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Abstract: A TiO2-coated net with photocatalytic antibacterial properties that purifies water for
practical use in developing countries was fabricated. The TiO2 particles were modified with a
silane coupling agent, aminopropyltriethoxysilane or hexadecyltrimethoxysilane, to improve particle
dispersibility. The net comprises three layers: a TiO2-silicone photocatalyst layer, a silicone layer
to protect the net substrate from the oxidizing power of TiO2, and a polypropylene net substrate.
The net is flexible and light enough to float on the surface of water. By modifying the surface of
the TiO2 particles, we succeeded in preparing a highly water-durable photocatalyst coating that can
be maintained for 49 days of outdoor exposure. The inactivation of E. coli by the TiO2-coated net
under 1.0 mW/cm2 of UV irradiation was confirmed. Furthermore, the antibacterial properties were
investigated under natural sunlight. The number of E. coli decreased from 320,000 to 10 CFU/mL
under natural sunlight in just 2 h. The results showed that the photocatalyst-coated polypropylene
net effectively eliminates E. coli from water, reducing the risk of infectious diseases.

Keywords: photocatalyst; natural sunlight; water purification; polypropylene; bacteria; silane coupling

1. Introduction

Drinking water in developing countries is often polluted with bacteria such as
E. coli [1]. Presently, 892 million people worldwide do not have access to safe water,
and a solution to this problem is urgently required [2]. Polluted drinking water leads to
a high risk of water-borne diseases such as diarrhea, cholera, typhoid fever, hepatitis A,
amoebic and bacillary dysentery, and other diarrheal diseases [3]. Accordingly, various
water purification systems and technologies have been proposed. However, securing a safe
supply of drinking water generally requires great cost and labor.

Chlorination is the most common chemical water treatment method [4]. However,
this involves the risk caused by the formation of chlorinated byproducts, such as tri-
halomethanes and other organohalides, resulting from the reaction of chlorine with organic
matter [5]. Furthermore, when used in irrigation, chlorine is often phytotoxic [6]. Mem-
brane technologies are considered very practical means of water purification owing to their
excellent and stable performance [7]. However, the initial and running costs for such mem-
brane systems are high, making them impractical for developing countries. Conversely,
sunlight, which is free and abundant, has been used as an agent for water disinfection
in rural areas of developing countries, which are among the sunniest in the world. The
principle behind the solar disinfection (SODIS) method depends on irradiation by the UV
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region of sunlight to increase the temperature of water and the production of reactive
oxygen species therein by UV-A photosensitization of dissolved oxygen [8,9]. However,
long irradiation times are required, and low irradiation intensity allows the regrowth of
bacteria after solar treatment because of photorepair mechanisms [10]. Accordingly, this
study focuses on the photocatalytic disinfection of drinking water.

Photocatalytic technology is based on the interaction of light with suspended semi-
conductor nanoparticles, typically TiO2, to produce highly oxidative species (•OH radicals
and H2O2) from the adsorbed water molecules. •OH radicals are highly active for both the
oxidation of organic substances and the inactivation of bacteria and viruses. Accordingly,
the photocatalytic inactivation of bacteria such as Escherichia coli, Salmonella typhimurium,
Serratia marcescens, and spores of Clostridium perfringens as well as the lactobacillus phage
PL-1 virus has been reported [11]. Furthermore, a photocatalyst can degrade the toxins in
water that bacteria produce [12].

Powder photocatalysts are commonly used for the photocatalytic sterilization of
water. Such powders can disinfect water effectively because the photocatalyst is well
dispersed in the system, thus having both effective contact with bacteria and exposure to
the photoirradiation energy. However, the water and photocatalyst need to be separated
after the reaction, necessitating separation technology that is expensive to set up and run
and therefore not affordable in developing countries. Therefore, some form of photocatalyst
immobilization is required to simplify the process and decrease its cost.

Flat-panel- and tube-type reactors have been used for sterilization in past research [13,14].
A flat panel-type reactor such as photocatalyst-coated glass is easy to use, but the reaction
area depends on the reactor’s surface area, so a large substrate is required. In tube-type
reactors, the photocatalyst is packed in a glass tube. The number of photocatalyst-packed
tubes can be easily increased or decreased depending on the concentration of contaminants
and the volume of water, allowing effective sterilization [15]. However, a lot of equipment
is required, incurring additional shipping costs.

In our research, we have developed a net-type photocatalytic reactor that floats on
the surface of the water and removes bacteria. The net-type substrate has a larger pho-
tocatalytic surface area than panel-type reactors because both sides of the surface can be
used. Furthermore, we aimed to achieve weight and cost reduction by using a cheap plastic
substrate, i.e., polypropylene.

Coating polypropylene with TiO2 constitutes a major cost reduction because both
materials are inexpensive. However, there are several challenges to be overcome when
coating polypropylene with TiO2. First, the melting point of polypropylene is low (under
200 ◦C) [16], so the drying temperature employed after coating must be low. Therefore,
it is impossible to anneal TiO2 at high temperatures (<450 ◦C), which is typically used to
achieve crystal growth and the removal of organic groups to create a strong and durable
layer [17]. Secondly, the substrate material can be decomposed by the oxidizing power
of TiO2 itself [18]. Thirdly, the deposition of TiO2 nanoparticles onto fabrics is highly
challenging because of the lack of chemical bonding between fabrics and TiO2 nanoparti-
cles [19]. Finally, the underwater durability of such systems with long-term use has not
been investigated.

To address these problems, we explored the use of a binder blending method and
surface modification of the TiO2 particles. Binder blending was explored using a mixture
of TiO2 sources (TiO2 sols or nanoparticles) and polysiloxane, which can be dried and form
layers at low temperatures, as the binder [20]. The net comprises three layers, namely,
a TiO2-silicone layer as the photocatalytic coating, a silicone resin layer to protect the
substrate from the oxidizing power of TiO2, and the plastic substrate. Several methods of
surface hydroxylation, such as oxygen plasma [21], alkali hydroxides [22], and UV irradia-
tion [23], have been established to improve adhesion between such layers. Furthermore,
durability improvement by modifying the TiO2 surface with a silane coupling agent has
been reported [19]. Chen and Yakovlev [24] confirmed the surface modification of TiO2
nanoparticles with organosilanes by Si–O–Ti bond formation. The active functional groups
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grafted onto the particles increase the possibility of chemical bond formation between the
modified particles and the binder, thereby improving adhesion strength. Accordingly, we
fabricated the TiO2 layer by mixing silane-modified TiO2 particles in silicone resin (methyl
phenyl polysiloxane). The net was dip-coated first with silicone then with the TiO2-silicone
layer. O2 plasma treatment was adopted to improve the wettability of the silicone layer.

Overall, we aimed to create a TiO2-coated net that has high water durability and
bactericidal activity. The net is designed for practical and economically efficient water
treatment in developing countries.

2. Materials and Methods
2.1. Materials

Ethanol, formic acid, toluene, isopropanol, methylene blue, NaH2PO4, Na2HPO4·12H2O,
and NaCl were purchased from FUJIFILM Wako Pure Chemical Corp. (Osaka, Japan). 3-
Aminopropyltriethoxysilane (APTES) and silicone resin KR-255 (methyl phenyl polysiloxane)
were obtained from Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan). Hexadecyltrimethoxysilane
(HDTMS) was acquired from Sigma-Aldrich Japan KK (Tokyo, Japan). TiO2 Degussa
P25 was purchased from Evonik (Eseen, Germany). Polypropylene net (PP-#16) and
polypropylene plates were obtained from AS-ONE (Tokyo, Japan). E. coli DH5α was
provided by the Higami Lab at the Tokyo University of Science, Faculty of Pharmaceutical
Sciences. Nutrient broth and nutrient agar were acquired from Nissui Pharmaceutical Co.,
Ltd. (Tokyo, Japan).

2.2. Surface Modification of TiO2

First, 5.0 g of the silane coupling agent (APTES or HDTMS) was hydrolyzed in a
mixture of 2.0 g of deionized water (generated by Direct-Q UV3 (Merck Millipore, Darm-
stadt, Germany)), 300 mL of EtOH, and 0.3 g of formic acid. After stirring for 30 min,
5.0 g of TiO2 particles (P25) was added. P25 is a TiO2 that has a crystalline composition of
78% anatase and 14% rutile, calculated from XRD calibrations with varying mixtures of
rutile and anatase, and Ohtani et al. assumed that the remaining 8% was an amorphous
phase [25]. The mixture was kept under reflux at 80 ◦C for 5 h. After that, dispersed
particles were separated from the solvent by centrifuge (10 min at 12,000 rpm) followed
by washing with ethanol for three cycles to remove excessive silanes. Once the process
was finished, the modified particles were dried in an oven at 60 ◦C for 24 h, and Fourier-
transform infrared (FTIR) spectra were recorded using an FT/IR-6600 spectrophotometer
(JASCO, Tokyo, Japan). Hereafter, we denote HDTMS-modified TiO2 and APTES-modified
TiO2 as HDTMS-TiO2 and APTES-TiO2, respectively.

2.3. Photocatalyst Coating

The TiO2-silicone resin composite layer was deposited on the polypropylene by dip-
coating. First, the silicone resin (methyl phenyl polysiloxane) protective layer was deposited
by dip-coating. The silicone resin solution was diluted to 5 wt% with toluene to control
the solid content, and the resulting mixture was stirred magnetically for 30 min. The
polypropylene net was cleaned by 15 min of ultrasonication in isopropanol, and UV-O3
surface treatment was conducted for 15 min using a UV-Ozone Cleaner UV253E (Filgen,
Tokyo, Japan). Once the surface was cleaned, the silicone resin was deposited using a micro
dip-coater (MD-0408; SDI, Tokyo, Japan) at a withdrawing speed of 15 mm/s. After the
coating processes, the net was placed in a muffle furnace (KDF-S70; Denken-Highdental,
Kyoto, Japan) and dried for 20 min at 100 ◦C.

Then, the silicone-coated net was treated with O2 plasma (RF power: 100 W, 3 min)
using a parallel plate reactive ion etching system (RIE-10NR; Samco, Tokyo, Japan) to
improve surface wettability. Plasma was generated under a pressure of 20 Pa and an O2
gas flow of 10 sccm.



Water 2023, 15, 320 4 of 13

Finally, TiO2 particles, APTES-TiO2 particles, and HDTMS-TiO2 particles were dis-
persed in the silicone resin solution prepared above at a loading of 5 wt% and dip-coated
onto the protective layer to form a photocatalyst layer (withdrawing speed, 15 mm/s).
After the coating processes, the net was placed in an oven and dried for 20 min at 100 ◦C. A
cross-sectional schematic image of the prepared net is shown in Figure S1. As a reference, a
photocatalyst-coated polypropylene plate was also prepared in the same way.

2.4. Durability Test

The durability of the photocatalyst layer was examined both in the lab and under
actual sunlight. In the lab test, its durability under water flow and strong artificial sunlight
was evaluated. During the water durability test, sample nets were fixed in water that was
stirred using a magnetic stirrer set at 500 rpm for 24 h. During the photodurability tests,
sample nets were floated in water under artificial sunlight XC-100 (SERIC, Saitama, Japan)
for 16 h. The UV intensity (λ = 310–380 nm) of the artificial sunlight as measured using a
UV power meter C10427 (Hamamatsu Photonics, Shizuoka, Japan) was 4.0 mW/cm2.

The durability under real-world conditions was evaluated by floating the photocatalyst
net in tap water under natural sunlight. Tap water was put into a bucket and set on the
roof of a building at the Tokyo University of Science (Noda, Chiba, Japan) from 1 July 2022
to 19 August 2022. During the test period, tap water was added to the bucket every week
to maintain the water volume. The solar radiation time is estimated to be 316 hours based
on data from the Japan Meteorological Agency in Japan [26].

The durability of the photocatalyst layer was determined by scanning electron mi-
croscopy/energy dispersive X-ray spectrometry (SEM/EDX) observation using a JCM-6000
(JEOL, Tokyo, Japan)) and from the difference in photocatalytic activity before and after
durability tests. Photocatalytic activity was evaluated by the decomposition of Methylene
Blue (MB). Sample nets were floated in a petri dish containing 50 mL of aqueous MB solu-
tion (2.0 × 10−5 mol/L) in the dark for 8 h, followed by illumination. FL15BL-B (Panasonic,
Osaka, Japan) was used as a light source, and the UVA irradiation intensity was adjusted to
1.0 mW/cm2. The absorption spectrum of the MB solution was monitored using a UV–Vis
spectrometer (UV-1800; Shimadzu, Kyoto, Japan), and photocatalytic activity was estimated
from the change in the absorption peak intensity of MB.

2.5. Photocatalytic Sterilization of Water Containing Bacteria

The antibacterial properties of the samples were evaluated against E. coli DH5α cells,
which were precultured by shaking in nutrient broth in an incubator (Tokyo Rika Kikai,
Tokyo, Japan) at 37 ◦C for 18 h. From the main culture, the bacterial suspension was
inoculated into a new nutrient broth and shake-cultured in an incubator at 37 ◦C for 2.5 h.
NaH2PO4 (3.09 g), Na2HPO4·12H2O (8.77 g), and NaCl (37.98 g) were added to 500 mL of
ultrapure water to prepare 10× phosphate-buffered saline (PBS). Then, 50 mL of 10× PBS
was added to 450 mL of ultrapure water to prepare 1× PBS, which was used as a bacterial
suspension for intact E. coli cells. Bacteria cells were harvested by centrifugation at 3500 rpm
for 10 min and then washed three times with 1× PBS to remove broth residues. The cells
were resuspended in 1× PBS to achieve an OD660 value of 1.0. The experiments were
performed using a glass container as shown in Figure S2. Ultrapure water and the bacterial
suspension (3.2–7.6 × 106 CFU/mL) were added to the container at a ratio of 9:1. The water
depth was set to 20, 30, or 40 mm. The photocatalyst net covered the water surface. The
reaction suspension was illuminated with a black light for 3 h.

The standard plate-count technique was used to determine the number of microor-
ganisms present. First, 100 µL of a diluted suspension by 1× PBS was spread over the
surface of nutrient agar, which was then incubated at 37 ◦C for 24 h. After incubation, the
number of viable colonies was counted with a colony counter, and the average number
of colonies was calculated. A control suspension without the net and a suspension with
an uncoated polypropylene net were also evaluated with a water depth of 20 mm. The
photocatalytic experiments were carried out under UVA and natural sunlight irradiation.
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Blacklight FL15BL-B was used as the light source, and the irradiation intensity of UVA was
adjusted to 1.0 mW/cm2. The sterilization test using sunlight was started from 1:45 PM
to 4:45 PM on September 21st and 1:30 PM to 3:30 PM on October 4th, 2022. The water
depth was set to 20 mm, and the container size was 9.6 cm × 9.6 cm. The UV intensity of
the sunlight was measured every 30 min.

3. Results and Discussion
3.1. FTIR Spectra of Surface-Modified TiO2

To determine whether the TiO2 surface was modified, the transmission FTIR spectra
of APTES-TiO2 and HDTMS-TiO2 were examined (Figure 1). In the spectrum of TiO2,
the peaks below 700 cm−1 are assigned to Ti–O and Ti–O–Ti bonds in titania [24]. The
stretching vibration of absorbed water as well as surface hydroxyl groups (–OH) on the TiO2
nanoparticles was confirmed by the broad absorption band between 3400 and 3200 cm−1

and the low-intensity peak at 1640 cm−1 [24]. After surface modification by the two types of
organosilane, as presented in the spectra of APTES-TiO2 and HDTMS-TiO2, the absorption
peaks representing the stretching vibrations of -CH3, –CH2, and the C–O bond, respectively,
appear at approximately 2925, 2854, and 1467 cm−1. The stronger peak intensity for
HDTMS reflects the long-chain hydrophobic alkyl groups of HDTMS [27]. Furthermore,
the peak corresponding to the Si–O–Si bond is observed at approximately 1040 cm−1,
confirming the condensation reaction between silanol groups [28]. As shown in Figure 1,
the N–H bending vibration of primary amines (–NH2) is observed as a broad band in the
region of 1605–1560 cm−1 [24]. The appearance of these bands indicates that the amine
functional groups in the organosilane are grafted onto the modified particle surface. These
results confirm that the modification of TiO2 with silane coupling agents was successful.
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Figure 1. FTIR spectra of TiO2, APTES-TiO2, and HDTMS-TiO2 particles.

3.2. Evaluation of Coated Material

The fabricated net maintains its flexibility, even after layer formation (Figure 2a).
Furthermore, the net is light enough to float on the water surface (Figure 2b). As shown in
Figure 2c, the surface of the net and the intersection of the mesh part are coated to form a
TiO2-silicone layer. Furthermore, from the higher-magnification SEM image (Figure 2d),
a rougher surface than that of the silicone-coated polypropylene net surface is observed
(Figure S3). This indicates that TiO2 particles are attached to the silicone layer in the methyl
phenyl polysiloxane polymer. Hydrophilization of a surface by oxygen plasma treatment is
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considered to help obtain a flexible but strong surface coating [21]. The hydroxyl groups
formed on the surface improve the wettability and introduce dehydration condensation
sites, increasing adhesion between the layers. The EDX mappings also demonstrate that Si
and Ti are uniformly distributed in the prepared TiO2-coated net (Figure 3).
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The difference in reaction rate between the net and plate substrates was measured.
Both substrates were cut into 5 cm × 5 cm sections, and the TiO2 coating followed the
procedure in Section 2.3. Photocatalytic activity was assessed by the decomposition of
MB. Figure 4 shows that using the net substrate increases the decomposition speed by
140%. This is due to its larger surface area than that of the plate substrate. Furthermore,
the net is lighter because of the space between the strings. Considering transport fees,
nets are an ideal material for developing countries. Thus, we chose a net substrate for
water purification.
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3.3. Lab-Scale Durability Test

The durability of the photocatalyst layer under water flow and strong light was tested
using three samples. The photocatalytic reaction rate was assessed by the decomposition
of MB, and kafter (reaction rate after the test)/kinitial (reaction rate before the test) was
calculated (Figure 5a,b). After the water flow test, the reaction rate changes of the TiO2 net,
HDTMS-TiO2 net, and APTES-TiO2 net were 55%, 74%, and 62%, respectively. Because the
TiO2 particles are coated onto the surface by mixing into silicone resin, MB is decomposed
by the surface-deposited and semi-embedded TiO2 particles. The decrease in reaction
rate after the water flow test is due to the shedding of particles from the surface [29]. By
modifying the surface of the TiO2 particles, the functional groups increase the possibility of
chemical bond formation between the modified particles and silicone, thereby improving
adhesion strength [30]. In the case of HDTMS-TiO2, the long carbon chains of HDTMS
tangle in the silicone chains and physically improve adhesion, thus providing excellent
water resistance to the photocatalyst layer.

Water 2023, 15, x FOR PEER REVIEW 8 of 13 
 

 

of MB, and kafter (reaction rate after the test)/kinitial (reaction rate before the test) was calcu-
lated (Figure 5a,b). After the water flow test, the reaction rate changes of the TiO2 net, 
HDTMS-TiO2 net, and APTES-TiO2 net were 55%, 74%, and 62%, respectively. Because the 
TiO2 particles are coated onto the surface by mixing into silicone resin, MB is decomposed 
by the surface-deposited and semi-embedded TiO2 particles. The decrease in reaction rate 
after the water flow test is due to the shedding of particles from the surface [29]. By mod-
ifying the surface of the TiO2 particles, the functional groups increase the possibility of 
chemical bond formation between the modified particles and silicone, thereby improving 
adhesion strength [30]. In the case of HDTMS-TiO2, the long carbon chains of HDTMS 
tangle in the silicone chains and physically improve adhesion, thus providing excellent 
water resistance to the photocatalyst layer. 

 
Figure 5. Effect of (a) water flow and (b) strong artificial sunlight irradiation on the photocatalytic 
degradation of MB. 

As shown in Figure 5, after the light irradiation test, the reaction rate changes for the 
TiO2 net, HDTMS-TiO2 net, and APTES-TiO2 net were 96%, 154%, and 167%, respectively. 
The TiO2 coating on the net surface after strong light irradiation (Figure 6) was examined. 
For the TiO2 layer, peeling is observed (red arrow in Figure 6a), while the modified TiO2 
does not peel. This indicates that silane modification of the TiO2 particles improves the 
strength of the layer. The improvement in reaction rate is thought to be due to the decom-
position of residual organic matter in the layer, which increases the number of particles 
contributing to the decomposition of MB. From these results, we concluded that HDTMS-
TiO2 is most suitable for long-term outdoor use. Therefore, HDTMS-TiO2 was selected for 
subsequent experiments. 

 
Figure 6. SEM images of the (a) TiO2 net that TiO2 layer peeling are observed near the red arrow, (b) 
HDTMS-TiO2 net, and (c) APTES-TiO2 net after strong artificial sunlight irradiation. 

3.4. Durability in the Natural Environment 
The durability of the HDTMS-TiO2 net was evaluated on the roof of our university 

for 49 days. Surface observation by SEM (Figure 7) and the decomposition of MB were 

96%

154%
167%

0%

50%

100%

150%

200%

k a
fte

r
/ k

in
iti

al55%

74%

62%

0%

20%

40%

60%

80%

100%

k a
fte

r
/ k

in
iti

al

(a) (b)

TiO2
HDTMS-TiO2

APTES-TiO2
TiO2

HDTMS-TiO2

APTES-TiO2

200 μm200 μm200 μm

(c)(a) (b)

Figure 5. Effect of (a) water flow and (b) strong artificial sunlight irradiation on the photocatalytic
degradation of MB.
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As shown in Figure 5, after the light irradiation test, the reaction rate changes for the
TiO2 net, HDTMS-TiO2 net, and APTES-TiO2 net were 96%, 154%, and 167%, respectively.
The TiO2 coating on the net surface after strong light irradiation (Figure 6) was examined.
For the TiO2 layer, peeling is observed (red arrow in Figure 6a), while the modified TiO2
does not peel. This indicates that silane modification of the TiO2 particles improves
the strength of the layer. The improvement in reaction rate is thought to be due to the
decomposition of residual organic matter in the layer, which increases the number of
particles contributing to the decomposition of MB. From these results, we concluded that
HDTMS-TiO2 is most suitable for long-term outdoor use. Therefore, HDTMS-TiO2 was
selected for subsequent experiments.
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Figure 6. SEM images of the (a) TiO2 net that TiO2 layer peeling are observed near the red arrow,
(b) HDTMS-TiO2 net, and (c) APTES-TiO2 net after strong artificial sunlight irradiation.

3.4. Durability in the Natural Environment

The durability of the HDTMS-TiO2 net was evaluated on the roof of our university
for 49 days. Surface observation by SEM (Figure 7) and the decomposition of MB were
evaluated every 7 days. The SEM image demonstrates that the TiO2 layer remains intact.
No layer peeling is observed even after 49 days. Figure 8 summarizes kDay n (reaction rate
at day n (n = 7–49)/kinitial (reaction rate before the test). From day 1 to 14, the reaction
rate decreases because of the surface pollution that occurs when water is left outside. We
confirmed the growth of species such as algae and diatoms both in the water and on the net
surface (Figure S4). This is because we placed the water bucket outside for the experiment,
and algae and other species can be transported to the water by the wind. In contrast,
the reaction rate increased for days 14–49. It was considered that the remaining organic
compounds in the layer decompose around the TiO2 particles, as shown in Section 3.3.
These results demonstrate that the net sustains photocatalytic activity over long-term use.
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3.5. Photocatalytic Sterilization of Water Containing Bacteria

The antibacterial properties of the TiO2 net were investigated in the lab using black
light (Figure 9). After 3 h of UV irradiation, the survival rate of E. coli under UV, with
the control polypropylene net (base material), and with the TiO2 net floating on water
depths of 20 mm, 30 mm, and 40 mm were 25.98, 24.25, 3.07, 7.11, and 15.99 %, respectively.
The E. coli concentrations with and without the polypropylene net under UV irradiation
were very similar, demonstrating that the polypropylene net itself has no effect on E. coli.
Upon increasing the water depth, the survival rate of E. coli increases. Sterilization by
TiO2 is due to hydroxy radicals (•OH) generated on the surface of the catalyst, which are
highly active for the oxidation of organic substances and the inactivation of bacteria and
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viruses [31]. Furthermore, E. coli is known to sink in water. In this experiment, the solution
was not stirred during irradiation. Therefore, a 40 mm water depth may be too much for
sterilization by the TiO2 net. Therefore, we decided 20 mm is the recommended water
depth for using this net in a flat container at home for water sterilization.
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Figure 9. Photocatalytic sterilization of water containing E. coli at various water depths.

The antibacterial properties of the TiO2 and HDTMS-TiO2 nets were investigated
outside under natural sunlight. The starting time was 1:45 pm. It was relatively cloudy
on 21 September. A maximum UV intensity of 1.4 mW/cm2 was recorded at 1:45 pm. As
shown in Figure 10, there were small changes in UV intensity depending on cloud cover.
The UV intensity alone was not high enough to sterilize E. coli. However, sterilization was
confirmed with the photocatalyst net floating on the water’s surface. After 1 h of sunlight
irradiation, the survival rates for E. coli with sunlight, the TiO2 net, and the HDTMS-
TiO2 net were 21.62, 1.17, and 1.08%, respectively. These results show that the fabricated
photocatalyst net can sterilize E. coli in water.
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Figure 10. Photocatalytic sterilization of water containing E. coli by the TiO2 net and HDTMS-TiO2

net under natural sunlight.

Moreover, logarithmic reduction of E. coli was conducted (Figure 11). It was relatively
sunny with partial cloudiness on 4 October. The starting time was 1:30 pm. A maximum
UV intensity of 3.0 mW/cm2 was recorded at 2:30 pm. The initial concentration of the
E. coli suspension was 3.2–7.6 × 105 CFU/mL. After 2 h of sunlight irradiation, the E. coli
concentrations for sunlight, the TiO2 net, and the HDTMS-TiO2 net were 985, 30, and
10 CFU/mL, respectively. Rincon and Pulgarin [32] observed no bacterial growth (E. coli
K12) after illumination of a contaminated TiO2 suspension. However, without a catalyst,
the illuminated bacteria recovered their initial concentration after 3 h in the dark. This
result shows that even if bacteria are not cultivable at the end of the phototreatment, some
are not killed and recover their culture ability after a period in the dark. Thus, it is necessary
to use a photocatalyst for the deactivation of drinking water.
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HDTMS-TiO2 net under natural sunlight.
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4. Conclusions

We aimed to create a TiO2-coated net that disinfects water for practical use in devel-
oping countries. The TiO2 particles were modified with APTES or HDTMS to improve
particle dispersibility. By modifying the surface of the TiO2 particles, we succeeded in
preparing a highly water-durable photocatalyst coating that can be maintained for 49 days
of outdoor exposure. This represents 316 h of solar radiation [26]. The number of E. coli was
decreased from 320,000 to 10 CFU/mL under sunlight within 2 h. Because the UV intensity
in developing countries is stronger than that in Japan, sterilization by the photocatalyst net
will occur more quickly. These results indicate that the photocatalyst net can be used more
than 150 times (316 h/2 h). The amount of water that the net can treat depends on the size
of the water container. In this study, we set the water depth to 20 mm, and the container
size was 9.6 cm × 9.6 cm. Therefore, the amount of treated water was 185 mL. Using a
container with a surface area of 1000 cm2 and 20 mm in depth, the photocatalyst net can
treat 2 L of water, which is the required amount of drinking water for adults per day [33].
Existing water treatments necessitate the incurrence of equipment costs, such as those asso-
ciated with separation membranes as well as operational expenses. The cost of materials
required to fabricate 100 cm2 of the TiO2-coated net was less than USD 1. Dip-coating is
distinguished by the ability to apply a thin film and the low loss of coating liquid in contrast
to spray coating. These attributes enable the creation of a large TiO2-coated net with a
minimal amount of coating liquid, potentially leading to cost reduction. Additionally, there
are no operational expenses associated with this net. As a result, the implementation of the
TiO2-coated net in developing countries may be facilitated. The results we obtained show
that the photocatalyst-coated polypropylene net effectively eliminates E. coli from drinking
water, reducing the risk of infectious diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15020320/s1, Figure S1: Schematic of coated layers; Figure
S2: Schematic of the antibacterial test setup; Figure S3: SEM images of the silicone layer coated
polypropylene net at different magnifications; Figure S4: SEM images of algae and diatom growth on
the HDTMS-TiO2 net surface.
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