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Abstract: Our paper aims to improve flood forecasting by establishing whether a global hydrological
forecast system could be used as an alternative to a regional system, or whether it could provide
additional information. This paper was based on the operational Global Flood Awareness System
(GloFAS) of the European Commission Copernicus Emergency Management Service, as well as on a
regional hydrological forecast system named RHFS, which was created with observations recorded in
the Wangjiaba river basin in China. We compared the discharge simulations of the two systems, and
tested the influence of input. Then the discharge ensemble forecasts were evaluated for lead times
of 1–7 d, and the impact on the forecasts of errors in initialization and modelling were considered.
We also used quantile mapping (QM) to post-process the discharge simulations and forecasts. The
results showed: (1) GloFAS (KGE of 0.54) had a worse discharge simulation than RHFS (KGE of 0.88),
mainly because of the poor quality of the input; (2) the average forecast skill of GloFAS (CRPSS about
0.2) was inferior to that of RHFS (CRPSS about 0.6), because of the errors in the initialization and
the model, however, GloFAS had a higher forecast quality than RHFS at high flow with longer lead
times; (3) QM performed well at eliminating errors in input, the model, and the initialization.

Keywords: discharge ensemble forecast; global hydrological forecast system; regional hydrological
forecast system; influence factors

1. Introduction

Floods and droughts have been reported as the costliest and most destructive natural
disasters in China. The resulting direct economic losses are projected to rise even further in
the coming decades, posing a serious threat to the safety of people’s lives and property and
the stable development of the social economy [1]. Hydrological forecasts are a prerequisite
for disaster relief by providing timely information on where and when floods and droughts
will occur in the near future. In addition, reliable hydrological forecasts are necessary to
prepare for an appropriate response in the management of hydropower reservoirs, water
supply, agriculture, and navigation [2].

Traditionally, hydrological variables have been predicted by forcing hydrological fore-
cast systems with observed meteorological data to estimate the forthcoming hydrological
conditions, and the lead time of the resulting hydrological forecast approximately equals
the concentration time. By contrast, hydrological ensemble forecast systems generate prob-
abilistic forecasts and corresponding uncertainty information by forcing a hydrological
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model with ensemble weather forecast data, and have gained extensive attention and
application because of their clear advantages [2–6]. Moreover, compared with traditional
hydrological forecasts, hydrological ensemble forecasts can effectively prolong the lead
time [7] and generate multiple forecast results for the same moment in time and loca-
tion [8,9]. High-quality hydrological ensemble forecasts can provide disaster prevention
and control departments, and water resource management departments, with confidence
in their decision-making [2].

Hydrological forecast systems can be divided, according to the size of the area they
cover, into global hydrological forecast systems and regional/local hydrological forecast
systems. A regional/local hydrological forecast system is designed for a specific location or
river basin. It is based on model parameter calibration using regional/local observations,
and is the tool most commonly used by researchers and commercial industries for a wide
range of projects and for developing value-added products in the area, such as evaluating
discharge forecasts from different perspectives by using a regional forecast system [10–13],
developing methods to improve forecast skill [11,13–17] and studying the uncertainty in
hydrological ensemble forecasting [15,16,18]. Setting up a global hydrological forecast
system is computationally demanding but could be valuable, especially for developing
regions of the world, where effective regional hydrological forecast systems are scarce.
For example, Passerotti et al. [19] studied a flood early warning system using the prior
notification of the Global Flood Awareness System (GloFAS) in the Sirba River; Bischiniotis
et al. [20] assessed the skills of GloFAS in Peru for the years 2009–2015, which does not have
its own flood forecasting system; the forecasts from GloFAS were used in the Uganda Red
Cross Society forecast-based financing pilot project, to ensure that automatic, prefunded
early action would be triggered by forecasts in this data-scarce location [21]. A global
system would also provide additional information to basin management departments, even
if there already was a mature regional hydrological forecast system [3].

The Global Flood Awareness System (GloFAS) [22] is one of the best-known global
hydrological forecast systems and is the global flood service of the European Commission’s
Copernicus Emergency Management Service (CEMS). It was set up by the European
Centre for Medium-Range Weather Forecasts (ECMWF), in collaboration with the Joint
Research Centre (JRC) of the European Commission and the University of Reading. The
system became preoperational in July 2011 and fully operational as a 24/7 supported
service in April 2018. It is freely available through an open license and is designed for
decision makers and forecasters in national and international water authorities, bodies
responsible for the management of water resources, hydropower companies, civil protection
authorities, and international humanitarian aid organizations, as reflected by the more than
5000 registered users [22]. Most studies evaluating GloFAS take the observed discharge as
the evaluation standard. For example, Alfieri et al. [23] evaluated GloFAS’s performance
against observed discharge from 620 stations and a qualitative analysis of a case study
on a Pakistan flood. Alfieri et al. [24] also evaluated a GloFAS discharge simulation
against a global network of 1801 stations providing daily river discharge observations,
while Bischiniotis et al. [20] compared a simulated GloFAS discharge against observations
for 10 river gauges. In addition, Senent et al. [25] assessed the potential of GloFAS for
calibrating hydrological models in ungauged basins, and found it had substantial potential
for calibrating hydrological models in monthly streamflow. However, there is also a need
for a comparative study of GloFAS and regional hydrological forecast systems, comparing
not just the simulations against observations, but also evaluating whether the application
of GloFAS in areas without observed data could be a viable alternative.

When running hydrological forecast systems in simulation mode (i.e., by forcing the
systems with (proxy-) observed weather variables) [14], the consequent simulation can be
used to evaluate how well the system is adapted to the basin, as the error of the simulation
is expected to be driven by the model error resulting from the imperfect model structure
and inaccurate parameterization. However, it is a challenge to access observations of
sufficient quality and length for a global hydrological forecast system [3], so in addition to
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the model error, the input error of such a system will also influence the simulation. As for
the forecasting mode, hydrological forecast errors result from various interactive sources
of error, of which the most common relate to meteorological input, modelling, and initial
conditions [26]. The meteorological forcing errors are due to uncertainty in the numerical
weather prediction models. In this context, it is necessary to consider the model errors and
the input errors when evaluating discharge simulations and verifying forecasts.

Our primary goal with this study was to examine whether a global hydrological
forecast system could be a good alternative to a regional hydrological forecast system, and to
answer the following two main questions: Are global hydrological forecast systems always
inferior to regional hydrological forecast systems? Which factors affect the performance
of forecast systems? To this end, we first analyzed the discharge simulations of two
prediction systems at different scales in order to understand the influence of input data
and the improvement generated by post-processing. Then, we estimated the quality of
the discharge forecasts produced by the two systems, focusing on the contributions of
initial error and model error, as well as post-processing. The flow chart of the manuscript
is shown in Figure 1.

Water 2023, 14, x FOR PEER REVIEW 3 of 21 
 

 

is expected to be driven by the model error resulting from the imperfect model structure 
and inaccurate parameterization. However, it is a challenge to access observations of suf-
ficient quality and length for a global hydrological forecast system [3], so in addition to 
the model error, the input error of such a system will also influence the simulation. As for 
the forecasting mode, hydrological forecast errors result from various interactive sources 
of error, of which the most common relate to meteorological input, modelling, and initial 
conditions [26]. The meteorological forcing errors are due to uncertainty in the numerical 
weather prediction models. In this context, it is necessary to consider the model errors and 
the input errors when evaluating discharge simulations and verifying forecasts. 

Our primary goal with this study was to examine whether a global hydrological fore-
cast system could be a good alternative to a regional hydrological forecast system, and to 
answer the following two main questions: Are global hydrological forecast systems al-
ways inferior to regional hydrological forecast systems? Which factors affect the perfor-
mance of forecast systems? To this end, we first analyzed the discharge simulations of two 
prediction systems at different scales in order to understand the influence of input data 
and the improvement generated by post-processing. Then, we estimated the quality of the 
discharge forecasts produced by the two systems, focusing on the contributions of initial 
error and model error, as well as post-processing. The flow chart of the manuscript is 
shown in Figure 1. 

 
Figure 1. Flow chart of this paper. 

The remainder of this paper is organized as follows: The materials and methods in-
cluding study area, data, hydrological forecast systems, experimental design, post-pro-
cessing methods and verification metrics are described in Section 2. The results are pre-
sented in Section 3, followed by the discussion and conclusion in Section 4. 

  

Figure 1. Flow chart of this paper.

The remainder of this paper is organized as follows: The materials and methods includ-
ing study area, data, hydrological forecast systems, experimental design, post-processing
methods and verification metrics are described in Section 2. The results are presented in
Section 3, followed by the discussion and conclusion in Section 4.

2. Materials and Methods
2.1. Study Area

The Wangjiaba basin is the upstream watershed of the Huai River in China, with a
river length of 360 km, a drop of 178 m and a basin area of 30,630 km2. The average annual
precipitation over the selected basin is about 1000 mm, with great inter-annual variability
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and uneven temporal and spatial distributions. The flood season of the basin is from June
to October, with 60% of the annual precipitation concentrating between June and August
and most rainstorms occurring in June and July, producing river discharge peaks between
June and October. Figure 2 shows a map of the watershed with the observing stations and
local topography.

Water 2023, 14, x FOR PEER REVIEW 4 of 21 
 

 

2. Materials and Methods 
2.1. Study Area 

The Wangjiaba basin is the upstream watershed of the Huai River in China, with a 
river length of 360 km, a drop of 178 m and a basin area of 30,630 km2. The average annual 
precipitation over the selected basin is about 1000 mm, with great inter-annual variability 
and uneven temporal and spatial distributions. The flood season of the basin is from June 
to October, with 60% of the annual precipitation concentrating between June and August 
and most rainstorms occurring in June and July, producing river discharge peaks between 
June and October. Figure 2 shows a map of the watershed with the observing stations and 
local topography. 

 
Figure 2. Map of the study area showing the terrain elevation, main rivers of the Wangjiaba basin, 
the location of the selected hydrological station, rainfall stations and evaporation stations. The gray 
grids represent the 0.1 × 0.1 degree resolution of GloFAS. The inset map shows the approximate 
location of the study area in China. 

2.2. Dataset 
The dataset used in this paper included observed data and ERA5 data, as well as data 

from the GloFAS reanalysis, the ECMWF reforecast and the GloFAS reforecast. 
The observed data for the study catchment contained daily pan evaporation, ob-

served daily discharge, reservoir water levels and daily precipitation. Daily pan evapora-
tion data were drawn from the Chinese National Meteorological Information Center, and 
the rest were drawn from the Annual Hydrological Report P.R. China, published by the 
Hydrological Bureau of the PRC Ministry of Water Resources. The observed discharge 
data were converted into natural discharge using the water balance method, in advance. 

ERA5 is a global atmospheric reanalysis product of ECMWF. The complete ERA5 
data covers the period from 1950 to near real time [27]. It is available from the Copernicus 
Climate Change Service (C3S) Copernicus Climate Data Store (CDS) with a regular lati-
tude/longitude grid. For the regional hydrological forecast system, we used ERA5 daily 
precipitation data at a resolution of 0.28° × 0.32°. 

The GloFAS reanalysis is a time series consisting of simulated daily data of river dis-
charge from the GloFAS system produced by CEMS. It is generated by forcing the GloFAS 
operational modelling chain with meteorological variables from ERA5 to provide data for 
over 40 years from the recent past, from 1979 to the present [22]. The dataset includes the 
variables of river discharge and the upstream area for each GloFAS grid cell with a reso-
lution of 0.1° × 0.1°. The data are freely available through the CDS at https://cds.climate.co-
pernicus.eu/#!/home (accessed on 10 January 2022). 

We chose the ensemble weather forecasts of ECMWF as the forcing data in the hy-
drological forecast systems because of their proven good performance in China [28–31]. 
This study used reforecast data, which are forecasts of past dates reproduced with a global 
forecast system as close to the operational system as possible. ECMWF reforecasts are 
global-scale forecast runs that use the same integrated forecasting system (IFS) model 

Figure 2. Map of the study area showing the terrain elevation, main rivers of the Wangjiaba basin,
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location of the study area in China.

2.2. Dataset

The dataset used in this paper included observed data and ERA5 data, as well as data
from the GloFAS reanalysis, the ECMWF reforecast and the GloFAS reforecast.

The observed data for the study catchment contained daily pan evaporation, observed
daily discharge, reservoir water levels and daily precipitation. Daily pan evaporation
data were drawn from the Chinese National Meteorological Information Center, and
the rest were drawn from the Annual Hydrological Report P.R. China, published by the
Hydrological Bureau of the PRC Ministry of Water Resources. The observed discharge data
were converted into natural discharge using the water balance method, in advance.

ERA5 is a global atmospheric reanalysis product of ECMWF. The complete ERA5
data covers the period from 1950 to near real time [27]. It is available from the Copernicus
Climate Change Service (C3S) Copernicus Climate Data Store (CDS) with a regular lati-
tude/longitude grid. For the regional hydrological forecast system, we used ERA5 daily
precipitation data at a resolution of 0.28◦ × 0.32◦.

The GloFAS reanalysis is a time series consisting of simulated daily data of river
discharge from the GloFAS system produced by CEMS. It is generated by forcing the
GloFAS operational modelling chain with meteorological variables from ERA5 to provide
data for over 40 years from the recent past, from 1979 to the present [22]. The dataset
includes the variables of river discharge and the upstream area for each GloFAS grid
cell with a resolution of 0.1◦ × 0.1◦. The data are freely available through the CDS at
https://cds.climate.copernicus.eu/#!/home (accessed on 10 January 2022).

We chose the ensemble weather forecasts of ECMWF as the forcing data in the hy-
drological forecast systems because of their proven good performance in China [28–31].
This study used reforecast data, which are forecasts of past dates reproduced with a global
forecast system as close to the operational system as possible. ECMWF reforecasts are
global-scale forecast runs that use the same integrated forecasting system (IFS) model ver-
sion as the real-time ensemble forecasts (ECMWF-ENS), using data from the past 20 years,
with lead times of up to 46 days and 11 forecast members. The data are initialized twice
weekly (Monday and Thursday), and have a horizontal resolution of 18 km for a lead time
of up to 15 days, and of 36 km for longer forecast lead times of up to 46 days. Reforecasts
are available through the ECMWF’s Meteorological Archival and Retrieval System (MARS;
https://apps.ecmwf.int/mars-catalogue/ (accessed on10 January 2022)). In this paper, we

https://cds.climate.copernicus.eu/#!/home
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used ECMWF reforecasts produced for the calendar year of 2019, using cycle 45R1 before
11 June 2019, and cycle 46R1 after that date. The regional model and all meteorological
forcing for GloFAS used precipitation reforecasts with a resolution of 0.125◦.

The GloFAS reforecast is a simulated time series of river discharge, produced by
forcing the hydrological modelling chain with ECMWF reforecasts. The initial conditions
were provided by the GloFAS reforecast for the corresponding date [22]. GloFAS reforecast
datasets provide daily reforecasts of river discharge across the world for up to 46 days
with twice weekly start dates, for 20 years in the recent past. The GloFAS reforecast has a
resolution of 0.1◦× 0.1◦ with 11 ensemble members and is freely available to download
through the CDS.

2.3. Methods
2.3.1. Hydrological Forecast Systems

The regional hydrological forecast system and global hydrological forecast system
used in this paper are introduced below. The two systems differ in the applied hydrological
model, calibration method and calibration data.

Regional Hydrological Forecast System

This paper used a regional hydrological forecast system named RHFS. The Xinan-
jiang model was used as the hydrological model of RHFS, and the system was calibrated
using meteorological observations and natural discharge, based on the particle swarm
optimization algorithm.

The Xinanjiang model is a conceptual lump model developed in 1973 and described
in an international publication [32]. The model is widely used in humid and sub-humid
regions in China. The inputs of the model are basin–mean precipitation and basin–mean
pan evaporation, while the outputs are basin outlet discharge and basin evaporation. A
detailed description of the Xinanjiang model can be found in Appendix B.

A particle swarm optimization algorithm (PSO) is a parallel mechanism of computa-
tional intelligence algorithm, based on continuous searching for the random initialization
particles (each feasible solution of the problem is called a particle) in the solution space
according to the direction and distance indication, to achieve the optimal result [33]. PSO is
widely used in various fields due to it being easy to understand and implement, and its
strong ability of local optimization [33].

Global Hydrological Forecast System

This article uses datasets from GloFAS version 3.1, released on 2021-05-26, which
incorporates the latest version of hydrological datasets. GloFAS v3.1 is based on the
LISFLOOD hydrological model, which is a spatially distributed semi-physical and grid-
based model [34], calibrated against observed daily streamflow for 1226 river basins with a
total watershed area of 51 million km2 (the catchment studied in this paper is not included)
across the globe, using ERA5 meteorological data as forcing data, and the evolutionary
algorithm DEAP as the parameter optimization method [24].

2.3.2. Modeled Design

When selecting the time period used in this study, we aimed at including as many
floods as possible and, therefore, chose 6 flood seasons (from June to October) containing
relatively large floods, namely, the flood seasons of 2007, 2008, 2010, 2015, 2016 and 2017.
The flood seasons of 2010 and 2015–2017 were used for calibration and were called the
calibration period, while the flood seasons of 2007 and 2008 were used for verification and
were called the verification period. All data used in this study were on a daily time step, and
the resolution of the GloFAS data were 0.1◦ × 0.1◦. ECMWF precipitation reforecasts had a
resolution of 0.125◦ × 0.125◦, and ERA5 precipitation data had a resolution of 0.28◦ × 0.32◦.
Additionally, ECMWF precipitation reforecasts and GloFAS river discharge reforecasts
were collected for lead times of 1-7 d with 11 ensemble members.
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The calibration of RHFS was carried out for the calibration period (2010, 2015–2017,
June–October of each year), using basin–mean precipitation and pan evaporation input,
estimated by inverse distance weighting (IDW) from gauged measurements. For every
PSO run, the particle size and the number of iterations were both set to 100, with the
objective function minimizing the root mean square error (RMSE) between the simulated
discharge and the corresponding natural discharge, so that the number of objective function
evaluations was 100 × 100 = 10,000. After calibrating RHFS by PSO, we manually relaxed
the boundaries if the optimal parameters fell on their boundaries (i.e., the boundaries were
preset not high or not low enough), and then repeated the PSO run with the modified
boundaries until all optimal parameters fell within them.

We used the regional hydrological forecast system (with RHFS) and the global hy-
drological forecast system (with GloFAS) to generate discharge simulations and forecasts.
Simulations and forecasts used in this paper are briefly introduced in Table 1 and described
in more detail in Simulation and Forecast part.

Table 1. Name, system, input, initialization data and post-processing of simulations and forecasts
used in this study; the versions that use quantile mapping are in parentheses.

Mode Name System Input Initialization Data Post-Processing

Simulations

RHFS-S
(RHFS-S-QM) RHFS Observation

No
(yes)

GloFAS-S
(GloFAS-S-QM) GloFAS ERA5

RHFS-S-ERA5
(RHFS-S-ERA5-QM) RHFS ERA5

Forecasts

RHFS-F
(RHFS-F-QM) RHFS

ECMWF
reforecast

Observation

GloFAS-F
(GloFAS-F-QM) GloFAS ERA5

RHFS-F-ERA5
(RHFS-F-ERA5-QM) RHFS ERA5

Simulation

In order to examine the influence of input data and post-processing (Table 1), we
ultimately analyzed six different simulations:

1. RHFS-S was the simulation of the RHFS forced with meteorological observations, run
separately in each year from 1 June to 31 October;

2. GloFAS-S is short for GloFAS reanalysis, and was the reanalysis simulation gener-
ated by the global hydrological forecast system GloFAS, forced with ERA5 as proxy-
observations. We used the pixel that best represented the study basin in the GloFAS
river network at a resolution of 0.1◦ × 0.1◦, located at 32.45◦ E, 115.55◦ N. The up-
stream area of this point in GloFAS was almost the same as the actual area of the basin
(the former was 31,364 km2 and the latter was 30,630 km2);

3. RHFS-S-ERA5 was produced by the RHFS forced with ERA5. This simulation, with
the same hydrological forecast system as RHFS-S and the same input as GloFAS-S,
was designed to study the effect of the input data as well as the modelling. The
ERA5 basin–mean precipitation was calculated by applying IDW to the original grid
precipitation of ERA5 and then used to force the RHFS system to produce RHFS-ERA5;

4. RHFS-S-QM was the result of applying quantile mapping to RHFS-S;
5. GloFAS-S-QM was the result of applying quantile mapping to GloFAS-S;
6. RHFS-S-ERA5-QM was the result of applying quantile mapping to RHFS-S-ERA5.
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For RHFS-S-QM, GloFAS-S-QM and RHFS-S-ERA5-QM, QM training was conducted
during the calibration period to estimate the values of the quantile–quantile relation be-
tween the natural discharge and each simulation.

Forecast

Determining the role of the initialization error and the model error was helpful in
deciding which improvement aspect was more promising. We also paid attention to the
influence of post-processing on the forecasts. To this end, six discharge reforecasts were
analyzed, all forced by ECMWF reforecasts, with lead times between 1 and 7 days.

1. RHFS-F used meteorological observations as initialization of the RHFS, and the input
was basin–mean precipitation reforecasts, which were converted from raw daily
gridded ECMWF precipitation reforecasts by IDW. Due to the gaps in the observation
time series in the winter half-year of the evaluated years, the reforecasts of the RHFS
system were initialized separately from 1 June of each year. For example, when the
start day of the reforecast was 2 October 2008, the initialization period was from 1
June 2008 to 1 October 2008. This meant that the initialization period was different for
each reforecast depending on the time of year, the period being shortest in June, and
longest in October. Although this had some impact on the simulations, overall, we
believe it did not alter the results;

2. GloFAS-F is short for GloFAS reforecast and was the existing CEMS river discharge
reforecast dataset from GloFAS, initialized with ERA5 and forced with ECMWF-ENS
reforecasts [22]. GloFAS-F was downloaded for the same river pixel as GloFAS-S;

3. RHFS-F-ERA5 had the same configuration as RHFS-F, but used ERA5 as initialization
data; it is used to evaluate the impact of the model error and the initialization error;

4. RHFS-F-QM was the result of applying quantile mapping to RHFS-F;
5. GloFAS-F-QM was the result of applying quantile mapping to GloFAS-F;
6. RHFS-F-ERA5-QM was the result of applying quantile mapping to RHFS-F-ERA5.

For RHFS-F-QM, GloFAS-F-QM and RHFS-F-ERA5-QM, the quantile mapping train-
ing was conducted during the calibration period to estimate the values of the quantile–
quantile relation between the natural discharge and each raw forecast.

2.3.3. Quantile Mapping

Several studies have suggested that post-processing of discharge forecasts is effective
in improving forecast quality [2]. In this paper, the quantile mapping (QM) method was
used for statistical postprocessing, based on matching the cumulative distribution function
(CDF) of the modelled time series to the CDF of observations. The effectiveness of QM
depends on the CDF of the observations and the CDF of the modelled data having the same
bias during the training and validation periods.

Several QM methods have been developed using different CDF estimating algorithms.
In this paper, an empirical quantile called RQUANT was used to calculate the empirical
CDF [35] from the R package “qmap”. RQUANT uses local linear least squares regression
to produce a robust estimate of the empirical quantile–quantile plot for the sequential
quantiles, resulting in a table with empirical quantiles of simulation and a corresponding
table with robust estimates of the empirical quantiles of observation. For any value outside
of the post-processed range, the transformation is extrapolated using the slope of the local
linear least squares regression at the outer most points.

2.3.4. Verification Metrics

The modified Kling–Gupta efficiency coefficient (KGE) and its three components were
used to verify the quality of the discharge simulation and the ensemble mean discharge
forecast. The continuous ranked probability score (CRPS) and its skill version (CRPSS),
using a monthly observation sample of the climatology as the reference, were used as
verification metrics of the ensemble discharge forecast. The relative flood peak error
and the relative flood volume error were used to evaluate the quality of the flood event
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simulations. Categorical verification scores in the form of probability of detection (POD),
false alarm ratio (FAR), and equitable threat score (ETS) were used to evaluate the detection
capacity of ERA5 regarding daily precipitation events. A detailed description of the metrics
calculation can be found in Appendix A.

3. Result

We divided the analysis into four steps, with the evaluation of ERA5 precipitation
data performed first, followed by the verification of the discharge simulations and the
precipitation reforecast statistics, and finally the discharge reforecast results. The metrics
calculation was performed for the verification period (2007, 2008, June–October).

3.1. ERA5 Precipitation

The modified Kling–Gupta efficiency coefficient (KGE) and its three components were
calculated to compare ERA5 basin precipitation data with basin precipitation observations
(Figure 3). The results showed a strikingly low correlation between the daily ERA5 precipi-
tation data and the observed precipitation (R was about 0.4), which was the main reason
for the low KGE. The bias ratio and variability ratio were relatively good, with the former
nearly 1 and the latter 0.8.

Water 2023, 14, x FOR PEER REVIEW 8 of 21 
 

 

2.3.4. Verification Metrics 
The modified Kling–Gupta efficiency coefficient (KGE) and its three components 

were used to verify the quality of the discharge simulation and the ensemble mean dis-
charge forecast. The continuous ranked probability score (CRPS) and its skill version 
(CRPSS), using a monthly observation sample of the climatology as the reference, were 
used as verification metrics of the ensemble discharge forecast. The relative flood peak 
error and the relative flood volume error were used to evaluate the quality of the flood 
event simulations. Categorical verification scores in the form of probability of detection 
(POD), false alarm ratio (FAR), and equitable threat score (ETS) were used to evaluate the 
detection capacity of ERA5 regarding daily precipitation events. A detailed description of 
the metrics calculation can be found in Appendix A. 

3. Result 
We divided the analysis into four steps, with the evaluation of ERA5 precipitation 

data performed first, followed by the verification of the discharge simulations and the 
precipitation reforecast statistics, and finally the discharge reforecast results. The metrics 
calculation was performed for the verification period (2007, 2008, June–October). 

3.1. ERA5 Precipitation 
The modified Kling–Gupta efficiency coefficient (KGE) and its three components 

were calculated to compare ERA5 basin precipitation data with basin precipitation obser-
vations (Figure 3). The results showed a strikingly low correlation between the daily ERA5 
precipitation data and the observed precipitation (R was about 0.4), which was the main 
reason for the low KGE. The bias ratio and variability ratio were relatively good, with the 
former nearly 1 and the latter 0.8. 

 
Figure 3. KGE, R, β, γ of the ERA5 basin precipitation data over the verification period (2007, 2008, 
June–October). KGE = modified Kling–Gupta efficiency coefficient; R = correlation; β = bias errors; 
γ = variability error. 

Figure 4a shows the mean values of the ERA5 data and the basin precipitation obser-
vations for no rain (<0.1 mm/d), light precipitation (0.1–10 mm/d), moderate precipitation 
(10–25 mm/d) and heavy precipitation (25–50 mm/d) during the verification period; and 
Figure 4b shows the categorical verification scores (POD, probability of detection; FAR, 
false alarm ratio; and ETS, equitable threat score, used to evaluate the detection capacity) 
for the four categories. According to Figure 4a, ERA5 tended to overestimate no rain and 
light precipitation events slightly, and mildly underestimate moderate precipitation 
events. This was consistent with the finding of previous studies [36]. For heavy precipita-
tion events, the difference between ERA5’s and the observations’ mean values was very 
obvious, with the former being 13 mm/d and the latter 44 mm/d. The detection capacity 
of ERA5 regarding daily precipitation events was not very good, as the ETSs were low 
(below 0.2 for no rain and below 0.1 for other precipitation events). Moreover, it was more 

Figure 3. KGE, R, β, γ of the ERA5 basin precipitation data over the verification period (2007, 2008,
June–October). KGE = modified Kling–Gupta efficiency coefficient; R = correlation; β = bias errors;
γ = variability error.

Figure 4a shows the mean values of the ERA5 data and the basin precipitation obser-
vations for no rain (<0.1 mm/d), light precipitation (0.1–10 mm/d), moderate precipitation
(10–25 mm/d) and heavy precipitation (25–50 mm/d) during the verification period; and
Figure 4b shows the categorical verification scores (POD, probability of detection; FAR, false
alarm ratio; and ETS, equitable threat score, used to evaluate the detection capacity) for
the four categories. According to Figure 4a, ERA5 tended to overestimate no rain and light
precipitation events slightly, and mildly underestimate moderate precipitation events. This
was consistent with the finding of previous studies [36]. For heavy precipitation events, the
difference between ERA5’s and the observations’ mean values was very obvious, with the
former being 13 mm/d and the latter 44 mm/d. The detection capacity of ERA5 regarding
daily precipitation events was not very good, as the ETSs were low (below 0.2 for no rain
and below 0.1 for other precipitation events). Moreover, it was more difficult for ERA5
to accurately detect moderate and heavy daily precipitation events (for rainfall above
10 mm/d, PODs were below 0.2 and FARs about 0.8) than no rain and light precipitation
events (PODs were above 0.4 and FARs below 0.6).
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The information in Figure 4 confirms the low KGE scores and shows that even though
the precipitation values were correct on average (good bias), the system was not able
to accurately predict when the event was expected to occur (poor timing shown by low
correlation, as well as, to a lesser extent, by a variability of below 1, showing not enough
day-to-day changes in ERA5).

3.2. Discharge Simulation

Figure 5 shows the time series of the six discharge simulations during the verification
period (2007, 2008, June–October), together with the figures for the KGE and its three
components. In general, RHFS-S, as expected, presented a better fit with the best KGE
(0.88), followed by the GloFAS-S reanalysis (KGE of 0.54) and RHFS-S-ERA5 (KGE of 0.49),
suggesting that the error introduced by using ERA5 data for forcing was the main reason for
the poor simulation of the global hydrological forecast system. Additionally, RHFS-S-ERA5
had the worst bias ratio (0.52) among the raw simulations and an almost perfect variability
ratio (1.03), suggesting that the use of ERA5 mainly resulted in the underestimation of the
discharge. ERA5’s slight overestimation of precipitation for no rain and light precipitation
events had little impact on the discharge simulation, with the light blue line (RHFS-S)
almost always above the light yellow line (RHFS-S-ERA5). However, its underestimation of
moderate and heavy precipitation events led to the underestimation of flood peaks, except
for the last peak in 2008. In contrast, GloFAS-S (light red line), when compared with the
natural discharge (dashed black line) and RHFS-S-ERA5 (light yellow line), overestimated
the baseflow, which contributed to its high bias ratio (1.26). The KGE performance of
GloFAS was consistent with the results of Harrigan [22], that is, the bias was greater than 1
and the variability was less than 1 in China.

Quantile mapping is an effective way to partially eliminate errors originating from
both the modelling system (uncalibrated global hydrological model) and the forcing data
(ERA5), as the KGE after quantile mapping reached 0.74 (RHFS-S-ERA5-QM) and 0.84
(GloFAS-S-QM). However, QM could not improve the simulation performance of the locally
calibrated regional hydrological forecast system forced with observations, leading to the
KGE of RHFS-S-QM (0.8) being lower than the KGE of RHFS-S (0.88).
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(2007, 2008, June–October), and associated KGE, R, β, γ. KGE = modified Kling–Gupta efficiency
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Table 2 shows the relative flood peak errors (ratio of simulated peak error to observa-
tions) for the four flood events (including one multi-peak flood event with four continuous
peaks in 2007, and the three events in 2008) of the verification period, while Table 3 shows
the relative flood volume errors (ratio of simulated volume error to observations), calculated
excluding the baseflow. In general, and in most instances, the simulations underestimated
the flood peak and flood volume. Among the raw simulations, RHFS had the smallest
relative peak error and the smallest relative volume error. Regarding the peak simulations,
on the one hand, GloFAS-S and RHFS-S-ERA5 had a larger relative error than RHFS-S
(mean error of 36.2%, 50.9% and 23.9%, respectively), caused by the poor accuracy of ERA5,
which failed to provide good simulations of moderate and heavy rain events. On the
other hand, the GloFAS system could adapt well to the error characteristics of ERA5, as
suggested by GloFAS-S having lower peak simulation errors than RHFS-S-ERA5. After
excluding the influence of the baseflow, the flood volume errors were mainly attributable
to the input, with a relatively small influence of the modelling system, resulting in absolute
means of relative flood volume errors of 72.1% (GloFAS-S), 26.1% (RHFS-S) and 58.9%
(RHFS-S-ERA5).

Table 2. Relative flood peak error of simulations for four flood events during the verification period.

Flood Code
Relative Flood Peak Error (%)

GloFAS–S GloFAS–S–QM RHFS–S RHFS–S–QM RHFS–S–ERA RHFS–S–ERA–QM

1(1) −57.8 −68.7 −30.7 −26.3 −80.7 −72.8
1(2) −42.2 −39.5 −27.6 −27.5 −60.7 −42.8
1(3) −1.8 1.8 −7.0 −6.8 −38.5 −13.6
1(4) −10.2 3.2 −22.5 −21.8 −44.1 −13.6

2 −51.3 −60.9 −29.7 −24.7 −67.7 −54.9
3 −43.6 −33.2 −7.0 −6.1 −50.6 −22.6
4 46.7 54.4 −42.7 −53.1 −13.8 33.7

Absolute mean 36.2 37.4 23.9 23.8 50.9 36.3

The improvement of the flood simulation by quantile mapping depended on the
consistency of the error pattern during the training and the validation periods. Table 2
shows that QM was trained to increase the flood peak and the flood volume of RHFS-S-
ERA. This resulted in the post-processing greatly reducing the errors in most cases (flood
events 1–3), when RHFS-S-ERA underestimated the flood peak and volume, leading to
an improvement of the average flood peak error from 50.9% to 36.3%, and a reduction in
the flood volume errors for flood events 1–3 from 10% to 20%. There was a small change
in the RHFS-S after QM, with changes in the relative flood peak and flood volume errors
of 0.1% and 0.7%, respectively. For GloFAS-S, QM had a very random effect, reducing
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or amplifying the flood peak, but the flood volume was always increased (the relative
flood volume error was reduced by about 15% for flood events 1–3). Due to QM reducing
the baseflow, as mentioned above, the flood volume excluding the baseflow was larger in
relative terms.

Table 3. Relative flood volume error of simulations for four flood events during the verification
period.

Flood Code
Relative Flood Volume Error (%)

GloFAS−S GloFAS−S−QM RHFS−S RHFS−S−QM RHFS−S−ERA RHFS−S−ERA−QM

1 −44.5 −26.0 −15.4 −12.2 −59 −40.9
2 −81.9 −71.2 −32.6 −26.9 −67.8 −57.6
3 −51.2 −38.9 4.4 1.4 −45.4 −22.0
4 110.8 154.1 −51.9 −66.5 63.2 140.8

Absolute
mean 72.1 72.6 26.1 26.8 58.9 65.3

3.3. Precipitation Reforecast

We evaluated the skill of the precipitation reforecasts based on CRPSS values (measur-
ing forecast skill compared with reference forecast) of the precipitation ensemble reforecasts
(Figure 6) and on the KGE (with three components) of the precipitation ensemble mean
reforecasts (Figure 7), for lead times of 1–7 d.
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Figure 6 shows the CRPSS values plotted on a bar chart. The climatology was defined
as the monthly mean of daily basin precipitation observations over the six flood seasons.
The values were above 0, indicating that, over the full lead time considered, the precipitation
ensemble reforecasts had more skill than the climatology. In general, the forecasting skill
decreased with increasing lead times. However, the skill at a lead time of 1 d was lower
than at a lead time of 2 d, which could be attributed to the effect of initialization.

Figure 7 shows the KGE and its three components for the precipitation ensemble
reforecast mean. Similar to the CRPSS, the KGE, bias ratio and variability ratio all declined
with increasing lead times. Among the three components, only the bias ratio had a value
of above 1, with the others below 1. The low variability of the ensemble mean of the
reforecasts was expected, as it has long been known that precipitation ensemble forecasts
significantly underestimate heavy rain [28,29], hence also their ensemble means. The bias
ratios of 1 or above, combined with an underestimation of heavy rain suggested by the
low variability, were an indication of the ensemble mean systematically overestimating low
rainfall or dry episodes.

3.4. Discharge Reforecast
3.4.1. Discharge Ensemble Forecast

Figure 8 shows the CRPSS of discharge ensemble reforecasts during the verification
period for lead times of 1–7 d. The climatology was defined as the monthly mean of the
daily natural discharge over the six flood seasons. Generally, RHFS-F had the best forecast
skill amongst the three raw reforecasts, followed by RHFS-F-ERA5, with GloFAS-F coming
last. The skill of the RHFS-F discharge reforecasts decreased with increasing lead times,
similar to the skill of the precipitation ensemble reforecasts. However, the same was not
true for the Glo FAS-S and RHFS-F-ERA5 reforecasts, because they were influenced by the
combined impact of two or three interactive sources of non-negligible errors (initialization,
model, input).
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The combined influence of initialization error and forecast model error on forecast skill
became apparent by comparing the CRPSS of GloFAS-F with the CRPSS of RHFS-F; the
impact of errors from the forecast system by comparing the CRPSS of GloFAS-F with the
CRPSS of RHFS-F-ERA5; and the impact of the initialization error by comparing RHFS-F
with RHFS-F-ERA5. Given that the CRPSS was generally affected by the model error and
the low accuracy of initialization, it was below 0.3 for the GloFAS-F reforecasts, which
was significantly lower than the CRPSS of RHFS-F (0.6). The errors from system, initial
estimation and meteorological input were present at all lead times, with the influence of the
initialization data dominating at shorter lead times, and was consistent with the research
results of Zsoter et al. [37,38]. This was confirmed by the CRPSS difference between RHFS-
F-ERA5 and RHFS-F, caused by different initializations (about 0.25), being much larger
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than the CRPSS difference between RHFS-F-ERA5 and GloFAS-F, caused by the systems
(about 0.1). At longer lead times, however, the model error primarily governed the forecast
skill, which was demonstrated by the CRPSSs of RHFS-F-ERA5 and RHFS-F being close to
each other and better than the CRPSS of GloFAS-F.

GloFAS-F-QM had the worst forecast skill, whereas RHFS-F-QM performed best at
short lead times and had a similar CRPSS to RHFS-F-ERA5-QM at longer lead times. The
difference between the CRPSS of GloFAS-F-QM and the CRPSS of RHFS-F-ERA5-QM was
very small (dark red and dark yellow bar), which meant that QM was effective in reducing
the model error. Additionally, the results suggested that QM also diminished the error
from initialization, as shown by the CRPSS difference between RHFS-F and RHFS-F-ERA5
decreasing after QM, the former ranging between 0.1 and 0.3 and the latter between 0 and
0.2. The small improvement of RHFS-F after QM showed that QM also improved the error
from input. In total, these examples demonstrated that post-processing is very necessary
for ensemble discharge forecasting: it eliminates most of the errors caused by the system,
as well as, to some extent, errors caused by the initial data and, to a minor extent, errors
caused by meteorological input.

We then refined the analysis by subdividing the flow into low, moderate and high flow,
defined by the 50th and 90th percentiles of daily natural discharges in the verification period
(275 and 2730 m3/s, respectively). Figure 9 shows the average CRPS of the reforecasts at
different discharge magnitudes for the analyzed lead times, measuring the quality of the
probabilistic forecasts. As can be seen from the figure, the skill of the ensemble forecasts
was closely related to the magnitude of discharge, with better skill for low flow (lower
CRPS) and worse skill for high flow (higher CRPS). Amongst the raw forecasts, RHFS-F
performed best at moderate and low flow, followed by RHFS-F-ERA5 and GloFAS-F, which
performed significantly worse. For high flow, RHFS-F performed best at lead times of 1
and 2 d, but GloFAS-F performed slightly better at lead times beyond 3 d.
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Figure 9. The mean CRPS of forecasts for low flow, moderate flow and high flow, respectively
(defined by the 50th and 90th percentiles of the daily flow values), at lead times of 1–7 d, over the
verification period (2007, 2008, June–October). CRPS = continuous ranked probability score.

The difference between RHFS-F and RHFS-F-ERA5 (light yellow and light blue bars,
respectively) reflected the influence of the initialization error, which was present at low
flow at all lead times (with small variations). However, for moderate flow, the difference
decreased with increasing lead times and became very small at 5–7 d. For high flow, the
difference could be ignored after 3 d. This illustrated that the impact of the initialization
error on forecast performance was related to both the lead time and the flow magnitude.
The longer the lead time and the higher the flow magnitude, the lower the impact.

A comparison between GloFAS-F and RHFS-F-ERA5 (light red and light yellow bars,
respectively) showed the difference between the impact of the systems. With the same
input and initialization, RHFS-F performed better in most cases, but GloFAS-F performed
slightly better at high flow at longer lead times.
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Quantile mapping improved the performance of RHFS-F and RHFS-F-ERA5 at differ-
ent flow magnitudes. This was especially the case for the latter, where the most pronounced
improvement was seen at low flow. However, the improvement of GloFAS-F after quantile
mapping depended on the flow magnitude, with QM improving the prediction accuracy at
moderate and low flow, but not significantly at high flow.

3.4.2. Discharge Ensemble Mean

Figure 10 highlights the KGE and its three components, calculated based on the
ensemble mean of the discharge reforecasts for selected lead times. Surprisingly, the KGE of
GloFAS-F-QM and of RHFS-F-ERA5-QM were both about 0.8 and appeared to be the best
among all the discharge ensemble means we examined. In addition, the KGEs of GloFAS-F
and of RHFS-F-ERA5 were below the KGE of RHFS-F, with the former two below 0.6 and
the latter about 0.7.
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In Figure 10, different lead times generated small variations only in the KGE and
the three component scores of the daily discharge ensemble mean. When compared with
the larger decrease in the precipitation ensemble mean (Figure 7), this indicated that
the two hydrological prediction systems were relatively robust and could cope with the
variable quality of the precipitation forecasts to produce discharge forecasts of stable quality.
Because all forecasts have the same precipitation forecast input, the input error could not
be tested in this study. For each of the six discharge reforecast datasets, the correlation
between the ensemble mean and the natural discharge was almost the same (0.9) for all
tested lead times. The bias ratio of the GloFAS-F reforecast ensemble mean was greater than
1.2, whereas the bias ratios of the other ensemble means were below 1, which was assumed
to be the result of errors in the global system. The variability ratios of the experiments
initialized with ERA5 (i.e., GloFAS-F and RHFS-F-ERA5) were about 0.6 for all lead times,
which was much lower than the ratio for RHFS-F, which was initialized by observations.
This indicated that the variability ratio was strongly affected by initialization errors for lead
times of up to 7 d.

The quantile mapping had very little effect on the RHFS-F ensemble mean. However,
QM increased the low variability ratio caused by errors from initialization, raising the
γ of GloFAS-F and RHFS-F-ERA5 from 0.6 to about 0.9. Additionally, QM corrected the
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excessive deviation of GloFAS-F, which was due to the poor forecast quality at low flow
and mainly caused by model errors, lowering β from 1.3 to about 0.8.

4. Discussion and Conclusions

This paper explored the question of whether global hydrological forecast systems
(GloFAS) are always inferior to regional hydrological forecast systems (RHFS), and exam-
ined the underlying factors (input, initialization and model). The main conclusions are
summarized as follows:

1. Regarding river discharge simulations, GloFAS performed more poorly and was
poorer than RHFS. This was mainly attributed to errors in the proxy-observations
(ERA5) used as input to GloFAS, which did not provide good simulations of moderate
and heavy daily precipitation events (above 10 mm/d), and to a model error which
resulted in an overestimation of the baseflow. However, when the same ERA5 input
was used, GloFAS appeared to be better than RHFS at simulating flood peaks;

2. On average, GloFAS showed a worse forecast performance than RHFS. This was
mainly attributed to errors in the initial conditions (based on ERA5 initial data), and
to model errors. However, for high flow forecasts, GloFAS was better than RHFS
for longer lead times, and GloFAS was better for all lead times when RHFS was also
initialized with ERA5;

3. Quantile mapping eliminated most of the initial errors, as well as part of the model
and input errors, but failed to correct errors at high flow for GloFAS.

This study improves our understanding of the global hydrological forecast system
in regional adaptability in comparison with the regional forecast system, and related
influencing factors, thus, providing important guidance for basin discharge simulation and
forecast, especially for flood ensemble forecast, and an improvement in the direction of the
global hydrological forecast system. To the best of our knowledge, similar studies have not
been conducted in the Chinese basin. Although this is an example of research on the upper
Wangjiaba basin, the positive result may inspire research on the global hydrological forecast
system with a focus on other basins. Our study could be used to supplement research on
the existing regional hydrological forecast system, while on the other hand, the feedback of
different basins to the global hydrological forecast system is also an important information
source for improving the direction of ensemble forecasting, including ensemble forecasting
models, data assimilation methods, post-processing methods, and so on. For a full test,
GloFAS should have been forced with the observations for this catchment, but, due to gaps
in the available observations, this was not technically possible. Improving the quality of
ERA5 for moderate and higher precipitation could be an efficient way to improve GloFAS
simulations and forecasts, given that GloFAS uses ERA5 as input to produce simulations
and as initialization data to produce discharge forecasts. In addition, ERA5 precipitation
data are closer to the observations over continental regions, such as Central Europe and
the continental U.S., where many observations are used for assimilation in the production
of ERA5 [39]. The higher ERA5 precipitation quality in these extratropical areas is also
supported by the generally less common convective precipitation, and the difficulty of
predicting convective precipitation causes ERA5 to show lower quality over tropical areas,
especially during the summer season [40]. This means that, in regions where ERA5 has high
precipitation quality, the global hydrological system may provide extra additional value
over regional systems, as ERA5 is crucial in lowering the global system skill. We conclude
that GloFAS represents a good alternative for flood ensemble forecasts for the Wangjiaba
basin. Combining the low and medium flow forecast component of RHFS with the high
flow flood forecasting component of GloFAS may also be an efficient way to generate
ensemble discharge forecasts without needing to apply QM. In future studies, it would
be beneficial to consider a longer period, covering more continuous years, to improve the
robustness of results by increasing the sample size, and to run a longer simulation for
initialization in a homogeneous way. In addition, according to Harrigan’s research [22], the
performance of GloFAS is related to the basin area, and the skill of increasing the basin size
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is higher. Therefore, the simulation prediction results of GloFAS for large basins are worthy
of attention.
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Appendix A

1. The modified Kling–Gupta efficiency coefficient

The modified Kling–Gupta efficiency coefficient (KGE) [41] is of growing interest
as a standard performance measure of hydraulics, which can be decomposed into three
important components for assessing hydrological dynamics: correlation (R), bias error (β)
and variability error (γ):

KGE′ = 1−
√
(R− 1)2 + (β− 1)2 + (γ− 1)2 (A1)

β =
µs

µo
(A2)

γ =
σs/µs

σo/µo
(A3)

where R is the Pearson correlation coefficient between simulations (or ensemble mean
forecasts, s) and observations (o); β is the bias ratio; γ is the variability ratio; µ, σ are the
mean value and standard deviation of the variable, respectively. The KGE and its three
decomposed components are all dimensionless with an optimum value of 1.

2. Continuous ranked probability score

The continuous ranked probability score (CRPS) [27] compares the distribution of an
ensemble forecast with the observed value. It is sensitive to bias in terms of forecast values
as well as variability.

CRPS =
1
N

N

∑
i=1

+∞∫
−∞

[Gi(x)− H(x− oi)]dx (A4)

H(x− oi) = 1 x ≥ oi
H(x− oi) = 0 x < oi

(A5)

where Gi(x) is the cumulative distribution function of forecasts on day i; oi is the observa-
tion of day i; and N indicates the number of forecasts. The smaller the CRPS value, the
better, and the best value is 0.
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3. Continuous probability ranking scores skill

The continuous ranked probability skill score (CRPSS) [27] uses reference forecasts to
normalize the CRPS of the model forecast, measuring its forecasting skills compared with
the reference forecast:

CRPSS = 1−
CRPS f orecast

CRPSre f
(A6)

where CRPS f orecast represents the CRPS value of the forecast; and CRPSre f is the CRPS
value of the reference forecast. When the CRPSS of the forecast is equal to zero, the forecast
skill is equal to that of the reference forecast. A CRPSS greater than 0 indicates a forecast
that is more skillful than the reference forecast, whereas a CRPSS smaller than 0 indicates
less skill than the reference forecast. A CRPSS approaching one indicates a perfect forecast.
The reference forecast for any calendar day in this study has been defined as the monthly
average of the observations over the six flood seasons in that month, regardless of which
day of the month it is. For example, the reference forecast on 1 June (or any day of June)
is the average of the natural discharge data (or precipitation) from the observations taken
during the month of June (as we have six flood seasons, it is the average value of 30 × 6
values).

4. Relative flood peak error and relative flood volume error

The relative flood peak error and relative flood volume error are commonly used in
flood assessment [42–44]:

∆PE = 100% ∗ (PE− PEobs)/PEobs (A7)

∆PV = 100% ∗ (PV − PVobs)/PVobs (A8)

where ∆PE is the relative flood peak error; PE is the simulated flood peak; PEobs is the
flood peak of natural discharge; ∆PV is the relative flood volume error; PV is the calculated
flood volume; and PVobs is the flood volume of natural discharge. The optimal value of
both metrics is 0, which means an unbiased discharge simulation. The flood volume does
not include the baseflow here (Figure A1), the detailed calculation of the flood volume can
be found in Fan’s paper [42,45].
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Figure A1. Typical flood hydrograph showing flood flow characteristics.

5. Probability of detection and false alarm ratio

The probability of detection POD and false alarm ratio (FAR) measure the probability
of the correct detection and false detection by ERA5, respectively.

POD =
hit

hit + miss
(A9)

FAR =
f alse alarm

hit + f alse alarm
(A10)
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A hit indicates that a simulated event occurred; a miss indicates that an event was not
simulated to occur, but did occur; and a false alarm means that a simulated event did not
occur. The optimal POD value is 1 and the optimal FAR value 0.

6. Equitable threat score

The equitable threat score (ETS) represents a more comprehensive score than POD
and FAR (applied here to examine ERA5’s performance), because it penalizes both misses
and false alarms in the same way [36].

ETS =
hit− He

hit + miss + f alse alarm− He
(A11)

He =
(hit + f alse alarm)(hit + miss)

n
(A12)

where n is the number of samples. The optimal ETS value is 1, the minimum is –1/3 and 0
indicates no skill.

Appendix B

The Xinanjiang model is a conceptual lump model, developed in 1973 and described
in an international publication in 1980 [32]. It is widely used for humid and sub-humid
regions in China. The structure of the Xinanjiang model is shown in Figure A2. The inputs
of the model are basin–mean precipitation P, and basin–mean pan evaporation EM, while
the outputs are basin outlet discharge Q and basin evaporation E. The calculation mainly
consists of four parts: (1) calculation of evapotranspiration, with the evaporation coming
from three soil layers, the upper, lower and deep soil layers; (2) runoff generation: this
part assumes that runoff is produced by the basin when the soil moisture content reaches
the field capacity; (3) runoff separation, using the free water storage reservoir for water
source division, generating surface runoff, interflow and underground runoff; and (4)
runoff routing module, divided into the river network confluence and the river channel
confluence.
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The parameters of the calibrated Xinanjiang model used in this paper are listed in
Table A1, as well as the definitions and boundaries of the parameters.
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Table A1. Definition of parameters, the boundaries and values of parameters used in this study.

Parameter Meaning Boundary Value

K Ratio of potential evapotranspiration to pan
evaporation 0.1–1.5 1

WUM Upper layer soil water storage capacity 5–30 24.8
WLM Lower layer soil water storage capacity 60–90 78.2

C Deep evaporation coefficient 0.09–0.3 0.1
WM Maximum watershed soil water storage capacity 70–210 109.1

B Exponent of soil water storage capacity curve 0.05–0.4 0.33
IM Percentage of impervious area in the catchment 0–0.5 0.01
SM Free water storage capacity 1–50 46
EX Exponent of soil water storage capacity curve 1–1.5 1.4

KG Outflow coefficient of free water storage to
groundwater 0.2–0.6 0.4

KI Outflow coefficient of free water storage to
interflow 0.2–0.6 0.4

CI Recession constant of interflow 0.1–0.99 0.78
CG Recession constant of groundwater runoff 0.7–0.999 0.998
CS Recession constant of surface runoff 0.01–0.4 0.32
L Lag in time - 1

KE Routing time in channel unit (d) 0–1 1
XE Weight factor of Muskingum method 0–0.5 0
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