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Abstract: Soil moisture modeling is necessary for many hydrometeorological and agricultural ap-
plications. One of the ways in which the modeling of soil moisture (SM) can be improved is by
assimilating SM observations to update the model states. Remotely sensed SM observations are prone
to being riddled with data discontinuities, namely in the horizontal and vertical spatial, and temporal,
dimensions. In this study, a set of synthetic experiments were designed to assess how much impact
each of these individual components of spatiotemporal gaps can have on the modeling performance
of SM, as well as streamflow. The results show that not having root-zone SM estimates from satellite
derived observations is most impactful in terms of the modeling performance. Having temporal gaps
and horizontal spatial gaps in the satellite SM data also impacts the modeling performance, but to a
lesser degree. Real-data experiments with the remotely sensed Soil Moisture Active Passive (SMAP)
product generally brought improvements to the SM modeling performance in the upper soil layers,
but to a lesser degree in the bottom soil layer. The updating of the model SM states with observations
also resulted in some improvements in the streamflow modeling performance during the synthetic
experiments, but not during the real-data experiments.
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1. Introduction

Soil moisture is a key variable in both hydrological and atmospheric modeling, as it
influences the partitioning of water and energy fluxes between the land surface and the
atmosphere. Accurate knowledge of soil moisture is important for many applications, such
as numerical weather prediction, climate modeling, flood forecasting, drought monitoring
and irrigation management [1,2]. While traditional in-situ soil moisture measurements may
offer more accuracy, the global availability of these measurements is rather limited. Even
in watersheds where soil moisture measurements are actively being taken, the network of
point measurement locations is usually sparse, and therefore unable to provide a proper
representation of the spatial variability of soil moisture over larger areas [3].

In recent decades, multiple satellite platforms have started operating that help provide
soil moisture estimates at a global scale, albeit at a relatively coarse spatial resolution and
only for the uppermost layer of soil. Some of these remote sensing missions are even
dedicated to soil moisture, namely the Soil Moisture and Ocean Salinity (SMOS) mission [4]
and the Soil Moisture Active Passive (SMAP) mission [5]. Both the SMOS and SMAP
missions used passive L-band (1.4 GHz) microwave radiometers to generate surface soil
moisture estimates for, approximately, the top 5 cm of soil, at a native spatial resolution of
around 36 km and a temporal resolution of approximately 1–3 days [6]. There is also the
upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission [7] to be launched in
2023, which will use active L-band (1.26 GHz) backscatter measurements to provide global
soil moisture estimates at a spatial resolution of 200 m every six days.

To obtain soil moisture estimates for both surface and subsurface soil layers (also
known as root-zone soil moisture or profile soil moisture) with a higher spatiotemporal
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resolution, land surface models or distributed hydrological models can be used. However,
these modeled estimates can have large uncertainties depending on the source of the forcing
data, as well as the parameterization and structure of the model itself [8]. It has been found
that some of these modeling errors can be reduced by integrating remotely sensed soil
moisture information into the model through the process of data assimilation [9–12]. One
of the things that can be achieved using data assimilation techniques is that internal model
states can be updated with collocated observations in an optimal fashion at each observation
time step, which may lead to better model prediction at the subsequent time steps.

One of the common practical issues that arises during the assimilation of remotely
sensed soil moisture data are the question of how to address the spatiotemporal gaps within
the data [13,14]. The spatial gaps may be split into two categories: gaps in the horizontal
direction and in the vertical direction. In the horizontal direction, data discontinuity may
be caused by the soil moisture retrieval algorithms not being able to accurately generate
an estimate over some grid cells due to dense vegetation, hilly terrain, frozen soil, radio
frequency interference, etc. [15,16]. In addition, particularly in the case of data assimilation
in models representing larger watersheds, it is probable that when a satellite passes over
the watershed, its viewing angle does not cover the whole watershed, thus leaving a spatial
gap in the soil moisture map for that overpass [17,18]. As for the gaps in the vertical
direction, as passive microwave sensors are only effective at estimating the soil moisture of
the uppermost layer of soil, the root-zone layer of hydrological models cannot be updated
directly using remotely sensed soil moisture estimations. Finally, the temporal gaps in
remotely sensed soil moisture datasets are due to the geometry of the satellite orbits, which
lead to longer revisit times over any specific location.

When sequential data assimilation methods are used—for example, the Ensemble
Kalman Filter (EnKF) [19]—no additional steps are needed on account of the temporal
gaps because these methods pause the model simulation to make an update only when
observations become available, and then resume the simulation until the next set of obser-
vations are available. Next, the issue of not having root-zone soil moisture observations
during data assimilation can be dealt with in multiple ways. The simplest approach is to
update the surface layer of the model with the corresponding surface layer soil moisture
estimates from remote sensing, and allow the model to propagate this added information
downwards to the root-zone layer through the inherent model physics [20–22]. The results
from these studies show that it is possible to improve soil moisture simulation of both layers
by updating only the surface layer. Another approach is to apply an indirect update to the
root-zone layer of the model based on the update increment applied to the surface layer and
the covariance between the soil moisture of different layers [23–25]. These studies show
that the simulated soil moisture at varying depths can be improved by using this approach.

The root-zone layer can even be directly updated along with directly updating the
surface layer, if the corresponding root-zone layer estimates based on the remotely sensed
surface layer measurements are generated prior to performing data assimilation (to be
assimilated as ‘observations’), using methods such as the Soil Moisture Analytical Rela-
tionship (SMAR) or the exponential filter [26,27]. Some studies have even assimilated
root-zone soil moisture data that have been previously generated using other land surface
models, such as the publicly available H-SAF SM-DAS-2 product [28]. Although the results
from these studies are positive, it is not quite clear which of the three abovementioned
approaches are more effective given that, usually, only a single approach is employed in a
single study.

Similar to the issue of whether and how to update the root-zone soil moisture, multiple
approaches can be investigated when the remotely sensed soil moisture maps used in data
assimilation are spatially incomplete in the horizontal direction. This may be less of a
concern when lumped or semi-distributed models are used [29,30] because, in this case, the
irregularly shaped basin of the model is more likely to be larger in area than the spatial
resolution of the observation data, thereby necessitating the averaging of multiple observa-
tion grid cells. Therefore, it will still be possible to update the model state if the observed
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data of a few grid cells are missing. However, for finer resolution distributed hydrological
models or land surface models whose grid spatial resolution is closer to that of the remotely
sensed observations, this problem of having horizontal spatial discontinuity needs to be
addressed before performing data assimilation. The simplest and most commonly used
approach is to update only the grid cells for which observations are available and allow
the remaining grid cells retain their model simulated values [31–33]. Alternatively, the soil
moisture state of an unobserved grid cell may also be updated if other nearby grid cells
have observations available and are correlated with the unobserved grid cell [25,34,35].
This approach is similar to the covariance-based approach described previously for vertical
spatial gaps. It is also possible to estimate the soil moisture of unobserved grid cells prior
to data assimilation using methods such as geostatistical modeling, and then use these
estimates as ‘observations’ for data assimilation [17].

All of these methodologies that account for missing data in the horizontal spatial direc-
tion during data assimilation are shown to be able to improve the modeling performance
when compared to the modeling performance without data assimilation. However, data
assimilation studies are hard to find in the literature where the impacts of having spatial
data discontinuities in both the horizontal and vertical directions of remotely sensed soil
moisture, as well as temporal data gaps, are assessed within the same modeling framework.
Looking at all of these aspects of data discontinuity using the same model, the datasets
and study area will make it easier to compare which kind of data gap is more detrimental
to the modeling performance, and which kind of modeling approach is better suited to
circumvent this problem of missing data. This study was therefore aimed at adding to
the existing literature on this topic by carrying out multiple synthetic data assimilation
experiments using the EnKF algorithm and the Weather Research and Forecasting hydro-
logical extension package (WRF-Hydro) modeling system, to investigate how the ability of
the model to simulate soil moisture may be affected by having spatiotemporal gaps in the
observation data. To achieve this, spatiotemporal discontinuity information was extracted
from SMAP datasets and then imposed on synthetically generated observation datasets
to mimic the conditions found in actual remotely sensed datasets. The impact of these
different soil moisture assimilation scenarios on the model’s ability to accurately simulate
streamflow was also investigated. Lastly, the data assimilation experiments were repeated
with the SMAP data as observations instead of synthetic observations.

2. Materials and Methods
2.1. Study Area

The 721-km long Susquehanna River is situated in the northeast of the United States,
and its 71,432 km2 drainage basin covers parts of the New York (NY), Pennsylvania (PA),
and Maryland (MD) states [36]. With a mean annual flow of approximately 1100 m3/s, it
drains into the Atlantic Ocean through the Chesapeake Bay, and accounts for approximately
50% of the freshwater inputs of the bay [37].

The Susquehanna River basin has a humid continental climate with a mean annual
temperature of 9.7 ◦C and mean annual precipitation of 980 mm. The warmest months
are between June and August with a mean high temperature of 26 ◦C in July, and the
coldest months are January and February, with a mean low temperature of −8 ◦C in
January. As for precipitation, the highest amounts are seen in between May and July,
and the lowest amounts in January and February. During the winter months, snowfall
occurrences are more prominent in the northern portion of the watershed. In the summer,
higher temperatures are common along with locally intense convective storms, while in
the late summer to fall seasons, the watershed becomes prone to floods brought about
by tropical storms and hurricanes originating in both the Atlantic Ocean and the Gulf of
Mexico [36,37]. Droughts have also affected the watershed in the past, although with a
lesser frequency than floods [38].

The physiography of the watershed includes high plateaus, mountains, valleys and
ridges, and the soils of the watershed are predominantly silt loam and loam. The most
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common land cover category is forest (63%), followed by cropland (19%), pasture (7%)
and urban development (9%) [36]. There are multiple large water infrastructures near
the downstream end of the watershed, namely the Safe Harbor Dam, Holtwood Dam,
and the Conowingo Dam. To avoid the complexities that would arise if these dams were
incorporated into the hydrological model, only the drainage area upstream of Harrisburg,
PA, was considered for this study, the area of which is approximately 60,600 km2 (Figure 1).
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Figure 1. Topography of the Susquehanna River watershed and the locations of the in-situ streamflow
and soil moisture measuring stations. The complete watershed is shown in red, and the modelled
portion of the watershed is shown in blue which excludes the large downstream dams.

For the purposes of model parameter calibration and data assimilation performance
assessment, in-situ measurements of the soil moisture at different soil depths were collected
from the International Soil Moisture Network (ISMN) database [3]. A total of four stations
were selected, two of which (Geneva, NY and Rock Springs, PA) are part of the Soil Climate
Analysis Network (SCAN) [39] and the other two (Ithaca, NY and Avondale, PA) are part
of the U.S. Climate Reference Network (USCRN) [40]. All of these measurement stations
use Stevens HydraProbe sensors (Stevens Water Monitoring Systems, Portland, OR, USA)
to measure the soil moisture at 5, 10, 20, 50 and 100 cm soil depths. It should be noted
that three out of these four in-situ stations are located outside of the Susquehanna River
watershed’s boundary. This did not pose any problems because they are still located within
the land surface model (LSM) domain, as shown in Figure 1. The LSM used for this study
utilizes square grids to discretize a larger rectangular domain and, therefore, all of the grid
cells within the LSM domain were included in the calibration process and provided soil
moisture estimates during the assimilation experiments. However, when quantifying the
basin-averaged soil moisture modelling performance later in the Results and Discussion
section, grid cells outside of the modelled basin boundary were masked out.

In-situ measurements of streamflow were also collected for model parameter calibra-
tion, data assimilation performance assessment, and to help select the timeframes of model
calibration/validation and assimilation experiments. The locations of these selected United
States Geological Survey (USGS) measurement locations are shown in Figure 1, which are
in Vestal, NY, Lock Haven, PA, Sunbury, PA, and Harrisburg, PA.
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2.2. Hydrological Modeling

The WRF-Hydro modeling system [41], developed by the National Center for Atmo-
spheric Research (NCAR), is a fully distributed system that consists of multiple modules,
namely a column land surface module, surface overland and saturated subsurface lateral
flow modules, channel routing and reservoir routing modules, and a conceptual baseflow
module. The Noah land surface model with multiparameterization options (Noah-MP)
option [42] was selected for the column land surface module. Soil moisture was simulated
in Noah-MP for four soil layers, with a total thickness of 200 cm. The thicknesses of the
individual layers were defined to be 5, 35, 60 and 100 cm. The thickness of the top layer
was chosen to be 5 cm in order to be compatible with the remotely sensed soil moisture
estimates. These thicknesses were uniform throughout the model domain.

It Is possible to keep some of the other WRF-Hydro modules switched off, but all
of them were activated for this study so that both the soil moisture and streamflow are
simulated. This way, the impact of updating the soil moisture values on the streamflow
generation can be investigated, which is caused by the propagation of the assimilated
information through the lateral surface and subsurface terrain routing, and the channel
routing of water. The subsurface runoff in WRF-Hydro uses a quasi-3D flow equation as
implemented in the Distributed Hydrology Soil Vegetation Model (DHSVM), the surface
runoff calculation uses a fully unsteady diffusive wave formulation, and a one-dimensional,
variable time-stepping, diffusive wave gridded routing method was used for channel
routing. Readers are referred to [41] for complete technical descriptions of WRF-Hydro.

To set up the model domain for the study area, soil texture information was collected
from the 16 category hybrid State Soil Geographic/Food and Agriculture Organization
(STATSGO/FAO) soil texture map produced by NCAR, the land use information was that
of the 20-cateory International Geosphere-Biosphere Programme (IGBP) modified Moderate
Resolution Imaging Spectroradiometer (MODIS) land use dataset, and the 30 arc-second
version of the HydroSHEDS (Hydrological data and maps based on SHuttle Elevation
Derivatives at multiple Scales) data were used as the elevation information. A 5 km grid size
was chosen for the column land surface module and a 1 km grid size was used for the terrain
routing and channel routing modules. The decision to use these horizontal resolutions
was made based on a trade-off between a satisfactory model performance and trying not
to overwhelm the available computing resources, as WRF-Hydro is a computationally
intensive modeling system. As for the time steps of the different model components, the
land surface module was run hourly, and both the terrain and channel routing modules
had a time step of one minute.

The WRF-Hydro was initially developed for easy coupling with the Weather Research
and Forecasting (WRF) atmospheric modeling system [43], but it can also be used in an
offline mode, i.e., not coupled with any atmospheric model. In this case, the meteorological
forcings from any independent source need to be provided to the WRF-Hydro, which are
the incoming shortwave and longwave radiation, specific humidity, air temperature, surface
pressure, near surface wind in two orthogonal directions, and liquid water precipitation rate.
For this study, these meteorological data were sourced from the ECMWF Reanalysis 5th
Generation (ERA5) product [44]. The ERA5 datasets are generated by the European Centre
for Medium-Range Weather Forecasts (ECMWF) using their Integrated Forecast System
(IFS), which combines model data with observations through a 4D-Var data assimilation
scheme. The 10 member ensemble version of ERA5 was used for this study, which has a
temporal resolution of 3 h and a spatial resolution of 0.5 decimal degrees.

Prior to using the WRF-Hydro model for the data assimilation experiments, the model
was calibrated against the in-situ soil moisture and streamflow data using the Pareto
Archived Dynamically Dimensioned Search (PADDS) algorithm [45]. PADDS is the multi-
objective version of DDS [46], which is a stochastic and heuristic global-search optimization
algorithm. For single-objective problems, DDS starts searching for the global optimum, and
then narrows its search to local regions when the user-specified maximum number of model
iterations is approaching. In the case of multi-objective calibration, PADDS tries to define
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the Pareto front between the objective functions, on which improving one objective function
deteriorates the other(s). For this study, the hypervolume contribution selection metric was
used in PADDS, and the neighborhood perturbation factor was set to the recommended
default value of 0.2.

2.3. Remotely Sensed Soil Moisture

The SMAP soil moisture data were used in this study for direct assimilation during
the real-data experiments, as well as for using the spatiotemporal gap patterns of this
dataset during the synthetic experiments. Specifically, the version 4 of SMAP Enhanced L2
Radiometer Half-Orbit 9 km Equal-Area Scalable Earth Grid (EASE-Grid) Soil Moisture
was used. This dataset, provided by the National Aeronautics and Space Administration
(NASA), has a 13 h latency and has the unit of volumetric soil moisture, which is the same
as the WRF-Hydro model soil moisture outputs. Only the data from the descending pass of
the satellite orbits were used in this study, which has a retrieval time of 6 am (local time).
The soil moisture retrieval algorithm assumes the surface soil, vegetation, and air to be in
thermal equilibrium in the early morning, and so the morning retrievals are expected to be
of slightly better quality.

All of the assimilation experiments were conducted for the summer-fall months to
avoid the winter months where frozen soil and snow cover make it challenging to estimate
soil moisture from satellites, and to avoid the spring months when soil moisture assimilation
may have a lesser impact on the snowmelt-driven streamflow. Therefore, filtering the SMAP
data for snow covered or frozen soil conditions was not necessary. To illustrate the patterns
of the spatiotemporal gaps in the SMAP dataset, soil moisture maps over the study domain
are presented in Figure 2 for the first 15 days of June 2018. When horizontal spatial coverage
within the watershed boundary is considered, some days there is full coverage, some days
have zero coverage, and some days have partial coverage. Within the experiment months
of June-October, approximately 38% of the days have full coverage, another 38% have zero
coverage, and the remaining 24% of the days have partial coverage.
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2.4. Data Assimilation
2.4.1. Ensemble Kalman Filter (EnKF)

The EnKF was chosen as the preferred data assimilation method in this study because it
was found to be the predominant method of choice in the existing soil moisture assimilation
literature. This is because the EnKF is well suited to high dimensional nonlinear problems,
is computationally efficient and easy to implement, albeit with a limitation of the Gaussian
error assumption [47]. Alternatives to EnKF include the Particle Filter (PF), which does
not require any assumptions of Gaussian error, and sometimes even slightly outperforms
EnKF. However, it is possible for PF to underperform EnKF and be generally comparable
to EnKF at other times, all the while carrying a larger computational burden, leading to
fewer users [48,49].

EnKF is a Monte Carlo-based approach that allows model uncertainties to be estimated
from a model ensemble spread that is assumed to be large enough to represent the true
uncertainty of the simulation [50]. It works in two steps: a forecast step and an analysis
step. In the forecast step, ensembles are generated by either perturbing the forcing data,
model states, model parameters, or any combination between them. Then, the model is
propagated to a future time step where observations are available. In the analysis step,
uncertainty between the ensembles of the model forecast and the observation is compared.
If it is a state-updating scheme, then the model state at time t will be updated using the
following equation, which gives more weight to the component between the model forecast
and the observation that has the least uncertainty:

xa
t = xb

t + Kt

(
yt − Htxb

t

)
, (1)

where xa
t is the updated state (a.k.a. analysis), xb

t is the forecast state (a.k.a. background),
Kt is the Kalman gain, yt is the observation, and Ht is the observation operator. The
analysis, background and observation operator took different forms in this study (either
scalar, vector, or matrix), depending on the different scenarios, and will be discussed in
the subsequent section. The Kalman gain, which acts as a weighted average between the
model forecast and the observation, is computed as follows:

Kt = Pb
t H−1

t

(
HtPb

t H−1
t + Rt

)−1
, (2)

where Rt is the observation matrix and Pb
t is the model covariance matrix, which is calcu-

lated as:
Pb

t =
1

N − 1

(
xb

t − xb
t

)(
xb

t − xb
t

)−1
, (3)

where N is the number of ensemble members and xb
t is the ensemble mean of the background.

The model forecast uncertainties can be thought of a primarily arising from the
forcing data, the model parameter and the model structure. The variability within the
10 member ensemble of the ERA5 forcing data are assumed to contain a sufficient amount of
forcing uncertainty. The remaining two categories of uncertainty, the model parameter and
structure, are represented jointly in this study by directly perturbing the soil moisture in the
model background. All of the experiments in this study were conducted with 24 ensemble
members generated by combining the different sources of uncertainties together, as follows.

First, nine out of the ten ensemble members of the ERA5 forcings (the tenth member
was set aside to be used as synthetic truth, which is explained further in the next section)
were duplicated into 24 members, of which only nine are unique members. Using these
24 forcing members to run the model 24 times provided a 24 member ensemble of soil
moisture states, of which, again, only nine are unique members, and the rest are duplicates
of those nine. Next, the soil moisture states of each of these 24 members were perturbed
with unique random noise, leading to a model background of 24 unique members. As
perturbations, temporally and spatially uncorrelated additive Gaussian noise was used,
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with a mean of zero and standard deviation of 0.05 m3/m3. This value was decided
upon after multiple trials to determine which magnitude of noise leads to the maximum
post-assimilation improvement in terms of the root-mean-squared-error (RMSE).

For the synthetic experiments, the soil moisture observation uncertainty was estimated
using a temporally and spatially uncorrelated zero mean Gaussian distribution with a
standard deviation of 0.04 m3/m3, mirroring the baseline science requirements of the SMAP
mission [5]. For the real-data experiments, the observation uncertainty was estimated using
the triple collocation analysis method, which is discussed in Section 2.4.3. In addition, all
of the assimilation experiments had a lead time of 24 h, i.e., the model propagations were
paused at 6 a.m. (local time) every day to calculate the analysis only if observations were
available, thereby coinciding with the time of the SMAP data retrievals. The experimental
model runs were commenced separately for 2018 (which had a relatively wet summer-fall
season) and 2020 (a drier than average summer-fall season), with each simulation spanning
between 1 June and 31 October of the corresponding year.

2.4.2. Synthetic Experiments

A set of synthetic experiments, a.k.a. Observation System Simulation Experiments
(OSSE), were designed for this study, where assimilation was performed not with soil mois-
ture observations from the real world, but rather with synthetically generated observations.
The overall methodology of generating these synthetic observations and applying them in
the EnKF is presented in Figure 3. First, the WRF-Hydro model was run with forcings from
nine out of the ten ERA5 ensemble members, generating nine projections of soil moisture
to be used as the ‘open loop’, i.e., what happens if the model is run without any data
assimilation. Next, the WRF-Hydro model was run with the remaining tenth member of
the ERA5 forcings, generating another projection of soil moisture, which was considered
to be the ‘synthetic truth’. The goal of all the synthetic experiments was to apply EnKF in
order to guide the open loop simulations closer to this synthetic truth.
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In the natural world, these true values are never accurately known because all obser-
vations are always prone to some type of error, such as an instrument error or operator
error. Therefore, random Gaussian noise was added to this synthetic truth soil moisture
(as described in the previous section) to prepare it for use as a synthetic observation for
the assimilation experiments. The EnKF algorithm then compared the uncertainties of this
synthetic observation and the model forecast uncertainties (as described in the previous
section) to determine the final post-assimilation soil moisture. It should be pointed out that
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both the open loop and post-assimilation simulations have multiple ensemble members
(nine and 24, respectively) while the synthetic truth has only a single member. Therefore,
to consistently evaluate the three types of data, only the ensemble mean of the open loop
and post-assimilation soil moisture data were considered.

A total of seven different scenarios were tested to investigate the impacts of the
spatiotemporal gaps in the observed data on assimilation performance by comparing these
scenarios with the open loop (no assimilation) model runs. The spatial configurations of
these scenarios are visualized in Figure 4. Scenario 1 is the most ideal situation, where
observed data are available for all of the model grid cells in all of the soil layers. In addition,
the data are available every day, i.e., there are no temporal gaps. Scenario 2 also has no
temporal gaps and has observed data available for all of the model grid cells, but only for
the topmost soil layer. This scenario is more realistic than Scenario 1 because the satellite
sensors are unable to detect the soil moisture of the root-zone layers. Scenario 3 is spatially
similar to Scenario 2, the only difference being that temporal gaps are introduced here. This
was conducted by not performing assimilation on any model grid cell during the days on
which there are no SMAP data over the entire model domain. This scenario is intended to
isolate the impacts of having temporal gaps in the data from the impacts of spatial gaps.
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From Scenario 4 onwards, both the spatial and temporal gaps available in the SMAP
dataset were superimposed on the synthetic observations by assuming that the grid cells
which do not have SMAP observations on a particular day also does not have synthetic
observations. In Scenario 4, only those grid cells were updated with synthetic observations,
for which the SMAP data are available in the corresponding day. In Scenario 5, on the
other hand, some of the top layer grid cells without available observations were also
updated. This was accomplished using the following technique. In Scenarios 1–4, the
assimilation was point-based or zero-dimensional, i.e., each grid cell of each soil layer was
updated separately and independently. In other words, the background matrix xb

t and the
observation matrix yt contained the soil moisture value of only one grid cell; therefore,
the observation operator took the form of a scalar, Ht = 1. In Scenario 5, however, the
assimilation was performed two-dimensionally (in two of the horizontal directions).

For example, if a grid cell has no observation but three of its surrounding grid cells do,
then the background matrix will have four components: the soil moisture of the grid cell
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to be updated and those of the surrounding three grid cells. The observation matrix will
have only three components, as the grid cell to be updated does not have any observations.
The observation operator will be the 3 × 4 matrix, Ht = [0 1 0 0; 0 0 1 0; 0 0 0 1]. By
setting up the matrices this way, the grid cell with a missing observation will be updated
based on the covariance between it and the surrounding three grid cells, as calculated
in Equation (3). It was determined through trial-and-error that the optimum number of
surrounding grid cells to be utilized for this approach is a maximum of five grid cells with
the same land use category and located within a radius of 25 km from the grid cell to
be updated. Putting a constraint on the location of the utilized surrounding grid cells in
this way, that is, localization, helps prevent the grid cells being updated through spurious
correlations between faraway grid cells [51]. It should be noted that this led to some of
the top layer grid cells not being updated as they did not have any available observations
within a 25 km radius.

In Scenario 6, only for the grid cells that have observations available, a one-dimensional
assimilation (in the vertical direction) approach was taken to update all four soil layers
based on the correlation between the soil moisture of the top and bottom layers. In this
case, the background matrix contained four components: the soil moisture of the four
soil layers; the observation matrix had only one component: the observation at the top
layer. In this case, the observation operator becomes the following vector, Ht = [1 0 0 0].
Finally, Scenario 7 combines both the approaches of Scenario 5 and Scenario 6. For the top
layer grid cells in which observations were available, a one-dimensional assimilation was
carried out on all four of the soil layers of those grid cells, in the same way as described
for Scenario 6. Otherwise, for the top layer grid cells that did not have corresponding
observations, but some of its surrounding grid cells within 25 km did have observations,
a three-dimensional approach (two horizontal directions and one vertical direction) was
undertaken. The background matrix in this case will have (assuming only two surrounding
top layer grid cells have observations in this example) six components: the soil moisture
of all four layers of the grid cell to be updated, and the surface soil moisture of the two
surrounding grid cells that have observations. The observation matrix will have two
components: the observation of the two selected surrounding grid cells. The observation
operator will be the 2 × 6 matrix, Ht = [0 0 0 0 1 0; 0 0 0 0 0 1].

To summarize the scenarios, Scenario 1 represents the configuration that may theoreti-
cally provide the maximum benefit from data assimilation (in terms of improvement of soil
moisture simulation accuracy compared to the open loop) because synthetic observations
are available over all of the layers in all of the grid cells to guide the model towards the
synthetic truth. Scenarios 2–4 represent the gradual loss of this benefit due to not having
observations for the bottom layers, as well as the introduction of spatiotemporal gaps in
the top layer observations. Finally, Scenarios 5–7 are meant to represent how much of
these lost benefits in Scenarios 2–4, relative to the hypothetical optimum of Scenario 1, can
be recovered through the application of the above-mentioned technique of utilizing the
covariance matrix of EnKF.

2.4.3. Real-Data Experiments

In addition to all of these synthetic experiments, where the WRF-Hydro model was
updated with the synthetic observations of soil moisture with a goal of reaching closer to
the synthetic truth, some real-data experiments, such as the Observation System Experi-
ments (OSE), were also performed where the WRF-Hydro model was updated with SMAP
observations with a goal of reaching closer to the in-situ soil moisture observations. Some
of the major differences between the synthetic and real-data experiments are as follows.
In the case of real-data experiments, only Scenarios 4–7 were performed, because it is not
possible to provide the observed data of all of the layers over all of the domain grid cells for
every day, which are required for Scenarios 1–3, in SMAP. In addition, during the synthetic
experiments, the assimilation performance was measured for all of the model grid cells
because of the availability of synthetic truth data over all of the model grid cells. However,
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in the case of the real-data experiments, the assimilation performance was only calculated
for the four grid cells, over which in-situ data were available.

Furthermore, the SMAP data were taken through a few pre-processing steps before
being used for data assimilation purposes. First, the 9 km horizontal resolution of the
dataset was resampled into 5 km using the nearest neighbor method to match with the
resolution of the model. Next, the SMAP data were rescaled to the model space (namely,
bias correction) by using a cumulative distribution function (CDF) matching method [52].
This is intended to correct any climatological differences between the SMAP data and the
modelled soil moisture because the EnKF can only adjust random errors and not systematic
biases [53,54].

Lastly, the uncertainty information of the SMAP data, which is required for EnKF, was
estimated using the triple collocation analysis method [55]. The calculation of the error
variance of the SMAP observations by triple collocation analysis requires collocated data
from three independent datasets or triplets. The two other datasets used in this study, in
addition to SMAP, were the ensemble mean of the open loop model simulations and the
SMOS L2 soil moisture product. The open loop data were chosen as the reference data
for the triple collocation analysis, meaning that the errors will be estimated in the model
space. The benefit of choosing SMOS as the third dataset is that the SMAP and SMOS
data are distributed in the same units of volumetric soil moisture; therefore, the additional
step of unit conversion could be avoided. The SMOS data also satisfy the independence
requirement of triple collocation, as the SMAP and SMOS retrievals are based on different
algorithms, applied on information from different satellites. Similarly to the SMAP data,
the SMOS data were also rescaled to the reference data using CDF matching to ensure
that the errors of the triplets were unbiased, relative to each other. The errors for the
SMAP data were estimated for each grid cell separately, and the errors were assumed to be
time-invariant considering the limited seasonal nature of this study.

3. Results and Discussion
3.1. Model Calibration and Validation

The calibration of the model parameters are not essential for conducting synthetic
experiments because all of the observations are synthetically generated using the model
itself. However, for setting up the real-data experiments in which real observations will be
assimilated into the model to encourage the model to behave more akin to the real world,
it helps if the model parameters are tuned so that the model simulated soil moisture is as
close to the in-situ soil moisture as possible. The aim of the data assimilation would then
be to improve the simulations further than parameter calibration alone could achieve.

Calibrating the model for such a large watershed with in-situ soil moisture infor-
mation from only four locations is a challenge; therefore, a multi-objective calibration
approach was chosen to increase the robustness of the calibration process, where the model
parameters were calibrated against both in-situ soil moisture and streamflow observations.
An additional benefit of calibrating against the streamflow is that the impact of the soil
moisture assimilation on the generation of streamflow could then be better analyzed. To
reduce the risks of equifinality by calibrating a smaller set of model parameters, sensitivity
analysis was first performed on the different model parameters of the WRF-Hydro. This
led to the selection of the following four most influential parameters for calibration: soil
porosity (MAXSMC), deep drainage coefficient (SLOPE), lateral saturated soil hydraulic
conductivity (LKSATFAC), and the slope of conductance to photosynthesis relationship
(MP). These four parameters were automatically calibrated using 400 iterations of the
PADDS algorithm. A two year spin-up period was added to the different calibration and
validation periods, as mentioned above.

At the outlet of the modelled portion of the watershed, Harrisburg, it was found that
in the decade prior to 2020, the mean summer-fall flows (averaging all the mean daily flows
within June to October) ranged between 245 m3/s and 1699 m3/s, with a 10 year average of
680 m3/s. Only two of the years within the decade stand out as wet outliers: 2011 (annual
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maximum daily flow of 16,357 m3/s) and 2018 (annual maximum daily flow of 8603 m3/s).
In the wettest year, 2011, Tropical Storm Lee resulted in a 100 year return period flood.
As soil moisture data assimilation has the potential to improve the peak-flow simulation,
depending on how well the antecedent soil wetness is represented, it was decided that one
of the wet years would be used for the assimilation experiments.

As any year prior to 2015 could not be used for the data assimilation experiments (the
SMAP data used in this study is available from 2015), the wettest year of 2011 was chosen
for model calibration and the second wettest year of 2018 was chosen for both the model
validation and the data assimilation experiments. The calibration/validation performances
are presented in Table 1. The modeling performance of the soil moisture compared against
the in-situ observations are presented in terms of the correlation coefficient (R), the unbiased
root-mean-squared-error (ubRMSE), and bias. In addition, the values presented in Table 1
are the averaged values of four grids where in-situ data are available. The modeling
performance of the streamflow is presented in terms of the Nash-Sutcliffe efficiency (NSE)
calculated at Harrisburg, the basin outlet. Although the model was calibrated for a wet
year, it was found that the validation performance on a dry year (2020) was comparable
to the validation performance on a wet year (2018). Thereafter, it was decided to run the
assimilation experiments on a dry year (2020) as well. When averaged over the four in-situ
soil moisture stations that are available within the study area, the observed soil moisture
in the wet year of 2018 are 0.266, 0.264 and 0.317 m3/m3 in the first, second and third soil
layers, respectively, while the soil moisture in the relatively dry year of 2020 are 0.220, 0.219
and 0.281 m3/m3 in the first, second and third soil layers, respectively.

Table 1. Calibration and validation performance of the model in terms of correlation coefficient (R),
unbiased root-mean-squared-error (ubRMSE), bias, and Nash-Sutcliffe efficiency (NSE).

Soil
Layer

Calibration (2011/Wet Year) Validation (2018/Wet Year) Validation (2020/Dry Year)

Soil Moisture Flow Soil Moisture Flow Soil Moisture Flow

R ubRMSE
(m3/m3)

Bias
(m3/m3) NSE R ubRMSE

(m3/m3)
Bias

(m3/m3) NSE R ubRMSE
(m3/m3)

Bias
(m3/m3) NSE

Layer 1 0.81 0.056 0.092
0.78

0.68 0.041 0.071
0.77

0.57 0.053 0.062
0.71Layer 2 0.84 0.048 0.103 0.68 0.037 0.064 0.75 0.042 0.079

Layer 3 0.75 0.026 0.062 0.63 0.027 0.054 0.64 0.021 0.044

3.2. Synthetic Experiments

The spatially averaged (over the watershed) and temporally averaged (over June-
October) improvements brought about by the data assimilation are presented in Figure 5.
Here, improvements in three evaluation metrics (ubRMSE, R, bias) are shown in terms of
the difference between the values of those metrics during the open loop model runs and
the values of those metrics after the assimilation. As is intuitive, Scenario 1, in which the
soil moisture of all of the grid cells in all of the soil layers were updated with respective
observations every day, has the largest improvements out of all seven scenarios. In 2018, the
layer-averaged improvements (defined as the average improvement of all four soil layers)
for Scenario 1 are 0.0016 m3/m3 (ubRMSE), 0.025 (R) and 0.001 m3/m3 (bias). For the rest
of the scenarios, the layer-averaged improvements are presented here, in the following text,
as a percentage of the maximum Scenario 1 layer-averaged improvements, instead of in
their original units, as shown in Figure 5.

In Scenario 2, where the soil moisture of all of the grid cells in only the surface soil
layer was updated every day, the layer-averaged improvements are 31% (ubRMSE), 35%
(R) and 38% (bias) of the layer-averaged improvements that were achieved for Scenario 1 in
2018, and 48% (ubRMSE), 51% (R) and 56% (bias) in the case of 2020. In Scenario 3, which
is the same as Scenario 2, except that SMAP-derived temporal gaps were introduced, the
layer-averaged improvements drop further to 21% (ubRMSE), 23% (R), and 25% (bias) of
Scenario 1 in 2018, and 38% (ubRMSE), 39% (R), and 43% (bias) in 2020.
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In Scenario 4, where the SMAP-derived horizontal spatial gaps were introduced in
addition to the SMAP-derived temporal gaps, the layer-averaged improvement is reduced
even more to 18% (ubRMSE), 20% (R), and 22% (bias) of Scenario 1 in 2018, and 35%
(ubRMSE), 34% (R), and 38% (bias) in 2020. To summarize, in comparison to the theoretical
maximum improvements that can be achieved by Scenario 1, a substantial amount of that
improvement is lost when the lower model soil layers are not updated. The second largest
reduction in the assimilation performance occurred when the grid cells were not updated
every day. Lastly, horizontal spatial gaps cause an even smaller amount of reduction.

Thus far, Scenario 4 is the most realistic configuration because the remotely sensed
soil moisture observations also suffer from missing data in the vertical, horizontal, and
temporal dimensions. As previously discussed, a common workaround to this problem
in the context of data assimilation is to update the unobserved model grid cells based on
the covariance between the soil moisture of the unobserved and the nearby observed grid
cells. Conducting this in Scenario 5 only for the horizontal spatial dimension increases
the layer-averaged improvements up to 20% (ubRMSE), 21% (R), and 24% (bias) of the
Scenario 1 levels in 2018, and 37% (ubRMSE), 36% (R), and 41% (bias) in 2020. In Scenario 6,
where the covariance matrix of EnKF was used to update the unobserved grid cells of the
lower soil layers instead of the surface soil layer, the layer-averaged improvements are
44% (ubRMSE), 45% (R), and 59% (bias) of Scenario 1 in 2018, and 65% (ubRMSE), 73% (R),
and 80% (bias) in 2020. In Scenario 7, where unobserved grid cells of all of the soil layers
were updated, the layer-averaged improvements reach 46% (ubRMSE), 47% (R), and 60%
(bias) of Scenario 1 in 2018, and 66% (ubRMSE), 75% (R), and 81% (bias) in 2020. As it was
already determined that not updating the lower soil layers causes a significant reduction in
the assimilation performance, it makes sense that updating the unobserved grid cells in the
lower soil layers is much more beneficial than updating the unobserved grid cells in the
surface soil layer.

Finally, in Scenario 7, even after updating the unobserved grid cells in all of the soil
layers using the covariance matrix of EnKF, the assimilation performance could not be
brought up to the levels of Scenario 1. Part of the reason for this is that the temporal data
gaps are still present in Scenario 7. Under real-data conditions, and if the modeling system
is not needed for real-time purposes, such as operational forecasting, higher level data
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products (with higher latency) may be used for data assimilation, which usually have their
temporal gaps (as well as spatial gaps) filled through external means. Another reason why
Scenario 7 failed to reach the improvement levels of Scenario 1 could be a result of the
inherent limitations of the covariance matrix technique. Future studies are recommended
where the soil moisture of all unobserved grid cells is estimated independently, outside
of the data assimilation framework, and then brought in to update the model states in a
grid-by-grid fashion.

Another key finding from Figure 5 is that the improvement magnitudes are much
larger in 2020 (dry summer) compared to 2018 (wet summer). This difference may be better
explained through Figure 6, where the temporal distribution of the spatially averaged (over
the watershed) RMSE is presented. Only three out of seven scenarios are presented for
brevity, which may be considered as some of the edge cases. Scenarios 1 and 2 are two
of the most ideal, yet unrealistic, cases as they contain no temporal gaps. Scenario 7 is
the most practical case where all three types of spatiotemporal gaps are present and as
many unobserved grids as possible were updated using the covariance matrix. The term
‘improvement’, as it has been used so far, is essentially the difference between the black
and blue lines (i.e., open loop and post-assimilation model errors) in Figure 6. For each
soil layer within each scenario, the post-assimilation model errors have somewhat similar
ranges between the two years. Rather, it is the range of the open loop model errors that are
starkly different between the years. Therefore, the larger magnitude of the open loop errors
is the main contributor to the larger improvements in 2020 compared to 2018. Incidentally,
the forcings in the ERA5 ensemble member (out of the ten) that were randomly chosen
to generate the synthetic truth is farther away from the ensemble mean in 2020 than in
2018, causing the larger open loop model errors, especially the bias component of errors
(Figure 5). Regardless of the different magnitudes of the open loop RMSE in the two years,
the EnKF algorithm was able to bring down the open loop RMSE in both years to a similar
level (Figure 6). This indicates that if there is available room for improvement, the EnKF
can, at least under ideal situations such as this synthetic experiment, effectively improve
modelling performances.

Looking at the improvements in the individual soil layers in Scenario 2 (Figures 5 and 6),
it is interesting to observe that, although the soil moisture in only the surface soil layer was
updated, improvements occurred at all four soil layers. The changes being made to the
surface soil moisture are therefore being propagated to the lower soil layers through the
model’s physics. However, the improvements to the bottom soil layers are greater when
they are being actively updated either in a zero-dimensional (Scenario 1), one-dimensional
(Scenario 6), or three dimensional (Scenario 7) manner. In fact, actively updating the model
states of the bottom layers appear to be beneficial for the top layer as well. For instance,
the magnitude of the top layer improvement is higher in Scenario 1 than in Scenario 2,
even though the only difference between these scenarios is whether the bottom layers are
actively updated or not.

The spatial distribution of the temporally averaged (over June-October) improvements
of the surface soil moisture in Scenario 1 are shown in Figure 7a,b. The magnitudes of
improvement are not spatially uniform. The model grid cells located at the northeast corner
of the watershed have higher levels of improvement in 2018, and in the southwestern
region in the case of 2020. To identify the factors creating these spatial patterns, correlations
between the improvements of the watershed grid cells and the different variables were
plotted, including meteorological variables, such as seasonal precipitation and temperature,
as well as static physiographic variables such as soil type and land use. No significant
correlation could be identified between the spatial patterns of the improvements with
the spatial patterns of either the meteorological or physiographic variables. Rather, the
strongest predictor of the improvement patterns is the magnitude of the open loop model
error, as shown in the Figure 7c,d. In other words, the grid cells in which the open loop
RMSE was higher saw a larger improvement after assimilation. This is similar to the finding
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for the watershed averaged open loop RMSE and improvements, as previously discussed
in Figure 6.
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and for scenarios 1, 2 and 7.
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3.3. Real-Data Experiments

The experiment of Scenario 7 was repeated for real-data conditions, whereby instead
of synthetic soil moisture observations, SMAP observations were used to update the model
soil moisture. It should be noted that all of the available SMAP data with a ‘retrieval
successful’ flag was utilized for assimilation, regardless of whether the data also had a
‘recommended quality’ flag or not. Due to large portions of the study area being forested, if
only data with ‘recommended quality’ flags were to be used, a vast majority of the dataset
would be rendered unusable. Whereas in the synthetic experiments, the goal was to guide
the model soil moisture values towards the synthetic truth, in the real-data experiments,
the goal was to guide the model soil moisture values towards the in-situ observations.
Another major difference between the synthetic and real-data experiments is that, during
the synthetic experiments, the synthetic truth was available over all of the model grid cells
and over all four of the soil layers for evaluating the post-assimilation model performance.
However, for the real-data experiments, the in-situ soil moisture data were available only
over four model grid cells.

To compare the spatially averaged model soil moisture values with the point-scale
in-situ ones, the in-situ data were assumed to be representative of the soil moisture of
the corresponding 25 km2 model grid cell. In addition, as previously mentioned, the
in-situ observations were measured at 5, 10, 20, 50 and 100 cm soil depths. To compare
the depth-averaged model soil moisture values with the point-scale in-situ ones, the in-
situ data at 5 cm depth was assumed to be representative of the first model soil layer of
5 cm thickness (0–5 cm depth), the mean of the 10 and 20 cm in-situ data were used to
represent the second model soil layer of 35 cm thickness (5–40 cm depth), and the mean
of the 50 and 100 cm in-situ data were compared with the third model soil layer of 60 cm
thickness (40–100 cm depth). Such spatial scale mismatches (in both the horizontal and
vertical directions) are expected to inevitably introduce some errors to the estimates of the
data assimilation performance.

The surface soil moisture values of the four available in-situ stations are plotted in
Figure 8, along with the corresponding open loop model soil moisture and remotely sensed
SMAP soil moisture. As there is a bias between the SMAP data and the model in most
cases, the SMAP data were rescaled to the model climatology before performing data
assimilation. However, because of this rescaling process, only the information about the
relative variability within the SMAP data could be utilized through the data assimilation,
and not its absolute values [56]. Similarly, because of the existing bias seen between the
in-situ and modelled data, the goal of the real-data assimilation experiments will not
be to guide the model simulations of the soil moisture towards in-situ data in terms of
absolute values. Instead, the goal will be to modify the relative variability of the modelled
soil moisture towards the relative variability of the in-situ soil moisture. The results
from the real-data experiments (ubRMSE, R, and bias computed between the modelled
and in-situ soil moisture) are presented in Table 2, along with the ubRMSE, R, and the
bias computed between the original SMAP data (prior to bias correction) and in-situ soil
moisture observations over the surface layer. All of the values in Table 2 are the averaged
values over the four grid cells where the in-situ data are available.

In the first soil layer, the assimilation of the SMAP data caused small improvements
in the simulated soil moisture for both 2018 and 2020. This is consistent with the fact that
the SMAP data in both of those years is slightly better at representing the in-situ data (in
terms of ubRMSE and R) than the open loop model. Although the SMAP data are much
better at representing the in-situ data in terms of bias compared to the open loop model, the
assimilation was unable to improve the model bias in any of the soil layers because of the
bias-correction of the SMAP data prior to assimilation. Minor improvements in the model
simulation are also true for the second soil layer, but the assimilation failed to improve
the soil moisture simulation in the third soil layer. In fact, the assimilation caused a slight
overall decrease in the model performance in the third layer. It may be reminded that the
SMAP data were directly assimilated into the first layer, while the bottom two layers were
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updated based on the covariance between the top and bottom model layers. Therefore, the
improvements in the upper two layers, yet a failure to achieve this in the bottom layer, may
indicate a poor representation in the model of the cross correlations between the different
soil layers that exist in nature, and which are embedded in the in-situ data.
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Figure 8. Soil moisture values of open loop model, in-situ observations and SMAP observations at
four in-situ measurement stations in 2018 (top row) and 2020 (bottom row).

Table 2. Unbiased root-mean-squared-error (ubRMSE), correlation coefficient (R), and bias calculated
between in-situ soil moisture observations and open loop model runs (OL), remotely sensed SMAP
data (RS), and post-assimilation model runs (DA).

Performance
Metrics

Layer 1 Layer 2 Layer 3

2018 (Wet) 2020 (Dry) 2018 (Wet) 2020 (Dry) 2018 (Wet) 2020 (Dry)

OL RS DA OL RS DA OL DA OL DA OL DA OL DA

ubRMSE (m3/m3) 0.041 0.040 0.040 0.053 0.052 0.051 0.037 0.036 0.042 0.041 0.027 0.028 0.021 0.022
R 0.68 0.73 0.72 0.57 0.61 0.66 0.68 0.71 0.75 0.78 0.63 0.64 0.64 0.60

Bias (m3/m3) 0.071 0.026 0.071 0.062 0.039 0.062 0.064 0.064 0.079 0.079 0.054 0.054 0.044 0.044

The results for the four individual stations are also presented in Table 3. Here, only the
correlation coefficient values are shown as the bulk of the improvement (or degradation)
caused by the data assimilation is best expressed by this metric, as seen in Table 2. There
is no improvement in terms of bias as the SMAP observations were rescaled to the model
space, and the improvements in terms of ubRMSE are also minimal. Similarly to Table 2,
all of the R values presented in Table 3 have either been computed between the modelled
and in-situ soil moisture, or between the original SMAP data (prior to bias correction) and
in-situ soil moisture observations over the surface layer. Based on the R values of the open
loop, it could be stated that the calibrated model is generally capable of simulating the
temporal variability of the in-situ soil moisture data, with a few exceptions, such as the first
soil layer at Ithaca in 2020, or the third soil layer at Geneva in 2020.
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Table 3. Correlation coefficient (R) values for individual in-situ measurement locations, calculated
between in-situ soil moisture observations and open loop model runs (OL), remotely sensed SMAP
data (RS), and post-assimilation model runs (DA).

Measurement
Location

Layer 1 Layer 2 Layer 3

2018 (Wet) 2020 (Dry) 2018 (Wet) 2020 (Dry) 2018 (Wet) 2020 (Dry)

OL RS DA OL RS DA OL DA OL DA OL DA OL DA

Avondale 0.77 0.82 0.81 0.76 0.70 0.75 0.73 0.76 0.76 0.71 0.33 0.24 0.84 0.86
Geneva 0.50 0.78 0.54 0.67 0.61 0.70 0.47 0.52 0.71 0.74 0.47 0.57 0.16 0.27
Ithaca 0.79 0.80 0.84 0.25 0.57 0.54 0.85 0.88 0.73 0.86 0.85 0.88 0.69 0.69

Rock Springs 0.68 0.53 0.68 0.62 0.56 0.66 0.68 0.70 0.80 0.82 0.87 0.85 0.85 0.58

After assimilating the SMAP data into the model, the temporal variability of the
simulated soil moisture was generally improved, albeit slightly, and again with a few
exceptions. The relatively smaller improvements in the real-data experiments, compared
to the synthetic experiments, and the degradations in the few cases may be explained
as follows. It was demonstrated through the synthetic experiments that if high-quality
observations of the true soil moisture are assimilated into the model, then the model soil
moisture will be nudged closer to the true soil moisture. In that case, the observations, open
loop model runs, and true soil moisture were all generated from the same source (WRF-
Hydro model) and were well known when calculating the evaluation metrics. However, in
this real-data experiment, the remotely sensed SMAP soil moisture is used as observations
to nudge the modelled soil moisture towards the in-situ soil moisture. Each of these datasets
have conceptually different sources with different spatial scales: one was estimated from
the remotely sensed microwave data, one was generated based on the physical equations
in a model, and one was measured physically in the field.

The errors between each of these datasets and the ‘true’ soil moisture actually occurring
in nature are not well known. As a result, the improvement in terms of the R between the
post-assimilation model simulated soil moisture and the in-situ soil moisture depended
partially on how well the SMAP data happened to agree with the corresponding in-situ soil
moisture data. Therefore, performing the assimilation with an observation data of higher
quality may have contributed to the further improvements in the model performance.
Other detrimental factors that can impact any real-data experiment include errors in the
in-situ dataset (which appears to be an issue for the 2020 data of Rock Springs, as noticeable
in Figure 8), errors introduced during the spatial rescaling of data, using time-invariant
observation errors in EnKF, the soil/vegetation properties of the model grid cell not being
representative of the local conditions, and so on. Finally, these results are specific to the
modeling framework and observation datasets that were used in this study; therefore,
using a different model or a different remotely sensed soil moisture dataset may lead to
different, and perhaps better, simulations of these in-situ target datasets.

3.4. Streamflow Modeling Performance

The impacts of updating the model soil moisture on the simulated streamflow during
the synthetic experiment (Scenario 1) are presented in Figure 9. The first row shows the
spatially averaged (over the watershed) three day average precipitation. In the second
row are the changes in the watershed-averaged modelled soil moisture (defined as post-
assimilation soil moisture minus the open loop soil moisture) due to the assimilation of
the synthetic soil moisture observations. Similarly, the third row shows the changes in
the streamflow at the watershed outlet point of Harrisburg (defined as post-assimilation
streamflow minus the open loop streamflow) caused by the same assimilation of the
synthetic soil moisture observations. When the soil moisture in the model is increased
during the data assimilation, extra water is essentially added to the water budget, and vice
versa. The similarity of the temporal variations between Figure 9c,e helps visualize this
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phenomenon for 2018 (wet summer). Consequently, when the soil moisture is added to the
system, the streamflow at the watershed outlet is also increased, and vice versa.
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Figure 9. Watershed-averaged 3-day precipitation average (a,b), changes in watershed-averaged soil
moisture due to data assimilation with Scenario 1 (c,d), and changes in streamflow of watershed
outlet due to data assimilation (e,f) in 2018 (left column) and 2020 (right column).

Note that the magnitude of the changes in the soil moisture do not correspond to a
similar magnitude of change in the streamflow. This is because, in addition to adding or
subtracting the total amount of water in the water budget, the data assimilation of the
soil moisture causes the redistribution of the existing water within different fluxes. For
example, when the soil moisture is reduced during data assimilation, this increases the
storage capacity of the soil and thus any concurrent precipitation event will generate less
surface runoff than if the data assimilation had not been performed. Therefore, some
portion of the streamflow source will now be transformed from a quick surface runoff to a
slower moving baseflow, which will be added to the stream at a later period. Similarly, if
the soil moisture is increased during a wet period, when the soil is already near saturation,
for example, on 15 August 2018, a larger portion of the precipitation event will now join
the streamflow as direct surface runoff.

As previously discussed, for 2018, the open loop soil moisture and synthetic truth
soil moisture were relatively close to each other in magnitude, and the open loop soil
moisture both underestimated and overestimated the synthetic truth soil moisture at times,
as depicted in Figure 9c. However, as also discussed previously, for 2020, the open loop
soil moisture highly underestimated the synthetic truth soil moisture throughout the
experiment period, as shown in Figure 9d. Therefore, the data assimilation only increased
the soil moisture of the open loop, resulting in only positive changes to the outlet streamflow.
Although the magnitude of the soil moisture increases in 2020 are much greater than the
soil moisture increases in 2018, the magnitude of the streamflow increases in 2020 are
relatively lower than in 2018. This can be explained by the fact that 2020 had a dry summer,
with lower precipitation values and lower soil saturation percentages compared to 2018.
This combination of unsaturated soil and a lack of heavy rainstorms meant that much of
the added soil moisture was gradually added to the stream via the baseflow.

Now that is has been established that the soil moisture-streamflow interactions of this
modeling framework behaved realistically and as intuitively expected, the next question
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might be whether updating the soil moisture with observations caused the simulated
streamflow to shift towards the desired direction, i.e., closer to the true streamflow. In other
words, if the goal of a modeling exercise is to improve the simulation of the streamflow,
will updating the model soil moisture states alone with observations achieve this goal?
The model-simulated streamflow resulting from the soil moisture data assimilation in the
synthetic experiments are plotted in Figure 10, along with the open loop model run and
synthetic truth. The NSE and log-NSE values presented were both calculated using the
post-assimilation model streamflow and the synthetic truth version of the streamflow.
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2020 (bottom).

In the wet year of 2018, and compared to the open loop, the assimilation of the soil
moisture did not cause significant modifications to the overall streamflow (in terms NSE
and log-NSE) in all of the synthetic scenarios, with the exception of minor improvements
in Scenario 1. The NSE value increased from 0.95 (OL) to 0.96 (S-1), and the log-NSE value
increased from 0.97 (OL) to 0.98 (S-1). However, in terms of the absolute error, during the
heavy rainfall period on 15 August 2018, adjusting the antecedent soil moisture caused an
error reduction of 544 m3/s in Scenario 1 (also shown in Figure 9e). To achieve such gains,
the soil moisture of all of the grid cells of the model needs to be updated, as in Scenario 1,
because no such significant absolute error reduction occurred in any other scenario.

In the dry year of 2020, no such significant absolute error reduction occurred in any
of the scenarios, as the modification to the streamflow tended to be somewhat uniform
throughout the season (also shown in Figure 9f). As previously discussed, this is expected
because correcting the soil moisture is more likely to improve the peak flow simulation
during wet periods when the soil state remains closer to saturation. However, the over-
all streamflow simulation (in terms of NSE and log-NSE) did improve for all scenarios
compared to the open loop, with the highest improvement seen in Scenario 1. The NSE
value increased from 0.86 (OL) to 0.9 (S-1) and 0.88 (S-7). The log-NSE value increased from
0.95 (OL) to 0.98 (S-1) and 0.97 (S-7).

In the real-data experiments, the open loop model performances are much lower to
begin with compared to the synthetic experiments, as shown in Table 4. This is expected



Water 2023, 15, 321 21 of 25

because, as explained previously for soil moisture, the open loop and the truth were both
generated by the model in the case of synthetic experiments, whereas, for the real-data
experiments, the open loop performance is the outcome of a complex parameter-tuning
process trying to emulate the in-situ data. In the wet year of 2018, updating the model soil
moisture states with the SMAP data in the Scenario 7 configuration resulted in the NSE
value remaining unchanged at 0.77, and the log-NSE value increased from 0.82 to 0.84.
This is somewhat commensurate with the wet year assimilation gains seen in the synthetic
experiments. However, in the dry year of 2020, no gains were achieved, contrary to the
synthetic experiments. Rather, there is a decrease in the model performance. The NSE
value drops from 0.71 (OL) to 0.7 (S-7), while the log-NSE (which gives more weight to
the baseflow simulation performance) dropped from 0.61 (OL) to 0.5 (S-7). One important
factor that may partially explain the relatively poor dry year assimilation performance is
that the model parameters being used for these experiments were calibrated based on the
data of a wet year and using this model for running the dry year assimilation experiments
was an afterthought. Perhaps using a model that is better calibrated against dry conditions
may be able to improve the streamflow simulation for dry years.

Table 4. Changes to streamflow modeling performance in terms of NSE and log-NSE for the open
loop scenario and Scenario 7 in the years 2018 and 2020.

Scenario
2018 (Wet) 2020 (Dry)

NSE log-NSE NSE log-NSE

Open Loop 0.77 0.82 0.71 0.61
Scenario 7 0.77 0.84 0.70 0.50

Another possible cause behind the real-data experiments not leading to improved
streamflow is that, while the hydrological processes connecting soil moisture and streamflow
were exactly the same for both the hydrological model and synthetic truth in the synthetic
experiments, this was not the case for the real-data experiments. The exact mechanisms by
which any changes in the real-world soil moisture translates into the real-world streamflow
is unknown and most likely different from that of the model. Finally, the model structure
also matters. The majority of hydrological models offer a rather crude conceptualization
of baseflow/groundwater flow. The WRF-Hydro model is perhaps an exception to this, in
which the saturated subsurface flow is based on the Dupuit-Forchheimer assumption. Yet,
using groundwater flow models based on the transient groundwater flow equation, such as
the Modular three-dimensional finite-difference groundwater flow model (MODFLOW),
would probably better simulate low streamflow dominated by baseflow conditions.

Other studies have indicated that assimilating soil moisture to improve streamflow is
a hit-and-miss approach, depending on the exact methods and datasets used in the process,
and that assimilating soil moisture alone may not be sufficient for this purpose [32,57,58].
Therefore, a trial-and-error strategy is required to determine which modeling framework is
most beneficial to improving the streamflow simulation for a particular watershed, and
whether to assimilate soil moisture, streamflow, or a combination of both. In addition,
this study took a deterministic approach by comparing between the ensemble mean of the
24 member post-assimilation outputs and that of the nine member open loop outputs. For
a probabilistic approach to data assimilation, performance metrics, such as the Continu-
ous Ranked Probability Score (CRPS), may be recommended, which are able to provide
information about the spread of the forecast ensemble as well.

4. Conclusions

A set of synthetic experiments were designed in this study to assess the impacts of
spatiotemporal discontinuities in the remotely sensed soil moisture data on the performance
of hydrological data assimilation. For this purpose, the WRF-Hydro model was set-up over
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the Susquehanna River watershed. SMAP was selected as the example of a remotely sensed
soil moisture product, and the EnKF was selected as the data assimilation algorithm.

The synthetic experiments consisted of the following seven different scenarios: (1) the
soil moisture states of all of the model grid cells in all of the soil layers were updated every
day with synthetic soil moisture observations; (2) all of the grid cells of the surface soil layer
were updated every day; (3) the same as 2, but no updates were made on days in which the
SMAP data were not available; (4) the same as 3, but no updates were made on the model
grid cells over which the SMAP data were not available; (5) the same as 4, but the surface
layer model grid cells with missing observations were updated based on the covariance
between them and the nearby grid cells that had observations; (6) the same as 4, but the
grid cells in the bottom soil layers with missing observations were updated based on the
covariance between them and the nearby surface grid cells that had observations; and
(7) combining 5 and 6, i.e., updating all of the grid cells with missing observations based
on the nearby grid cells that had observations. All of these scenarios were then compared
with the open loop scenario.

The results show that, out of all the scenarios, the best improvement in the simulated
soil moisture is achieved when the synthetic soil moisture observations are assimilated
into the model in all of the grid cells of all of the soil layers. Introducing spatiotemporal
discontinuities in the observation data reduces the assimilation performance. The largest
reduction occurred because of the unavailability of root-zone observations, followed by
temporal data gaps and horizontal spatial gaps. The reduction in the data assimilation
performance due to the presence of these data discontinuities can be somewhat offset by
indirectly updating the states of the unobserved model grid cells. The indirect update is
made based on the covariance between the soil moisture of an unobserved grid cell and one
or more nearby observed grid cells. The results also show that, if high-quality observations
are available, then the magnitude of improvements brought about by the data assimilation
will primarily be dictated by the amount of model error there is in the pre-assimilation
open loop model runs.

Real-data experiments were also performed where the SMAP data were assimilated
into the model to try and help the variability of the simulated soil moisture to match
that of the in-situ soil moisture. The results indicate that the data assimilation was able
to generally improve the ubRMSE and correlation coefficient values between the model
simulated and the in-situ soil moisture for the top two model soil layers. One of the reasons
behind the less than optimum performance (compared to a synthetic experiment) is that the
SMAP observations are not a high-quality representation of the in-situ observations. Large
portions of the study area are forested, which negatively impacts microwave retrieval-based
soil moisture products such as SMAP.

The impact of updating the model soil moisture on the simulation of streamflow
was also analyzed. It was found that, when the soil moisture is added to the model
through data assimilation during a wet period when the soil is already near saturation, this
increases the surface runoff after a heavy rainfall event and causes significant increases
in the streamflow. Increasing the soil moisture during a dry period does not have this
effect and the newly added water is instead added to the streamflow via the baseflow.
Although assimilating the soil moisture into the model impacts the generation of streamflow,
the timing and magnitude of the changes imposed on the simulated streamflow do not
necessarily improve the accuracy of the streamflow. Some improvements in the NSE and
log-NSE of the streamflow simulations were achieved in the synthetic experiments where
high-quality soil moisture observations were assimilated. However, for poorer-quality
SMAP data assimilation scenarios, the streamflow accuracy was reduced in terms of the
NSE and log-NSE for the dry experiment year, which may also have been impacted by the
use of a model calibrated specifically for wet conditions.

Finally, if the goal is to improve the streamflow modeling performance of a particular
study area through the assimilation of observed soil moisture, it may be recommended
to explore multiple modeling/assimilation strategies and multiple observation datasets
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to find the best fit. The direct assimilation of streamflow into the model, in combination
with soil moisture, is another avenue for further improvement to the streamflow modeling
performance. It should be noted that all of the results presented in this study are for
a 24 h lead time. Any improvements achieved through data assimilation at a shorter
lead time are likely to reduce as the lead time of the forecast increases. As streamflow
observations provide short-lived information about a flux, but soil moisture observations
have a longer memory of the soil water storage, future research may be recommended
where the impacts of combined soil moisture-streamflow assimilation on the modeling
performance at different lead times are investigated.
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