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Abstract: Groundwater arsenic (As) still poses a massive public health threat, especially in South Asia,
including Bangladesh. The arsenic removal efficiency of various technologies may be strongly depen-
dent on groundwater composition. Previously, others have reported that the molar ratio [Fe]−1.8[P]

[As] , in
particular, can usefully predict the potential efficiency of groundwater As removal by widespread
sorption/co-precipitation-based remediation systems. Here, we innovatively extended the applica-
tion of artificial intelligence (AI) machine learning models to predict the geospatial distribution of
[Fe]−1.8[P]

[As] in Bangladesh groundwaters utilizing our analogous AI predictions for groundwater As, Fe,

and P. A comparison between the predicted geospatial distribution of groundwater As and [Fe]−1.8[P]
[As]

distinguished high groundwater As areas where (a) sorption/co-precipitation remediation technolo-
gies would have the potential to be highly effective in removing As without Fe amendment, as well
as from those areas where (b) amendment with Fe (e.g., zero-valent Fe) would be required to promote
efficient As removal. The 1 km2 scale of the prediction maps provided a 100-fold improvement in the
granularity of previous district-scale non-AI models. AI approaches have the potential to contribute
to informing the appropriate selection and amendment of appropriate groundwater contamination
remediation strategies where their effectiveness depends on local groundwater chemistry.

Keywords: groundwater; arsenic; remediation; machine learning

1. Introduction

Groundwater is a major resource used to meet drinking, agricultural, and industrial
water supply demands. The utilization of groundwater for both drinking and irrigation
has increased substantially over recent decades [1]. In Bangladesh, more than 12 million
groundwater tubewells are used for drinking water, especially in rural districts [2]. Ground-
water with an arsenic (As) concentration exceeding the World Health Organization (WHO)
drinking water provisional guide value of 10 µg/L is widely considered high As ground-
water [3]. High groundwater As poses a serious threat to public health globally [4,5], and
Bangladesh is one of the worst-affected countries, with 57% of the population potentially
having been exposed to high groundwater As [6,7]. The long-term consumption of high
As groundwater may lead to skin cancers, internal (e.g., liver, bladder, or lung) cancers,
cardiovascular diseases, and other detrimental health outcomes [8–10].

The remediation of groundwater As is an important way to reduce human exposure to
As and, in turn, contribute to protecting public health in As-impacted areas. Commonly used
remediation strategies include drinking water source switching, (co-)precipitation, adsorp-
tion/ion exchange, membrane filtration, oxidation, and bioremediation [11–16]. Although
numerous technologies exist for remediating groundwater, the appropriate selection and
management of optimal groundwater remediation strategies is still very challenging, partly
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due to the intersectionality of technical (including the influence of source water chemistry),
socio-economic, regulatory, and other implementation factors [17–19].

The role of source water chemistry and, in particular, the ratios of Fe/As and Fe/P
in the removal efficiency of As have been reported previously [6,20,21]. In groundwa-
ter containing low dissolved oxygen (DO) and Eh, as has commonly been observed in
Bangladesh, Fe and As exist predominantly in their reduced states as Fe(II) and As(III),
respectively [21,22]. Most remediation methods involve pumping groundwater to the
surface and/or to an interim storage location where the groundwater is then exposed to
the atmosphere and, hence, can undergo aeration [20], increasing DO to approximately
5–6 mg/L [21], and thus, these processes essentially represent a pre-oxidation stage [20,23].

An increase in DO causes soluble Fe(II) to be converted to insoluble ferric iron,
which hydrolyses to form Fe(III) hydroxide flocs, hydrous ferric oxides (HFO), Fe(OH)3,
Fe(HCO3)3, and/or a mixture of iron (oxy)hydroxide phases [20,24,25]. Fe(II) oxidation
can also result in the simultaneous oxidation of As(III) to As(V) [22], which can also occur
during filtration [26] via multiple reaction pathways [21,26,27]. Because As(V) is often less
mobile and more favourably sorbed than As(III) [20,23,28] and high specific surface area
Fe(III) phases have high sorption potentials, external Fe addition can enhance As removal
by facilitating sorption. As removal takes place, in part, by the formation of inner-sphere
surface complexes, adsorption onto precipitated Fe hydroxides and co-precipitation, with
soluble As incorporated into Fe hydroxide phases by inclusion and occlusion [23,28,29].
Larger flocs are easier to remove, with the As sorbed onto or included/occluded within the
Fe(III) phases also being removed [30,31]. The presence of Fe(III) phases increases the num-
ber of adsorption sites and the sorption capacity potentially available for As removal [20,22].
Relevant reactions have been reported in detail elsewhere [22,32,33].

However, several studies have shown that phosphate (P) also plays a key role in
determining the efficiency of As removal, mainly by competitive sorption at surface
sites [23,32,34–36], affecting media sorption capacity [28]. Equations governing competi-
tive sorption obtained from lab and modelling studies have been reported in detail else-
where [22,27,33,37,38]. In addition to its role in competitive sorption, P in inlet water can
also form Fe(III) phosphates and ferrous phases during Fe(II) oxidation [30,31].

Equilibrium constants for arsenate and phosphate adsorption reactions are broadly
comparable, as can be seen from reported log K values for arsenate (Equations (1) and (3))
and phosphate (Equations (2) and (4)), where log K = 16.6, 16.9, 23.2, and 23.4, respec-
tively, for adsorption as the monodentate (Equations (1) and (2)) and bidentate binuclear
(Equations (3) and (4)) surface complexes [33] (see also [22] and [39] for further reactions).

≡FeOH + AsO4
3− + H+ = ≡FeOAsO3

2− + H2O log K = 16.6, (1)

≡FeOH + PO4
3− + H+ = ≡FeOPO3

2− + H2O log K = 16.9, (2)

≡(FeOH)2 + AsO4
3− + 2H+ = ≡(FeO)2AsO2

− + 2H2O log K = 23.2, and (3)

≡(FeOH)2 + PO4
3− + 2H+ = ≡(FeO)2PO2

− + 2H2O log K = 23.4. (4)

Although arsenic and phosphate form similar surface complexes [40], the surface com-
plexation of arsenate decreases proportionately with phosphate concentrations [32] due to
phosphate using more surface sites [33] and having preferential sorption [41]. Competi-
tive sorption occurs because of the structural similarity between arsenate and phosphate as
tetrahedral oxyanions [36,42], and it has been demonstrated using X-ray absorption spec-
troscopy (XAS) [31,43,44], although phosphate competition has not been observed in FeS-As
systems [43,45]. The similar affinity for arsenate and phosphate on Fe(III) oxide surfaces
could be due to the O---O distances in arsenate and phosphate tetrahedra (~2.7 and 2.5 Å,
respectively), which are comparable to the edge lengths of Fe---O octahedra [44]. Together,
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these can explain the competitive nature of these ions and why a surplus of Fe is required to
remove groundwater arsenic if too much phosphate is present.

Hug et al. (2008) [6] reported that a molar ratio of 1.5–2.0 Fe per P was needed to
remove phosphate at a neutral pH. The calculations by Fytianos et al. (1998) [37] on the
theoretical stoichiometric ratio of Fe/P required to describe the excess Fe required to remove
the P also present in the system arrived at values of ~1.8. Further, a study conducted using
extended X-ray absorption fine structure (EXAFS) spectroscopy also found that most of the
phosphate present was incorporated into the freshly formed Fe(III) precipitates for P/Fe
ratios of less than ~0.55 [46].

To summarise, the concentrations of all of As, Fe, and P impact As removal efficiency
due to the mechanistic associations of Fe with sorption capacity and P with competitive
sorption. The removal of As is limited if insufficient Fe or too-high P is present in the
source water, as is frequently encountered in Bangladesh [6]. In such situations, the external
addition of Fe is found to greatly enhance As removal efficiency [21,24], and this could be
of help in Bangladesh [6]. More specifically, Hug et al. (2008) [6] postulated that the molar
ratio [Fe]−1.8[P]

[As] could be used to predict whether or not adsorption/co-precipitation-based
groundwater As removal technologies are likely to be effective. Hug et al. (2008) [6] used
this ratio to predict the percentage of wells in Bangladesh, Vietnam, and Cambodia for
which As removal by these technologies would be effective or “OK”, and they further
used this ratio as a proxy to identify districts where the addition of Fe (for example, in the
form of zero-valent Fe, such as nails) is likely to be beneficial for improving the potential
efficiency of sorption/co-precipitation-based As remediation plants.

Appropriate groundwater As remediation selection at a large scale (e.g., at the regional
or country scale, such as in Bangladesh) is very challenging, particularly if there is a paucity
of data available related to the presence or distribution of groundwater contaminants and
other relevant solutes. Extensive groundwater sampling is resource-intensive, and in many
areas, the number of systematic, representative studies of groundwater chemistry [2,47]
are limited and may only cover a small fraction of the total number of wells being used as
sources for drinking water.

Further to this, various research groups have developed artificial intelligence (AI)
geospatial machine learning models to map high As groundwater hazards both glob-
ally [48,49] and in various countries/regions, including the United States [50,51], Southeast
Asia [52], Cambodia [53], Pakistan [54], India [55–57], Uruguay [58], Bangladesh [59],
China [60], Burkino Faso [61], Varanasi (Uttar Pradesh state in India) [62], Gujarat (In-
dia) [63], and Purulia (a West Bengal state in India) [64]. The predicted distribution of
groundwater As can plausibly usefully inform actions such as switching drinking wa-
ter wells to lower As areas and/or installing groundwater remediation/treatment facil-
ities. However, the prediction models developed to date have not considered how the
(co-)distribution of other natural source water chemicals (e.g., Fe and P) may affect the
efficiency of the remediation technologies.

The objective of this study was to illustrate how AI modelling can be innovatively
extended to contribute to informing appropriate As remediation selection in Bangladesh
based on the predicted distributions of source-water chemistry ( As, Fe, and P) and the source
chemistry As-removal relationships (cf. molar ratio [Fe]−1.8[P]

[As] identified in Bihar and elsewhere
(e.g. Bangladesh, Vietnam, and Cambodia)) [6,19,65]. Herein, we report the generation of
new machine learning models for predicting the distribution of the groundwater molar ratio
[Fe]−1.8[P]

[As] , based, in part, on single-parameter models for the distribution of As, Fe, and
P in Bangladesh, and we outline the implications on groundwater resource management,
for example, by informing where additional Fe may be required to facilitate increased As
remediation efficiency in Bangladesh. As such, the study objectives were related to water
resource management and water quality, both of which are research areas encompassed by the
stated scope of “Water”, whilst the resultant demonstrated improvement in the granularity of
the predictive model was a key important result of this study.
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2. Materials and Methods
2.1. Study Area and Data Acquisition of the Source Water Chemistry

The modelled study area was Bangladesh, where As contamination in groundwater
has been defined as a major public health issue since 1993 [66–69]. Secondary data for
the concentrations of As, Fe, and P (Figure S1) in the groundwater in Bangladesh were
obtained from the DPHE/BGS National Hydrochemical Survey [2], which was a systematic
survey of 61 of the 64 districts in Bangladesh and included 3534 borehole/tubewell samples.
The DPHE/BGS (2001) survey reported concentrations of 20 chemical elements along
with location information (i.e., longitude, latitude, and district) and depths. The reported
detection limitations for As, Fe, and P ranged from 0.5 to 0.6 µg/L, 0.005 to 0.006 mg/L,
and 0.1 to 0.2 mg/L, respectively [2].

In this study, the secondary data for As, Fe, and P were used to calculate the molar
ratio [Fe]−1.8[P]

[As] , and this molar ratio was used to classify the comparatively “high” or “low”
levels of predicted potential groundwater As remediation efficiency based on the source
water As, Fe, and P levels across Bangladesh. Then, the continuous concentrations of As,
Fe, and P and the molar ratio [Fe]−1.8[P]

[As] were converted into binary variables (1 or 0) by
setting concentration thresholds as follows: As: 10 µg/L (WHO guideline [3]) or 50 µg/L
(Bangladesh drinking water standard [70]); Fe: 0.3 mg/L (EPA secondary standard [71]);
P: 0.2 mg/L (the 50% balance between 0 and 1 in the training dataset); and the molar
ratio [Fe]−1.8[P]

[As] : 40 (a value identified by Hug et al. (2008) [6] as the delineation between
groundwaters for which adsorption/co-precipitation removal technologies are likely or
not likely to be effective). The binary target variable was suitable to be used in the machine
learning modelling of the spatial distribution prediction. The concentration thresholds of
As, Fe, and P and the molar ratio [Fe]−1.8[P]

[As] used in the modelling were higher than (or
equal to) the detection limit ranges in the DPHE/BGS National Hydrochemical Survey,
and thus, they did not impact the accuracy of the models created in this study, nor did
they require further dataset treatment to quantify non-detects. Therefore, a dependent
variable dataset composed of binary As, Fe, and P concentrations and the binary molar
ratio [Fe]−1.8[P]

[As] was completed. In this secondary concentration dataset, four data points
for the As concentrations were missing, but the impacts of these four missing data points
could be ignored as the random forest models used in this study could impute the missing
data in the dataset.

2.2. Predictor Variables

Based on published and established relationships between environmental parameters
and As in groundwater [54,60,63,65,72–79], in total, 35 different spatially continuous envi-
ronmental parameters were selected to be used as the predictor variables in the machine
learning modelling (Table S1) (see also [59,80–87]). The predictor variables were related
largely to climate, soil properties, topography, and lithology. A 1 km × 1 km gridded
predictor dataset for the whole country was created.

2.3. Prediction Modelling

Machine learning (random forest) was implemented using the R programming lan-
guage (R 4.2.0) to predict the country-scale distribution of As, Fe, and P and the molar ratio
[Fe]−1.8[P]

[As] in Bangladesh at a resolution of 1 km2. Random forest generates an ensemble
of decision trees, and the basic classifier within random forest is a decision-tree-without-
pruning process. Each decision tree outputs a classification prediction result. The prediction
result with the most votes is defined as the final prediction result of the random forest.

For the actual models, the full dataset was randomly split into training (80%) and
testing (20%) datasets, achieved by stratified random sampling to maintain the same balance
between low and high cases (0 or 1) of the binary target variable (e.g., As, Fe, P, and the
molar ratio [Fe]−1.8[P]

[As] ). The training dataset was used to develop the random forest models,
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and the testing dataset was used for cross-validation to determine the accuracy of the
machine learning models in the prediction. In the modelling of distribution of As, Fe, P, and
the molar ratio [Fe]−1.8[P]

[As] , the number of predictors to be used at each split of the decision
trees in the random forest model were selected according to the lowest out-of-bag (OOB)
error rate by assessing all the values between 1 and 35 (the total number of environmental
predictors selected in this study). The number of decision trees in the random forest was
initially set at 1001, and this was increased (e.g., to 5001 or 10,001) if the number of decision
trees was insufficient for guaranteeing the stability of the accuracy of the modelling.

The accuracy of the random forest models was assessed by the area under the ROC
(receiver–operator characteristic) curve (AUC). AUC is used to indicate the prediction
performance of modelling [88], and an AUC of 0.5 corresponds to a perfectly random
model while an AUC of 1.0 corresponds to a perfectly predictive model. The importance of
the selected 35 predictors in the modelling was quantitatively estimated by the decreases
in both the accuracy and the Gini node impurity. Decreases in both the mean values in
accuracy and in the Gini node impurity were normalised by their largest values, respectively.
The environmental predictors with negative values for the decreases in both the accuracy
and the Gini node impurity were removed from the models.

The random forest method was used in this study as it can (i) decrease overfitting
in decision tree models and, hence, improve model accuracy [89,90]; (ii) handle both
categorical and continuous independent variables; and (iii) impute missing data in a
dataset. On the other hand, random forest modelling can generate a large number of
decision trees, requiring greater computational power and data resources, which were
nevertheless available in this study. Tan et al. (2020) [59] verified that random forest models
perform better than logistic regression models, which are commonly used machine learning
models for groundwater As prediction [48,55,58].

2.4. Source Water–Remediation Efficiency Relationship

Concentrations of Fe and P impact the natural removal efficiency of As in groundwater
by adsorption/co-precipitation-based technologies [6,65,91]. Iron oxy-hydroxides have the
capability to sorb dissolved As from groundwater; however, As is generally more weakly
sorbing than P on HFOs. Thus, the competitive sorption of P on Fe-based sorbents can
influence or even prevent As sorption, which can lead to maintained As concentrations, or
even As release, in groundwater. Hug et al. (2008) [6] discussed As-Fe-P systematics using
the molar ratio [Fe]−1.8[P]

[As] to explain the comparative levels of remediation efficiency of As
in different groundwaters in Bangladesh, Cambodia, and Vietnam based on the competitive
adsorption between As and P as the Fe remaining after removing the P would be available
for As removal. Hug et al. (2008) [6] also used a molar ratio cutoff of 40 to predict whether
the As could be removed well given the existing natural Fe in groundwater. If the molar
ratio [Fe]−1.8[P]

[As] exceeded 40, the Fe may have been sufficient to remove the As (deemed “As
removal OK” by Hug et al. (2008) [6]), and possibly, no extra Fe addition would be required.
However, if the ratio was lower than 40, then the concentration of Fe may have been needed
to be artificially increased for the As removal. This critical molar ratio was used in the
current study to determine the predicted natural As remediation comparative efficiency
level and, hence, whether extra Fe may have been needed to be added into groundwater
for improved As remediation efficiency.

Additionally, in order to test the veracity of the approach used by Hug et al. (2008) [6],
we undertook a meta-analysis of the published values of measured As removal (%) as
functions of the molar ratio [Fe]−1.8[P]

[As] . The collated results, based on 12 published pa-
pers [65,91–101], are shown in Figure S2.

The model-predicted district-level pixel proportion (%) of “As removal OK” (using
the molar ratio value of 40) was calculated and compared with the district-level measured
well proportion of “As removal OK” calculated by Hug et al. (2008) [6], noting that the
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same secondary dataset within 10–90 m depths was used. This comparison was also done
for two different As concentration ranges (0–50 µg/L and >50 µg/L).

3. Results and Discussion
3.1. Seondary Dataset of Source Water Chemistry

Approximately 42% of the As concentrations in the utilised DPHE/BGS (2001) [2]
dataset exceeded the WHO drinking water provisional guide value of 10 µg/L, and 25% of
the As concentrations exceeded the Bangladesh drinking water standard value of 50 µg/L.
Of the Fe concentrations, 65% exceeded the EPA secondary standard of 0.3 mg/L. Of
the P concentrations, 53% exceeded the selected concentration threshold of 0.2 mg/L.
Approximately 37% of samples exceeded the molar ratio threshold of [Fe]−1.8[P]

[As] = 40,
indicating that these sampling locations were more likely to be geochemically compatible
with higher levels of As removal efficiency. The As concentrations were inversely correlated
with Fe and P, whereas there was no such relationship with [Fe]−1.8[P]

[As] (Figure S3).
Individual groundwaters may be cross-classified according to (a) whether or not they

have high arsenic concentrations; and (b) whether or not their [Fe]−1.8[P]
[As] ratios exceed

the threshold above which the potential efficiency of removal of arsenic for sorption/co-
precipitation-based technologies are likely to be relatively high. This classification based
on the DPHE/BGS (2001) [2] dataset is shown in Figure S4, where the class “high As/high
removal” indicates groundwaters for which arsenic removal is indicated and for which
there is a sufficiently high enough [Fe]−1.8[P]

[As] ratio to expect potentially high removal efficien-
cies from a sorption/co-precipitation-based technology, whereas the class “high As/low
removal” indicates groundwater for which the addition of iron, for example, in the form of
nails, might be indicated to improve the potential efficiency of the arsenic removal unit.
What the figure does not show, however, is the spatial distribution of these classes across
Bangladesh, and so it is not predictive for locations where groundwater samples have yet
to be taken and analysed.

3.2. Random Forest Models

Five machine learning (random forest) models were generated to map the distributions
of concentrations and the “high” concentrations of As (10 µg/L threshold), As (50 µg/L)
threshold, Fe, P, and the molar ratio [Fe]−1.8[P]

[As] . In these random forest models, 21 (As:

10 µg/L), 24 (As: 50 µg/L), 18 (Fe), 10 (P), and 8 ( [Fe]−1.8[P]
[As] ) continuous environmental

predictors were used, respectively, at each decision tree split according to the lowest out-
of-bag (OOB) error rate. Each random forest model was composed of 1001 decision trees.
The cross-validation results of the random forest models based on the testing datasets are
shown in Figure S5, and the AUC values of the random forest models for the distribution
of As (using thresholds of 10 µg/L and 50 µg/L), Fe, P, and the molar ratio [Fe]−1.8[P]

[As] were
0.80, 0.84, 0.75, 0.85, and 0.73, respectively, showing the good prediction performance of
the models compared to the range between 0.5 (random model) and 1 (perfect model). The
AUC value of the random forest model for the molar ratio [Fe]−1.8[P]

[As] was lower than the
AUC values for As, Fe, and P since the molar ratio was calculated based on the combined
concentrations of As, Fe, and P, and thus, it reflects a propagation of uncertainties derived
from each of the contributing models. Tan et al. (2020) [59] also conducted a random forest
model of distribution of groundwater As exceeding 10 µg/L in Bangladesh with higher
AUC values of over 0.9 (model A, 90 geo-environmental predictors) and over 0.8 (model B,
19 hydrochemical and 90 geo-environmental predictors) based on a larger predictor dataset.
However, for the first time, we present here the combined distributions and a discussion of
As, Fe, P, and the molar ratio ( [Fe]−1.8[P]

[As] ) in the context of determining the distribution and
comparative remediation efficiency level of groundwater As.
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The importance of the predictors in the four random forest models for As > 10 µg/L,
Fe > 0.3 mg/L, P > 0.2 mg/L, and the molar ratio [Fe]−1.8[P]

[As] > 40 was assessed by the
mean decreases in both the accuracy and the Gini node impurity, which were normalised
by the maximum value calculated among all predictors (Figure S6). This showed the
elevation, temperature, and potential/actual evapotranspiration placing markedly above
the other predictors in terms of importance for most of the models. Elevation can impact
the flowpath and flowrate of groundwater and associated water-rock interactions, therefore
impacting the chemical (e.g., As, Fe, and P) concentrations in groundwater [63]. Meanwhile,
high temperature and low evapotranspiration also can contribute to increasing chemical
concentrations (e.g., As, Fe, and P) in groundwater [63]. Although the relative importance
of the modelling predictors varied, none of the predictors had negative importance values,
suggesting they were all beneficial to the model and should have remained included as
modelling predictors.

3.3. Distribution of Arsenic, Phosphorus, and Iron in Groundwater

The random forest model-generated probability maps for groundwater As, Fe, and P
concentrations exceeding the selected concentration thresholds (10 µg/L or 50 µg/L for As,
0.3 mg/L for Fe, and 0.2 mg/L for P) are shown in Figure 1a–d, and these were converted
into high-hazard/high-concentration maps (Figure 1e–h) using a default probability cutoff
value of 0.5. The modelled distribution was broadly similar to that previously published
by Tan et al. (2020) [59]; however, our models identified slightly more higher-probability
zones in southwest (the Khulana region) and northeast (the Sylhet region) Bangladesh and
slightly fewer high-probability zones in middle (the upper Dhaha region) Bangladesh. The
new random forest models of the distribution of Fe and P (Figure 1g,h) were compared with
the distribution of As > 10 µg/L (Figure 1e) in the groundwater. The predicted distribution
of high-groundwater Fe (> 0.3 mg/L) had some similarities with the predicted distribution
of high As, notwithstanding that the As and Fe were broadly inversely correlated (as shown
in Figure S3). High-groundwater P zones occupy a large area in Bangladesh, especially
including in some high-As areas, and this is not beneficial for groundwater As removal due
to the increased likelihood of the competitive adsorption of P and As on the sorbents. The
concentration thresholds of Fe and P in the separate random forest models were not selected
based on the As remediation efficiency ratio, and the predicted separate distributions of As,
Fe, and P were difficult to compare visually, highlighting the requirement for the further
random forest prediction of the molar ratio [Fe]−1.8[P]

[As] .

3.4. Predicted Comparative Level of Arsenic Remediation Efficiency in Groundwater

The calculated (based on the DPHE/BGS (2001) data) [2] and modelled (this study)
geographical distributions of the molar ratio [Fe]−1.8[P]

[As] are shown in Figure 2a,b. The

probability map of the molar ratio [Fe]−1.8[P]
[As] exceeding the threshold value of 40 (Figure 2b)

was converted into a comparatively high As remediation efficiency map by using a default
probability cutoff value of 0.5, and the country-scale distribution of the comparative levels
of “high” and “low” groundwater As remediation efficiency in Bangladesh is shown in
Figure 2c. The predicted map of the comparative levels of As remediation efficiency was
also combined with a predicted map of high As, and the high-As area was divided into
two classifications (Figure 2d): (i) high As levels in the groundwater, which could likely
be removed by the natural Fe in the groundwater using a sorption/co-precipitation-based
technology (i.e., a high As and high comparative remediation efficiency level); and (ii) high
As levels in the groundwater which likely could not be removed by the natural Fe in the
groundwater (i.e., high As but low comparative remediation efficiency level), which could
require the artificial addition of Fe to the groundwater.
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Figure 1. Random forest models of the groundwater As, Fe, and P concentrations in Bangladesh.
(a) Probability map of the groundwater As concentrations exceeding 10 µg/L. (b) Probability map of
the groundwater As concentrations exceeding 50 µg/L. (c) Probability map of the groundwater Fe con-
centrations exceeding 0.3 mg/L. (d) Probability map of the groundwater P concentrations exceeding
0.2 mg/L. (e) Map of high-hazard As (>10 µg/L) areas. (f) Map of high-hazard As (>50 µg/L) areas.
(g) Map of high-concentration Fe (>0.3 mg/L) areas. (h) Map of high-concentration P (>0.2 mg/L) areas.
All high-hazard areas were defined by a default probability-exceeding cutoff value of 0.5.

The map of the comparatively high level of remediation efficiency suggested that the
natural Fe concentrations were likely already sufficient (e.g., without the requirement for
supplemental Fe) for removing the high As from the groundwater in north (the Rangpur
region and the north Mymensingh region), middle (the north Dhaka region), and northeast
(the Sylhet region) Bangladesh since the source water was geochemically compatible with
the higher remediation efficiencies, especially the adsorption-based technologies. However,
the high As levels in the south Dhaka, north Comilla, east Mymensingh, and west Sylhet
regions may require supplementary Fe to be added improve the effectiveness of the As
remediation strategies due to the insufficient natural Fe in the groundwater.

The predicted distribution of the comparative levels of As remediation efficiency pro-
vides pre-emptive guidance for informing appropriate and optimal groundwater (e.g., As)
remediation selection. In high-As areas predicted to have comparatively low remediation
efficiency (i.e., insufficient Fe), the addition of Fe may contribute to improved or optimised
remediation efficiencies. In such cases, adding Fe(II) has a better removal performance than
Fe(III) due to the oxidation of Fe(II) in aerated water, which generates reactive intermediates
that can oxidise As(III) to As(V) [102]. The repetitive addition of Fe(II) can completely
oxidise As(III) to As(V), which may have a stronger sorption capacity, facilitating removal
by sorption on HFOs without oxidant additions [102].



Water 2023, 15, 3539 9 of 15

Water 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

the groundwater (i.e., high As but low comparative remediation efficiency level), which 
could require the artificial addition of Fe to the groundwater. 

 
Figure 2. Random forest model of the distribution of the predicted high and low potential efficien-
cies of the sorption/co-precipitation-based groundwater As remediation systems in Bangladesh. (a) 
The molar ratio [ ] . [ ][ ]  calculated from the secondary data [2] for As, Fe, and P. (b) Map of the 

random-forest-modelled probability of the molar ratio [ ] . [ ][ ]  > 40. (c) Map of the areas of the 
modelled high-potential As remediation efficiency (green) (defined by a default probability-exceed-
ing cutoff value of 0.5). (d) Modelled maps of high-groundwater As areas with contrasting (i) pre-
dicted high-potential groundwater As remediation efficiency (yellow) and (ii) predicted low-poten-
tial groundwater As remediation efficiency for which the addition of Fe may be indicated to improve 
effectiveness (red). 

The map of the comparatively high level of remediation efficiency suggested that the 
natural Fe concentrations were likely already sufficient (e.g., without the requirement for 
supplemental Fe) for removing the high As from the groundwater in north (the Rangpur 
region and the north Mymensingh region), middle (the north Dhaka region), and north-
east (the Sylhet region) Bangladesh since the source water was geochemically compatible 
with the higher remediation efficiencies, especially the adsorption-based technologies. 
However, the high As levels in the south Dhaka, north Comilla, east Mymensingh, and 
west Sylhet regions may require supplementary Fe to be added improve the effectiveness 
of the As remediation strategies due to the insufficient natural Fe in the groundwater. 

The predicted distribution of the comparative levels of As remediation efficiency pro-
vides pre-emptive guidance for informing appropriate and optimal groundwater (e.g., As) 

Figure 2. Random forest model of the distribution of the predicted high and low potential efficien-
cies of the sorption/co-precipitation-based groundwater As remediation systems in Bangladesh.
(a) The molar ratio [Fe]−1.8[P]

[As] calculated from the secondary data [2] for As, Fe, and P. (b) Map of

the random-forest-modelled probability of the molar ratio [Fe]−1.8[P]
[As] > 40. (c) Map of the areas of the

modelled high-potential As remediation efficiency (green) (defined by a default probability-exceeding
cutoff value of 0.5). (d) Modelled maps of high-groundwater As areas with contrasting (i) predicted
high-potential groundwater As remediation efficiency (yellow) and (ii) predicted low-potential
groundwater As remediation efficiency for which the addition of Fe may be indicated to improve
effectiveness (red).

Based on the good performance of the random forest models of the distribution of As,
Fe, and P and the comparative level of the As remediation efficiency based on [Fe]−1.8[P]

[As] ,
we demonstrated that AI models (in this study, random forest machine learning models)
can contribute to informing appropriate groundwater As remediation selection (e.g., the
addition of Fe) at a large scale (e.g., the country scale) using the example of Bangladesh. The
predicted distributions of the comparative levels of As remediation efficiencies can suggest
whether high As levels can likely be removed naturally via naturally groundwater-sourced
Fe or high As levels may require artificial Fe addition to be remediated in groundwater.
However, for a specific groundwater well, well-specific testing is still required to select the
optimal groundwater remediation approach due to the high spatial heterogeneity of the
groundwater’s chemical constituents (e.g., As, Fe, and P).

Our predicted district-level proportions of 1 km × 1 km pixels of “As removal OK”
( [Fe]−1.8[P]

[As] > 40) was calculated and compared with the district-level measured well pro-
portions of “As removal OK” calculated by Hug et al. (2008) using the same dataset [2]
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within 10–90 m depths (Table S2). There were significant differences in the modelled
district-level proportions (%) of “As removal OK” between Hug’s approach (2008) [6],
which was based entirely on samples measured in a particular district, and our approach
presented here, which was based on random forest prediction on a km-square, pixel-by-
pixel basis averaged without bias across an entire district. For example, for Meherpur
district, Hug et al. (2008) [6] calculated approximately 23% of “As removal OK” based
on 13 sampling data, while our modelled district-level proportion (%) of the "As removal
OK" points was estimated to be approximately 85% based on modelling 783 1-km2 pixels.
These differences provide a strong justification for our machine learning approach given
that the samples in the DPHE/BGS National Hydrochemical Survey [2] dataset are not
necessarily representative of each relevant district, nor are they representative of the whole
sampled depth range, and thus, our more granular mapping approach on a km-square
basis arguably adds substantial value. This comparison was also done for two different
As concentration ranges (0–50 µg/L and >50 µg/L; Figure S7 and Table S2). It was found
that for the As concentration range 0–50 µg/L, our predicted district-level proportion of
pixels that were “As removal OK” tended to be higher than that in than Hug’s approach
(2008) [6], and the difference between our modelling and Hug’s approach (2008) [6] for the
As concentration range 0–50 µg/L was systematically larger than that for the concentration
range As > 50 µg/L. However, the difference between our modelling and Hug’s approach
(2008) for As > 50 µg/L was random.

3.5. Limitations

Although AI machine learning (random forest) models can contribute to informing
the optimal remediation approach for groundwater As, site-specific water quality testing
is still strongly recommended because of the limitations of this approach. Firstly, the
potentially substantial local spatial heterogeneity of groundwater composition may not
be adequately captured by a model. Secondly, in this study, the comparative remediation
efficiency molar ratio only took into account the likely influence of the concentrations
of Fe and P on the As remediation, whereas other water quality parameters (e.g., pH,
organic matter, bicarbonate, and silicate concentrations) may also impact remediation
efficiency and were not considered. Thirdly, other human factors (e.g., technology selection,
regulatory and monitoring settings, socio-economic conditions, effectiveness (or otherwise)
of the maintenance of field As removal units) may also critically contribute to groundwater
As remediation efficiency. Fourthly, the environmental predictors used in the modelling
were mainly related to the mobility, release, and enrichment of As in groundwater, and
although these are likely somewhat related, consideration of additional environmental
predictor parameters specifically associated with Fe and P might improve the AI model.
Fifthly, particularly because the relationship between As removal efficiency and the molar
ratio [Fe]−1.8[P]

[As] is complex (Figure S2), our machine learning model approach could be
improved by better establishing and quantifying the dependence of source water chemistry
on As removal efficiency (including via lab-based studies [103]). Lastly, the extent to
which machine learning approaches may (or may not) be relevant to multiple hazards
beyond groundwater As (e.g., contaminants with differing redox controls, such as U [47],
or microbial pollutants) has not been investigated and would be an interesting area for
further study.

4. Conclusions

AI machine learning (random forest) modelling has enabled the prediction of the po-
tential effectiveness of source-water-chemistry-dependent sorption/co-precipitation-based
groundwater As remediation systems at the 1 km2 scale in Bangladesh. The comparison
between the predicted distributions of As, Fe, P, and the molar ratio [Fe]−1.8[P]

[As] in Bangladesh
at the national scale indicated where high-groundwater As contamination may require
the extra artificial addition of Fe to improve As remediation efficiency levels due to the
predicted insufficient natural Fe levels in the groundwater. Whilst broadly consistent with
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previous district-scale models, our AI approach resulted in models with 100-fold greater
granularity, importantly providing key added value as a decision support tool.

Although the study here was focused on machine learning for remediation selection
for groundwater As in Bangladesh, the approach also has significant potential for future
development across other regions and for other groundwater/soil contaminants, provided
robust secondary chemical composition and environmental predictor datasets are avail-
able. Although machine learning models may help to inform appropriate groundwater
remediation selection, such modelling does not intend to replace detailed and site-specific
investigations of groundwater quality, particularly in areas with local spatial heterogeneity.

Using machine learning models to inform groundwater As remediation selection also
provides substantial opportunities for further development, particularly where experimen-
tal or pilot-scale studies demonstrate relationships between the As or other contaminant
removal efficiencies of particular remediation technologies and source water chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15203539/s1, Figure S1, Distribution of secondary groundwater
composition data; Figure S2, Meta-analysis plots of As removal (% and absolute) versus the molar ratio
([Fe]—1.8 [P])/[As]; Figure S3, Bivariate plots of groundwater composition; Figure S4, District-level As
remediation efficiency versus groundwater As > 50 µg/L; Figure S5, AUC curves; Figure S6, Normalised
importance of the predictor variables; Figure S7, Comparison between the model predictions; Table S1,
Description of the predictors used; Table S2, Bangladesh district-level comparison between this study
and the study by Hug et al. (2008). Full caption details are provided in the Supplementary Information.
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