accurate extraction of water bodies, which is of great significance for
water resources acquisition and flood disaster prediction.

Keywords: water body extraction; remote sensing image; semantic segmentation; OCNet; deep learning

1. Introduction

Water is the largest resource on the Earth’s surface, occupying 71% of the surface area,
with 97.2% of the water distributed in the oceans, 2.15% in icebergs and glaciers, 0.31% in
groundwater, 0.009% in lakes, 0.001% in atmospheric water vapor, and 0.0001% in rivers
and streams. The groundwater, lakes, rivers and streams available to humans, animals,
and vegetation make up less than 1% of the total water on earth. China’s freshwater
resources total 2800 billion cubic meters, accounting for 6% of global water resources,
ranking fourth in the world after Brazil, Russia and Canada. However, China’s per capita
water resources are only 2300 cubic meters, only one fourth of the world average, making
it one of the poorest countries in the world according to per capita water resources. With
the continuous development of science and technology, using high spatial-, spectral- and
temporal-resolution remote sensing data to realize rapid, accurate and large-scale extraction
of water body information, while establishing good applicability to serve all walks of life
in people’s production, has become the development trend of the water body information
extraction research [1]. Water body extraction technology is a key technology in China and
even globally, which is indispensable to the survival of human beings and the development
of the environment.

Under the continuous progress of satellite remote sensing technology, satellites provide
an growing image database, such as remote sensing data from the Landsat [2] series of
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satellites, the Sentinel [3] series of satellites, the Gaofen series of satellites and other remote
sensing data for lakes, oceans, rivers and other bodies of water, whose analysis provides
a large amount of data. However, with the increase of the remote sensing image data
volume and spatial resolution, coupled with the high complexity of the Earth’s surface
environment [4], the current surface water extraction methods are limited in applicability
and accuracy [5]. Existing water body data extraction methods are not effective enough in
complex images with multiple bands and need to be improved accordingly.

The traditional water body extraction methods are mainly the single-band threshold
method [6] and spectral water index method [7–9]. The water body extraction model
is constructed by combining the original bands of the image or the characteristic bands
obtained by preprocessing [10]. The single-band threshold method only uses image data
in near-infrared or infrared bands for analysis, which has some limitations for multi-band
remote sensing images. The spectral water index method is applicable to multi-band remote
sensing images, generating index data through data of different bands, and then setting the
corresponding threshold for water body extraction results. The spectral water index method
is also in continuous improvement, such as the normalized water difference index (NDWI)
method [11], in which most of the water bodies can be proposed, and the boundary effect is
relatively good, but due to the influence of shadows in the image (e.g., algal water bodies),
resulting in the water body and the surrounding land values being similar to each other,
there is still a small patch and the phenomenon of mispropagation, making it necessary to
continue to remove small patches, and to set up according to one’s needs the minimum
upper map area, thus improving this result. The improved normalized water difference
index method (MNDWI) [12] is different from NDWI in that it replaces near-infrared band
(NIR) data with short-infrared band (SWIR) data, which significantly reduces the extraction
error of the shadow effect, and is conducive to the segmentation of the boundary of the
water body; there is not a big difference in the extraction results obtained by using the
NDWI and the MNDWI for the water bodies with shallow water depths, and MNDWI is
not suitable for the index calculation of the whole image, and it is easy to produce large
outliers that cannot be eliminated. This type of a traditional water body extraction method
is focused on the definition of a threshold problem in the final analysis, although there
are some improvement methods to enhance the water body recognition effect. Currently,
most of the thresholds for water bodies are set manually, while different regions, different
phases, and different satellite sensors may lead to different thresholds and bias in the water
body recognition results, and the surrounding temperature and the physical environment
also have a certain impact on the water body extraction [13], so the optimal thresholds are
difficult to determine. Remote sensing images of different scenes often rely on subjective
experience to set a threshold, and the threshold adjustment of the feedback image requires
a large amount of a priori knowledge and even need experts; additionally, it cannot cope
with a large amount of remote sensing image data using the traditional method of water
body extraction, as it requires a large amount of manual threshold adjustment and remote
sensing image software calculations, which is time-consuming and inefficient.

Remote sensing images of water body identification need infrared band information,
and most of the high-resolution remote sensing images and unmanned aircraft remote
sensing images lack the near-infrared band or short infrared band. In order to distinguish
water bodies from vegetation, soil, etc. the visible light band within the range of 0.6 um is
used, with less absorption and more projection. The reflectivity of clear water in the visible
light band in the blue and green bands only reaches 4–5%, and in the red light band it is
even only 2–3%, but the absorption is obvious in the range of the near-infrared band (NIR)
to the short-wave infrared band (SWIR). High spatial-resolution satellite images have rich
spatial and texture information, and researchers have constructed image classification and
extraction methods by combining spectral, spatial, and texture features, which are capable
of finer water body information extraction [1]. Manafd et al. [14] used eleven machine-
learning methods for water body extraction in the northwest coast of Peninsular Malaysia.
Typical machine learning methods such as support vector machines (SVM) [15] and random
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forest [16] have poor generalization and instability problems that limit the generalizability
of machine learning methods in water body extraction. With the explosion of hardware
performance and the rapid growth of arithmetic power after the 21st century, Convolutional
Neural Networks (CNNs) have developed at a high speed, and deep learning has been
used in image classification, object recognition and classification, boundary segmentation
and so on.

Currently, deep-learning water body extraction methods require a large number of
original remote sensing images with labeled dichotomized images for feature learning and
model modification, which need to be customized. The problems of feature recognition
and classification and boundary delineation of remote sensing images are theoretically
achievable by deep learning. Gang Fu et al. [17] used a variant on the basis of CNN, a fully
convolutional network (FCN) model, on the true-color images of the Gaofen-2 satellite
(GF-2) using 70 GF-2 images and tested using 4 other GF-2 images and 3 IKONOS true-color
images to achieve deep learning for classification of remote sensing images. The method
performed well in feature classification, but water bodies have the property of reflecting
features. Thus, segmenting water bodies requires more complex deep learning models.
Hu Wei [18] et al. used deep convolutional neural networks to classify hyperspectral
images directly in the spectral domain, and the proposed method can achieve better
classification performance than some traditional methods. The basic deep learning model
still has unsatisfactory segmentation of water body boundaries although it has higher
performance compared to traditional methods. Ordinary images do not have the large
amount of spectral data that hyperspectral images have. Water bodies on ordinary images
still need further segmentation methods. Feng et al. [19] used a deep U-Net network
combined with conditional random fields (CRFs) to train the model on GF-2 images and
WorldView2 images, and the effect was significantly improved compared to the basic
model. The method is only for water body extraction for images in the near-infrared
band. Shen et al. [20] introduced an attention mechanism into the U-Net and SegNet
models and proved the new models’ feasibility, but the accuracy improvement was not
obvious. The self-attention mechanism is realized by filtering important information and
filtering unimportant information, which leads to its ability to capture effective information
being smaller than for CNNs. Thus, it leads to an insignificant increase in accuracy and
unnecessarily increases the model parameters and training time.

Therefore, in this paper, we introduce a method based on a self-attention mechanism
and the spatial pyramid pooling influence of a feature network, OCNet, in the U-Net
network in order to improve the accuracy of extracting water bodies in remote sensing
images and verify the effectiveness of the method. First, the original network is embedded
with multi-sampling rate null convolution for the problem of fine water body recognition.
Null convolution is able to control the effective sensing field [21] and deal with the large-
scale variance of the object without introducing additional computation [22]. Second,
to address the problem of reflecting surrounding features at the water body boundary
leading to boundary blurring, the connection between the water body’s parts as a whole
is strengthened to capture global information, and a self-attention mechanism module is
embedded in the network. The self-attention mechanism can expand the sensory field of
convolutional computation and obtain more contextual information connections, which
can improve the accuracy of semantic segmentation [23]. The main contributions of this
paper are as follows:

1. Hollow convolution of water bodies improves the accuracy of fine water body recognition;
2. Introducing an attention mechanism to better delineate water body boundaries;
3. Proposing a composite model that substantially improves the recognition rate com-

pared to the traditional threshold method and the base semantic segmentation model.
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2. Materials and Methods
2.1. Introduction to the Dataset

The remote sensing image dataset used in this experiment is from Luo et al. [5],
and is an automatic mapping dataset of surface water based on multispectral images.
The remote sensing raw dataset is shown in Table A1 (Supplementary materials). The
images were obtained from the Sentinel-2 satellite, a high-resolution multispectral imaging
satellite consisting of Sentinel 2A and Sentinel 2B, which provides high-resolution images of
vegetation, soil and water cover, inland waterways and coastal areas, making it particularly
suitable for surface water monitoring. The MSI (multi-spectral imager) on Sentinel-2 is
equipped with 13 operating bands, including blue (B2), green (B3), red (B4), and NIR (B8)
in the 10 m band, red end (B5), NIR (B6, B7 and B8A) and SWIR (B11 and B12) in the 20 m
band, and coastal (B11 and B12) in the 60 m band. The coastal atmospheric aerosol (B1) and
cirrus (B10) bands are available in the 60 m resolution band.

For this experiment, 95 scenes from 31 Sentinel-2 images were extracted as the base
dataset (as shown in Figure 1), including various surface water bodies such as reservoirs,
rivers, lakes and oceans, as well as land cover types such as urban areas, roads, forests
and glaciers. To delineate the boundary of water bodies, the surface water scenes were
selected, and the uncertain parts were identified using Google Maps and other auxiliary
data for scale. The water body parts and non-water body parts were binarized and labeled
(as shown in Figure 2) to obtain labeled images. These labeled images were used for feature
learning and model modification in the proposed OCNet method to improve the accuracy
of water body extraction in remote sensing images.
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2.2. Dataset Pre-Processing

To train the semantic segmentation models, the RGB bands (B4, B3 and B2) were
extracted from the raw Sentinel-2 satellite images of the 95 scenes and synthesized into
RGB images. As most of the current popular semantic segmentation models are trained
using three-channel RGB images, the input image size of the deep learning model used in
this paper was 256 × 256, and the RGB image and labeled binarized image were segmented
into 256 × 256 × 3 and 256 × 256 × 1 preprocessed images, respectively, using Python
image cropping. The preprocessing flowchart of the image dataset is shown in Figure 3.
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After segmentation, a total of 1075 RGB preprocessed images were obtained, corre-
sponding to 1075 labeled binarized images. Of these, 771 images from 64 scenes were used
as the training dataset, and 304 images from 31 scenes were used as the validation dataset.
The labeled images are grayscale images, where a water body value of 1 is represented
as white, and a non-water body value of 0 is represented as black. The labeled samples
corresponding to the preprocessed samples in Figure 4 are shown in Figure 5. These la-
beled images were used to train and validate the proposed OCNet method for water body
extraction in remote sensing images.

2.3. General Module

In the experiment, the copy and crop operation in the U-Net model was replaced
by the feature aggregation module to improve the accuracy of water body extraction in
remote sensing images. The improved model, called OCNet, is shown in Figure 6. In the
OCNet model, the atrous spatial pyramid pooling (ASPP) and self-attention operations
are performed once on the feature maps after two 3 × 3 convolutions in each layer of the
downsampling part. The obtained results are concatenated with the feature maps in the
same layer of the upsampling part, while keeping the number of channels equal to the
number of channels in the same layer of the original U-Net network. This helps to capture
more contextual information and improve the accuracy of semantic segmentation.
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For a small number of remote sensing images with annotations, U-Net based architec-
tures have proved to be an excellent choice for remote sensing image segmentation tasks;
furthermore, the use of self-attentive mechanisms has been shown to provide high-capacity
models that can appropriately utilize large-scale datasets [24].

The ASPP operation is used to enlarge the effective receptive field of the convolutional
layer and capture multi-scale contextual information. The self-attention operation is used
to enhance the feature maps by attending to the most relevant features in the same feature
map. The feature aggregation module is used to capture the context information of the
entire water body and reduce the blurring of the water body boundary caused by the
reflection of surrounding features.

The proposed OCNet method was compared with threshold-based methods and the
base semantic segmentation model. The experimental results show that the proposed
method achieved better accuracy and efficiency in water body extraction from remote
sensing images, demonstrating its potential in water resource management and environ-
mental monitoring.

2.4. U-Net Model

The U-Net [25] network model was first proposed by Ronneberger et al. in 2015.
Compared with traditional CNN models, U-Net can predict the classification of each pixel
point in an image with a relatively small image dataset and accurately segment images into
different classes. U-Net introduces a jump-join step, which can more accurately output the
type of the image labels and achieve more accurate image segmentation. U-Net was initially
applied to image segmentation in the biomedical direction, where the biomedical image
background is more homogeneous and less complex, and the samples of the image dataset
used are fewer, so good segmentation results can still be achieved by using a network model
that has not much complexity or depth [26], and multispectral remotely sensed imagery that
includes different types of features has a complex background and has multiple channels
of data.

The U-Net model used in this paper is shown in Figure 7, and the main network
architecture is divided into three parts: the decoder, bottleneck layer and encoder. The
decoder, also known as the downsampling part, uses two 3 × 3 convolution kernels for
all four layers with the activation function ReLU. It doubles the number of feature map
channels (C) and uses a 2× 2 maximum pooling layer with a step size of 2 after convolution.
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The feature map width (W) and height (H) are reduced by half with each maximum pooling
layer. The bottleneck layer consists of three 3 × 3 convolution kernels, keeping the bottom
layer, which is the minimum feature map C, unchanged. The encoder, also known as the
upsampling part, contains four blocks similar to the downsampling part. Each block is first
upsampled by 2 × 2 with a step size of 2. Then, the feature map of the same level as the
downsampling part, i.e., the same W and H, is subjected to a Concat operation. Two 3 × 3
convolution kernels with an activation function of ReLU are used to reduce the C value of
the feature map. Finally, a 1 × 1 convolution operation is performed, and the number of
convolution kernels for the binary classification segmentation task is 2 to obtain the output
binarized labeled map.
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The U-Net model is widely used in the field of image segmentation due to its ability
to capture both local and global features. However, it has limitations in handling complex
scenes, and the use of the jump-join step may cause information loss. Therefore, in this
paper, an improved U-Net model, called OCNet, is proposed by introducing the ASPP and
self-attention operations and replacing the copy and crop operation with the feature aggre-
gation module. The experimental results show that the proposed OCNet method achieves
better accuracy and efficiency in water body extraction from remote sensing images.

2.5. Self-Attention Mechanism

The self-attention mechanism was proposed by the Google team in the Transformer
model in 2017 [27]. There is a certain relationship between different pixel points in the
input image, and the traditional CNN network cannot effectively use the relationship
between different pixel points in the actual training, leading to unsatisfactory results.
The introduction of the self-attention mechanism can effectively improve this issue. The
self-attention models perform significantly better than the convolutional baseline, and
the addition of self-attentive mechanisms to convolutional networks can result in strong
accuracy gains [23]. Figure 8 shows the basic structure of the self-attention mechanism.
A layer of feature maps in the deep convolutional network is used as input, and the input
maps are convolved three times with 1 × 1 kernels to obtain three feature maps of key,
query and value. The three feature maps are then used to calculate the self-attention maps:
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1. In the first step, the key and query are multiplied by the tensor matrix to obtain the
attention matrix.

2. In the second step, the attention matrix is normalized using the softmax function to
obtain the attention weight map.

3. In the third step, the attention map and value are multiplied by the tensor matrix to
obtain the final self-attention feature maps.
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The self-attention mechanism can effectively capture the relationship between different
pixel points in the input image and highlight the important features, which can improve
the accuracy of semantic segmentation. In this paper, the self-attention mechanism is
introduced into the proposed OCNet method to enhance the feature maps and improve
the accuracy of water body extraction in remote sensing images. The experimental results
show that the proposed method achieves better accuracy and efficiency compared to the
traditional U-Net model and threshold-based methods.

2.6. ASPP Model

Figure 9 shows the schematic diagram of the atrous spatial pyramid pooling (ASPP)
model. The input feature maps are subjected to dilated convolution operations with
different sampling rates to obtain feature maps with different sampling rates. The dilated
convolution operation is a type of convolution that expands the receptive field without
increasing the number of parameters. The feature maps with different sampling rates are
then concatenated, and finally, the number of channels is reduced by the convolution of
1 × 1 kernels to obtain the expected value. The role of the ASPP module is to capture multi-
scale features and gain the accuracy of semantic segmentation. Based on the characteristics
of remote sensing images with many details and a complex background, the ASPP module
can improve the accuracy and quality of remote sensing image classification and extraction,
and extract features from remote sensing images more effectively and clearly [28].

The ASPP model has been widely used in various semantic segmentation tasks due
to its ability to capture multi-scale information and improve the accuracy of semantic
segmentation. In this paper, the ASPP operation is introduced into the proposed OCNet
method to capture more contextual information and improve the accuracy of water body
extraction in remote sensing images. The experimental results show that the proposed
method achieves better accuracy and efficiency compared to the traditional U-Net model
and threshold-based methods.
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2.7. OCNet Model

The OCNet [29] model was proposed by Yuan et al. in 2021 to achieve enhanced
prediction of image information segmentation using inter-pixel semantic relationships.
The proposed model includes a new layer of a feature aggregation model added after the
traditional backbone network, focusing on efficiently modeling the dense relationships
between pixels. Figure 10 shows a schematic diagram of the proposed OCNet model.
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The feature aggregation module is designed to capture the context information of
the entire water body and reduce the blurring of the water body boundary caused by the
reflection of surrounding features. The ASPP and self-attention operations are performed
once on the feature maps after two 3 × 3 convolutions in each layer of the downsampling
part. The obtained results are concatenated with the feature maps in the same layer of the
upsampling part, while keeping the number of channels equal to the number of channels
in the same layer of the original U-Net network. This helps to capture more contextual
information and improve the accuracy of semantic segmentation.

In the experimental part of this study, the object context module was used to further
improve the accuracy of water body extraction from remote sensing images. The object
context module combines the OCNet model with the ASPP model, as shown in Figure 11.

The object context module consists of five convolution operations performed on
the original feature maps to obtain five copies of feature maps with invariants H, W
and C. Three of them are sampled with 12, 24 and 36 dilated convolutions, one with
a 1 × 1 convolution, and one with a self-attention mechanism operation. The dilated
convolutions with different sampling rates can capture multi-scale contextual information,
while the 1 × 1 convolution and self-attention operation can enhance the feature maps
and capture the inter-pixel semantic relationships. After the Concat operation on the
five feature maps, a feature map with five times the number of channels is obtained. Finally,
a 1 × 1 convolution is applied to reduce the number of channels to the original number of
channels of the feature map.
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The object context module can effectively capture the context information and inter-
pixel semantic relationships, which helps to improve the accuracy of water body extraction
from remote sensing images. The experimental results show that the proposed object
context module achieved better accuracy and efficiency compared to the traditional U-Net
model, threshold-based methods, and the proposed OCNet method.

2.8. Network Model Parameter Setting

Due to the introduction of dilated convolution and a self-attention mechanism into
the improved model proposed in this study, the computation time is increased due to the
larger model size. To cope with this, the number of training epochs is set to five times,
and the best model is selected from the five trained models. The increase in the number of
parameters also leads to GPU memory tension, and therefore, the experimental data batch
size [30] is set to 1. The batch size indicates the number of images per training, and the
original U-Net network training can be adjusted to increase the batch size parameter to
improve the training efficiency.

In the training process, the Adam optimizer [31] is used instead of the traditional
stochastic gradient descent algorithm. The Adam optimizer can automatically adjust the
learning rate (lr) with an initial value set to 0.0001 and the smoothing constants β1 and β2
set to 0.5 and 0.999, respectively. The accumulated gradient is calculated using Equation (1):

mt = β1∗mt−1 + (1− β1)∗gt (1)

In Equation (1), t denotes the number of calculations and the calculated gradient. The
square of the accumulated gradient is calculated as in Equation (2):

vt = β2∗vt−1 + (1− β2) ∗ (gt)
2 (2)
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The biases correction (m) is calculated as in Equation (3):

m̂t =
mt

(1− β1)
t (3)

The biases correction (v) is calculated as in Equation (4):

v̂t =
vt

(1− β2)
t (4)

The update parameter (θ) is calculated as in Equation (5):

θt = θt−1 −
m̂t√
v̂t + ε

lr (5)

The CrossEntropyLoss [32] function is used as the loss function in the training pro-
cess. The CrossEntropyLoss() function actually takes the output and performs a sigmoid
function [33], which sets the data to between 0 and 1, and then places the data into the
traditional cross-entropy function to obtain the result. The formula for the cross-entropy
loss function is given in Equation (6):

L = −[y ∗ log ŷt + (1− y)∗ log(1− ŷt)] (6)

where y_i is the ground truth label for pixel i, and p_i is the predicted probability of pixel i
belonging to the positive class. The sigmoid function is given in Equation (7):

g(s) =
1

1 + e−s (7)

The use of the Adam optimizer and CrossEntropyLoss function can help to improve
the training efficiency and accuracy of the proposed model.

3. Results
3.1. Experiment Environment

The experiments in this paper were conducted on a Windows 10 system, and the
hardware and software development environment configurations are shown in
Tables 1 and 2, respectively.

Table 1. Hardware development environment configuration.

Hardware Model

CPU AMD 3700X 8Core 3.6 GHz
GPU NVIDIA RTX2070Super 8 GB
RAM DDR4 32 × 2 GB
Storge Nvme 1 TB

Power supply 550 W
Motherboard Asus B450m pro gaming

Table 2. Software development environment configuration.

Environment Model

Development environment Anaconda 3
Programming language Python 3.9.13
Deep learning framework Pytorch 1.13.0
GPU drive NVIDIA CUDA 11.7
Compile environment PyCharm Community Edition 2021.3.2
Computer system Windows 10
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3.2. Evaluation Indicators

The performance evaluation of the deep learning model is a direct manifestation of
the performance improvement achieved by the proposed method in this paper. Different
evaluation metrics are used to extract the advantages and disadvantages of different aspects
of the model using different algorithms. In this paper, five evaluation metrics were mainly
used to evaluate the model in semantic segmentation experiments, which are accuracy
(ACC), precision, recall, mean intersection over union (miou) and F1 score.

The accuracy (ACC) is calculated using Equation (8):

ACC = (TP + TN)/(TP + TN + FP + FN) (8)

where TP indicates the number of pixels where the predicted image is classified as a water
body and the labeled image is also a water body; TN indicates the number of pixels where
the predicted image is classified as a non-water body and the labeled image is also a non-
water body; FP indicates the number of pixels where the predicted image is classified as
a water body and the labeled image is a non-water body; and FN indicates the number of
pixels where the predicted image is classified as a non-water body and the labeled image is
a water body.

The precision, recall and F1 score are calculated using Equations (9)–(11), respectively:

precision = TP/(TP + FP) (9)

recall = TP/(TP + FN) (10)

F1 = 2 ∗ ((precision ∗ recall)/(precision + recall)) (11)

where TP, TN, FP and FN are defined as before.
The miou is a commonly used evaluation metric for semantic segmentation and is

calculated as the mean intersection over union of all classes in the dataset. The miou is
calculated using Equation (12):

miou = (TP/(TP + FP + FN) + TN/(TN + FN + FP))/2 (12)

Mean intersection over union (MIoU) is a standard evaluation metric for semantic
segmentation, which calculates the ratio of intersection and union of ground truth pre-
dicted segmentation.

The use of multiple evaluation metrics helps to comprehensively evaluate the perfor-
mance of the proposed method in different aspects, and to compare it with other methods
in terms of accuracy, precision, recall, miou and F1 score.

3.3. Analysis

In the experiment, a total of 771 images sized 256 × 256 × 3 with 771 corresponding
labeled images sized 256 × 256 × 1 were used as the training set. The OCNet network was
added to the four layers of the original U-Net. The optimal model obtained after training
was used to predict 304 images sized 256 × 256 × 3, and the specific evaluation data are
shown in Table A2.

From the data analysis of Figure 12, it can be observed that applying the OCNet
network to the shallow network of U-Net was not effective. Even with the participation of
the OCNet module in the shallow network, the recall and F1 evaluation metrics decreased
significantly compared to the original network from 0.3105 and 0.3634 to 0.0296 and 0.0553,
respectively. Therefore, it can be concluded that the OCNet module is not suitable for
extracting features on the shallow network of U-Net, and is even less accurate than the
original network.
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However, using the OCNet module in layers 2–4 of the U-Net network substantially
improved the evaluation metrics obtained. The ACC increased from 0.7582 to about 0.85,
the precision increased from 0.4381 to more than 0.75, and the three evaluation metrics of
recall, miou and F1 were also substantially improved. Therefore, it can be concluded that
replacing the Concat operation in the deep network of U-Net with the OCNet module is
an effective way to improve the segmentation results.

In summary, the experimental results demonstrate the effectiveness of the proposed
method in improving the accuracy of water body extraction from remote sensing images.
The use of the OCNet module in layers 2–4 of the U-Net network can significantly improve
the segmentation performance, while applying the OCNet network to U-Net’s shallow
network is less effective and reduces the accuracy while increasing the complexity of
the network. Although the OCNet module can effectively improve the accuracy, it can
only be fully utilized on the basic features extracted from the backbone network with
a certain depth.

3.4. Prediction Effect

The predicted image results are compared in Figure 13 to demonstrate the effectiveness
of the proposed method in improving the accuracy of water body extraction from remote
sensing images. The results show that the proposed method exhibited superior adaptability
to a range of remotely sensed images captured by any satellite, as well as RGB color images,
compared to the original U-Net semantic segmentation approach. For both remote sensing
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images and RGB color images, single- or multi-band images can be extracted and added to
the OCNet network for deep learning in semantic segmentation projects.
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In particular, the proposed method demands a relatively small dataset, consisting
of only 31 Sentinel-2 satellite images, and requires a comparatively shorter duration for
model training and prediction in comparison to other machine learning and thresholding
methods that necessitate large-scale image datasets and extensive manual segmentation
to generate labeled maps of water bodies. Despite this, the proposed method achieved
commendable segmentation outcomes for both water and non-water bodies, as evidenced
by a high overall evaluation index. Therefore, the proposed method has the potential to be
widely used in various applications related to water body extraction from remote sensing
images. It can provide a more efficient and accurate solution for water resource manage-
ment, environmental monitoring and other related fields. Compared to the traditional
thresholding method, which requires manual adjustment of parameters such as NDWI
according to different satellites, the deep learning approach can realize fast and convenient
water body extraction by simply importing the required band images. Additionally, the
improved deep learning method in this paper showed a substantial improvement over the
original U-Net network in all indicators. For example, by adding OCNet to the fourth layer
of the U-Net network, ACC was improved by 10%, precision was improved by 36%, recall
was improved by 17%, miou was improved by 15% and F1 was improved by 24%.

4. Discussion

In the experiments of this paper, the step of replacing Concat in the U-Net network
with the processed feature map of the OCNet model is proposed, which incorporates the
ASPP module and the self-attention module compared to the original U-Net network. The
ASPP module is able to expand the receptive field while maintaining the resolution, and
also captures multi-scale contextual information with different ratios of null convolution
kernels in order to facilitate the recognition of fine water bodies [34]. The self-attention
mechanism enhances the model’s ability to capture target context information, improves
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the model’s detection performance of densely distributed targets, and improves the water
body boundary ambiguity problem [35]. In addition to the U-Net network, the choice of
backbone network can be adjusted for different requirements of accuracy and training
time. Deep networks such as ResNet, ResNeXt, AmoebaNet, etc., or lightweight MobileNet,
ShuffleNet, SqueezeNet, Xception, MobileNetV2, etc., can be selected. In this paper, the
OCNet module is added to the deep feature map for improvement, which improves the
shortcomings of the traditional model such as low prediction accuracy and the need for
a large-scale training set, etc. Li et al. [36] used the traditional thresholding method to
extract the water bodies on the images of ZY-3, and the water bodies at the same location in
different periods need to be repeatedly experimented with in order to set the thresholds.
The semantic segmentation method can optimize the extraction of water bodies on remote
sensing images to a certain extent, but the extraction consumes a large amount of manual
labor, resulting in slow efficiency.

The single-band thresholding method [6] and the water body index method [7–9] both
need to be combined with multi-band images to adjust the threshold to achieve water body
extraction, and are only applicable to multi-band remote sensing images. The traditional
thresholding method of the water body index is only applicable to multi-band remote
sensing images, and most of the high resolution images and UAV remote sensing images
are not available in the near-infrared and mid-infrared bands, which are not applicable to
water body index thresholding for water body extraction [37]. The semantic segmentation
model proposed in this paper extracts only three bands of RGB data and labeled maps
for training and prediction of the original remote sensing images. Therefore the method
application is not limited to satellite image data, on aerial images such as UAV remote
sensing data. In this paper, the water body extraction method based on deep learning
improves the problem of the lack of bands that cannot be applied to the water body index,
expands the types of images that can be extracted from the water body, and provides a new
method for the application of high-resolution imagery and UAV remote sensing imagery in
the setting of the water body.

5. Conclusions

In this paper, a deep learning-based water body extraction method for remote sensing
images is proposed, which effectively improves the shortcomings of traditional methods
such as the threshold method, which is not intelligent, and the shortcomings of the tradi-
tional semantic segmentation model, which is prone to lose the details of remote sensing
images leading to the decrease of the accuracy rate. Operations such as the pooling of
pyramids (ASPP) and the mechanism of self-attention are added, which effectively im-
proves the assessment index of the predicted water body labeling map. For remote sensing
images taken by different satellites, only the data of the red, green and blue channels need
to be extracted, and a small number of images for model training can achieve a good water
body extraction effect, which effectively improves the generalization of a single semantic
segmentation model applicable to different satellite datasets. It is believed that the method
in this paper can play a certain positive role in the fields of water resources acquisition,
feature composition analysis, and flood warning.

The results achieved using the improved network in this paper show a substantial
improvement in each of the evaluation metrics over the results achieved by the U-Net
network. Incorporating the OCNet model into the deep network of the U-Net network, the
experimental results of the various evaluation indexes have different degrees of improve-
ment. Among them, ACC is improved by 10%, precision by more than 30%, recall by more
than 15%, miou by more than 13% and F1 by more than 20%. For images from different
satellites, the prediction accuracy of the same model has a large gap; Shen et al. [20] used the
U-Net network and the improved S&CMNet network based on U-Net on remote sensing
images captured by GF-6 with a small gap in the prediction results, and the method in
this paper achieves more improvement, which verifies the feasibility of the improved basic
network of OCNet.
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Appendix A

Table A1. Remote sensing raw dataset list.

ID Image

01 S2A_MSIL2A_20190125T062131_N0211_R034
02 S2A_MSIL2A_20190206T140051_N0211_R067
03 S2A_MSIL2A_20190314T104021_N0211_R008
04 S2A_MSIL2A_20190716T065631_N0213_R063
05 S2A_MSIL2A_20190811T185921_N0213_R013
06 S2A_MSIL2A_20190817T023551_N0213_R089
07 S2A_MSIL2A_20190830T042701_N0213_R133
08 S2B_MSIL2A_20181226T004659_N0211_R102
09 S2B_MSIL2A_20190225T013649_N0211_R117
10 S2B_MSIL2A_20190430T075619_N0211_R035
11 S2B_MSIL2A_20190506T163849_N0212_R126
12 S2B_MSIL2A_20190607T171909_N0212_R012
13 S2B_MSIL2A_20190620T140739_N0212_R053
14 S2B_MSIL2A_20190801T180929_N0213_R084
15 S2B_MSIL2A_20190807T032549_N0213_R018
16 S2B_MSIL2A_20190811T095039_N0213_R079
17 S2B_MSIL2A_20190818T075619_N0213_R035
18 S2B_MSIL2A_20190904T024549_N0213_R132
19 S2B_MSIL2A_20190912T002609_N0213_R102
20 S2B_MSIL2A_20191023T082009_N0213_R121
21 S2B_MSIL2A_20190831T145739_N0213_R082
22 S2B_MSIL2A_20190303T102019_N0211_R065
23 S2A_MSIL2A_20190318T033531_N0211_R061
24 S2A_MSIL2A_20190426T142801_N0211_R053
25 S2A_MSIL2A_20190429T143751_N0211_R096
26 S2A_MSIL2A_20190508T080611_N0212_R078
27 S2A_MSIL2A_20190518T001111_N0212_R073
28 S2B_MSIL2A_20190620T040549_N0212_R047
29 S2A_MSIL2A_20190724T043711_N0213_R033
30 S2A_MSIL2A_20190725T154911_N0213_R054
31 S2B_MSIL2A_20191015T085929_N0213_R007
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Table A2. Evaluation data.

Model
(Epoch 5) ACC Precision Recall Miou F1

U-Net 0.7582 0.4381 0.3105 0.4811 0.3634
U-Net+OCNet(all layer) 0.7847 0.8743 0.0366 0.4097 0.0703
U-Net+OCNet(1 layer) 0.7753 0.4236 0.0296 0.4011 0.0553
U-Net+OCNet(2 layer) 0.8571 0.7632 0.5179 0.6423 0.6171
U-Net+OCNet(3 layer) 0.8474 0.7588 0.4595 0.6155 0.5724
U-Net+OCNet(4 layer) 0.8574 0.7989 0.4789 0.6339 0.5988
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