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Abstract: The treatment of wastewater is an expensive and energy-extensive practice that not only
ensures the power generation requirements to sustain the current energy demands of an increasing
human population but also aids in the subsequent removal of enormous quantities of wastewater
that need to be treated within the environment. Thus, renewable energy source-based wastewater
treatment is one of the recently developing techniques to overcome power generation and environ-
mental contamination issues. In wastewater treatment, microbial fuel cell (MFC) technology has
demonstrated a promising potential to evolve as a sustainable approach, with the simultaneous
recovery of energy and nutrients to produce bioelectricity that harnesses the ability of electrogenic
microbes to oxidize organic contaminants present in wastewater. Since traditional wastewater treat-
ment has various limitations, sustainable implementations of MFCs might be a feasible option in
wastewater treatment, green electricity production, biohydrogen synthesis, carbon sequestration, and
environmentally sustainable sewage treatment. In MFCs, the electrochemical treatment mechanism is
based on anodic oxidation and cathodic reduction reactions, which have been considerably improved
by the last few decades of study. However, electricity production by MFCs remains a substantial
problem for practical implementations owing to the difficulty in balancing yield with overall system
upscaling. This review discusses the developments in MFC technologies, including improvements
to their structural architecture, integration with different novel biocatalysts and biocathode, anode,
and cathode materials, various microbial community interactions and substrates to be used, and the
removal of contaminants. Furthermore, it focuses on providing critical insights and analyzing various
types, processes, applications, challenges, and futuristic aspects of wastewater treatment-related
MFCs and thus sustainable resource recovery. With appropriate planning and further studies, we
look forward to the industrialization of MFCs in the near future, with the idea that this will lead to
greener fuels and a cleaner environment for all of mankind.

Keywords: energy production; microbial fuel cells; microorganisms; resource recovery; wastewater
treatment

1. Introduction

In the current era of technological development, the depletion of non-renewable
resources and the simultaneous environmental damage caused by their utilization are
crucial global concerns. The overexploitation of energy resources has caused various
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negative impacts, including greenhouse emissions, rising global temperatures, and severe
climate change. The dependency and the negative environmental impacts of fossil fuels for
energy consumption have prompted the urgent requirement to focus on the development
of alternate technologies and sources that could prove advantageous in meeting energy
demands together with environmental protection. Along with this energy deficit, the
treatment of wastewater containing contaminants is also one of the rising issues from many
in most parts of the world [1–5]. A large share of the total energy load drained by the
wastewater treatment sector has been identified as a renewable resource and could be used
to address both issues of energy generation and treatment together with the recovery of
nutrients [6–12]. Accomplishing the need to treat wastewater and generate energy, microbial
fuel cells (MFCs) are one of the recent techniques that could be utilized [13–18]. MFCs are
proficient in converting chemical energy from civil and industrial wastewaters together
with the generation of electrical energy through the application of specific electroactive
bacteria (EAB). EAB could act on the reactions of substrate oxidation and oxidant reduction,
thus aiding in the generation of energy and minimizing wastewater treatment costs [19–24].
Domestic wastewater has been reported to hold 13 kJ/g of chemical oxygen demand
(COD) for chemical energy i.e., about nine-fold of the energy required for treatment [25,26].
Thus, if the energy included in wastewater could be efficiently retrieved, then this could
lead to no external energy input requirement for operating wastewater treatment plants
(WWTPs) [25–27]. However, if a fraction of the energy could be retrieved, then it could
benefit in the reduction of economic costs of wastewater treatment. MFCs’ performance can
also be increased by managing operational parameters, i.e., the organic loading rate (OLR),
hydraulic retention time (HRT), pH, and applied electric resistance [28–32]. Although
the process as well as design management of MFCs are being improved and modified
by introducing developments in mathematical models, operational understanding of the
current techniques still needs to be achieved [33,34].

In the current scenario, the commercialization of MFCs is restricted due to various
bottlenecks associated with this, including limited efficiency and high operational and
maintenance costs. The practical application of this technology in various areas is still lim-
ited due to system instabilities, scaling-up limitations, competitive microbial reactions, and
thereby a limited generation of power [16,19–23,25–31,33,34]. The treatment of wastewater
with the application of MFCs is still obscured at different points and needs to be inves-
tigated. For example, the advances realized at a low scale have been not translated to a
larger scale, suggesting that an additional understanding of the progress is still mandatory.

Rapid advancements in MFC research have resulted in the publication of various illu-
minating reviews on organic biomass resources, the assessment of various configurations,
specialized themes such as resource recovery, robustness, and repeatability, and waste-to-
energy transformation using MFC technologies [35–39]. To add to previous studies, the
present review focuses on the robust applications of MFCs and their types in wastewater
treatment and sustainable resource recovery, with great attention to the working principles
and the parameters affecting their scaling up. Furthermore, insights into various types,
processes, applications, challenges, recent advances, and futuristic aspects of wastewater
treatment-related MFCs are comprehensively provided.

2. General Features, Types, and Designs of MFCs

MFCs are relatively new and are one of the promising technologies that facilitate the
simultaneous resolution of energy needs and environmental concerns [40–45]. MFCs are
equipped with the production of biohydrogen, biosensors, and in situ power sources that
are utilized for bioremediation collectively with the treatment of wastewater facilities. The
rationale that facilitates the use of MFCs for wastewater treatment includes the process
of the direct conversion of energy obtained from substrate to electricity, production of
controlled activated sludge, insensitivity to the operating environment at low temperatures,
their ability to be used without treatment of gas and input of energy for aeration, and their
utilization in areas with limited electrical infrastructures [46].
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The amount of energy generated through MFCs mainly depends on their design,
the distance between electrodes, the electrode utilized, the proton exchange membrane
(PEM), the mediators, the substrate, and the microorganisms involved along with certain
external influences. MFCs are composed of different designs, including single-chambered,
double-chambered, stacked designs, etc. PEM, which is the main component in MFCs,
plays a crucial role, as its area in comparison to the electrode surface area affects the
power production. PEM is composed of Nafion, cellophane, agar, etc. Mediators are the
compounds that are involved in the transportation of electrons from microorganisms to
the electrode surfaces and thus induce power density. A few examples of intracellular
mediators include NADPH, NADH, cytochromes, and so forth. Certain synthetically
obtained mediators include thionine, meldola blue, methylene blue, neutral red, hydroxy-
1,4-naphthoquinone, and so forth. Synthetic mediators might be integrated, but they have
limited applications due to their toxicity. Recent studies suggest that the direct transfer of
the electrons from the surface of the cell to the anode surface with increased stability and
coulombic efficiency (CE) plays an important role in the operation of MFCs [47]. CE is the
analysis that refers to the transfer of electrons in a system to carry out an electrochemical
reaction. In MFCs, CE measures the number of coulombs recovered as electrical current
and is dependent on the types of microorganisms involved, the substrate used, the type of
wastewater, the design of MFCs, and the experimental protocol [29].

The microbes that have been reported to transfer the electrons efficiently to the anode
directly are Rhodoferax ferrireducens [48], Shewanella putrefaciens [49], Geobacter metallire-
ducens [50], Geobacter sulfurreducens [51], and Aeromonas hydrophila [52]. Microbes require
nutrients to operate properly, and those nutrients can be provided using certain waste
sources as substrates, such as swine waste, dairy waste, as well as combined industrial
waste, and so forth [53,54].

2.1. Types of MFCs

The types of MFCs are differentiated depending upon the presence of an anode
chamber, cathode chamber, electrode assembly, and PEM or salt bridge. Different MFCs
classified according to their design and mechanism of operation are illustrated in Figure 1.

2.1.1. Single-Compartment MFCs

Single-compartment MFCs are composed of one anode compartment, and the cathode
is exposed. Oxygen (O2) supply is not required in this design due to the presence of
an exposed cathode, rendering these MFCs simple and cost-effective [55]. The basic
design allows for batch or continuous operation, as well as a rapid scale-up process. A
single-compartment microbial fuel cell (MFC) was designed by availing non-conductive
polycarbonate plates that were closed using a system of screw and bolt [53]. Porous carbon
paper incorporated as an anode and carbon cloth together with a platinum catalyst has been
employed to work as a cathode. Nafion membrane can be used as the PEM, and copper
wire is utilized to join electrodes and external circuits [47]. The application of ceramics in
MFCs has been reported to be beneficial for the advancement of MFCs’ functioning, as
ceramic is a feasible material for conventional ion exchange that is of low cost and provides
a natural and stable environment for the bacteria as well as an efficient system for energy
harvesting [56].
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2.1.2. Two-Compartment MFCs

This type of MFC is comprised of two compartments for the anode and cathode,
respectively. The anode and cathode compartments are divided by the placement of
either a PEM or a salt bridge. This design positions the required microbes, microbe-specific
medium, and the electrode in the anode chamber. The cathode chamber includes freshwater
or buffers as catholyte, along with an electrode and an O2 supply. In a two-compartment
design, MFCs’ electrodes are fabricated using stainless steel mesh, copper, graphite, carbon
paper, and carbon and graphite fiber brush [56]. To achieve anaerobic conditions in the
anode compartment, a continuous nitrogen supply may be required in some cases. This
type of MFC can be constructed by incorporating two borosilicate glass bottles, a clamp
system for connecting the glass bridge of two chambers, and a PEM (Nafion) to separate
the chambers. The carbon paper is applied to function as the electrode for the anode as
well as the cathode. The cathode is embedded with platinum, and lake sediments can be
used as an inoculum for microbes. However, due to the expense, Pt-free catalysts such as
Pd-Cu, manganese oxides, activated carbon-nickel, and so forth are alternatively being
used. Microbes for this design can be cultured in a mineral salt medium (MSM) and can be
further stored at 4 ◦C for use [47].

2.1.3. Up-Flow MFCs

Up-flow MFCs are a continuous mode design, and they apply an injection of wastew-
ater into the system from the bottom with high force towards the upward direction. The
effluent can then flow to exit the system from the top [57]. The design is tubular in struc-
ture and manufactured with polyacrylic plastic without the use of a PEM. The anode and
cathode for this structure are composed of graphite felt, and the separators are formed of
glass beads and glass wool. Artificial wastewater containing glucose and glutamate can
be utilized as a fuel source. In this design, aeration is provided by cathode layer aerators.
The electrodes and the external circuit are connected using platinum wire. Excluding PEM
from the design enables it to be used in a continuous mode and parallelly reduces the
expenditure. Although this design has immense potential for future applications, it is
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deficit in terms of net energy efficiency, as the amount of energy that is required to pump
the wastewater in MFC is greater than the generated energy [47,57].

2.1.4. Stacked MFCs

This design is comprised of multiple MFCs that have been stacked together parallelly.
As multiple MFCs are used, it contributes to higher output efficiency and higher COD
removal [16]. This constructed design is composed of six separated continuous MFCs
piled together. The anode and cathode of this design are made of graphite granules, and
Ultrex CMI7000 PEM is used as a separator. It has been observed that parallel connections
applied in cells possess a better performance in comparison to series connections due to
high efficiency and COD removal [47,58].

2.1.5. Paper MFCs

Paper MFCs provide several benefits that mainly include economic effectiveness,
chemical resistance, and ease of disposal. The design consists of an anode and cathode with
electrodes composed of graphite particles. The particles of graphite are deposited onto the
paper through four separate pencil hits. PEM made from parchment paper is used, and
crayons can also be used to substantially increase the hydrophobicity. Microbes such as
Shewanella oneidensis can be introduced in the anode chamber together with appropriate
growth media [47,59].

2.2. Substrate and Microorganisms That Are Used in MFCs

The substrate is an important factor that influences the activity of microbes present in
the biofilm of the anode and thereby MFCs’ performance and generation of electricity [60].
It plays a vital role in providing nutrients and energy to microbes. The substrate can be
called anolyte, which is a liquid solution present inside the chamber of the anode [61].
Various substrates that are used in MFCs include pure compounds and complex mixtures of
organic matter that are present in wastewater [62]. The most frequently utilized substrates
are glucose, brewery effluent, acetate, synthesis wastewater, lignocellulosic biomass, landfill
leachates, starch processing wastewater, inorganic substrates, and dye wastewater [40].

According to studies, only a few microorganisms are capable of transferring electrons
to the anode, and these types of microorganisms are known as exoelectrogenic bacteria.
Single microbes, as well as their mixtures composed of both exoelectrogenic bacteria and
non-exoelectrogenic bacteria, can be introduced as a biofilm. The exoelectrogenic bacteria
can transfer electrons to the anode using mediators, nanowires, and direct contact with
the electrode. Non-exoelectrogenic bacteria utilize mediators that are produced through
exoelectrogenic bacteria and thus transfer the electrons to the electrode. Certain exoelec-
trogenic bacteria used in MFCs include Shewanella putrefaciens, Desulfuromonas acetoxidans,
Clostridium butyricum, Rhodoferax ferrireducens, Geobacter metallireducens, Desulfobulbus propi-
onicus, Geobacter sulfurreducens, Geothrix fermentans, Pseudomonas aeruginosa, Escherichia coli,
Desulfovibrio desulfuricans, Klebsiella pneumonia, Ochrobactrum anthropi, Shewanella oneidensis,
Geopsychrobacter electrodiphilus, Rhodopseudomonas palustris, and Pichia anomala [47]. The
mechanism of electron transport in the plasma membrane for the generation of electricity
is represented in Figure 2.
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3. Working Principle/Treatability of MFCs and Generation of Energy

As discussed in the preceding sections, MFCs consist of electrodes, i.e., an anode
and cathode together with a microorganism, a substrate/anolyte, and an external circuit.
Figure 3 illustrates the working principle of a typical MFC. The reaction that occurs in the
MFC is generally represented by the oxidation of acetate, as shown below [26]:

CH3COO− + 4H2O→ 2HCO3
− + 9H+ + 8e−

The EAB operates as a biocatalyst that further results in the substrate oxidation and
transfer of electrons to the anode by direct transfer [63]. Figure 4 depicts proton and electron
generation via exoelectrogens and proton transportation across the PEM membrane in
MFCs. The indirect transfer can proceed through soluble electron shuttles that initiate the
extracellular electron transfer to the anode [64]. MFCs can be composed of electron transfer
mediators or a non-mediator. Synthetic materials comprised of dye-based materials, such
as phenothiazine, phenazine, indophenol, and thionine, can also be utilized as mediators.
Furthermore, in the reaction, electrons produced in the anode chamber move through the
external circuit to reach the cathode and generate a current as a result [63,65]. The cathode
chamber contains electron acceptors (e.g., O2) that enable reduction reactions, as described
below [66]:

2H2O + O2 + 4e− → 4OH− (1)
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As the electrons move through the external circuit, it causes the flow of protons
through the PEM, which then react with oxygen in the cathode chamber to form water
molecules. The reaction is shown below [67]:

2H+ + 2e− + O2 → 2H2O (2)

Wastewater that is obtained from domestic, agricultural, and industrial sources con-
sists of a variety of materials that can be used as a renewable fuel source for MFCs. MFCs
can be designed and developed to function as self-sustaining wastewater treatment tech-
nologies that can enable them to be independent of external power sources to supply
energy. This technology offers several economic benefits, including energy efficiency, the
production of less sludge or even anaerobic digestion processes, minimum or no toxic
byproducts, the recovery of economically important products from wastewater such as
nutrients and electricity, easy operation under varying conditions, and a reliable and
sustainable technology [26].

The effectiveness of MFCs is affected by a combination of factors that mainly includes
biological, physicochemical, electrochemical, and operational parameters. The biological
factors that affect the performance of MFCs include the numbers, types, and catalytic
activity related to microorganisms that are incorporated. The energy dissipation at the
anode can be imputed for the loss of electrochemical activity of the respective microor-
ganisms as well as the anode overpotential transport loss [68,69]. The physicochemical
factors that can interfere with the functioning of MFCs are the types and efficacy of the
electrode surface area, electrolytic resistance [70], the transfer rate of the proton through
the PEM, a reduction reaction occurring at the cathode [71], and external resistance incor-
porated across the electrodes [64,72,73]. Electrochemical factors that can manipulate MFC
performance include ohmic resistance, internal resistance, diffusion resistance, and charge
transfer resistance [26].

The surface area of the PEM also affects power generation in an MFC [26]. When the
PEM has a smaller surface area as compared to the surface area of the anode and cathode,
it leads to an increased MFC internal resistance, thus constraining power generation [56].
Internal resistance in the MFC is directly proportional to the distance between the cathode
and the anode. The PEM is significant for enhancing MFC performance in double-chamber
MFCs, as it also determines the operational expenses and maintenance costs. Many of
the prior MFC investigations have been performed using commercial Nafion as the PEM.
As a membrane with lower resistance and higher ion selectivity is desirable, UltrexTM,
a cation exchange membrane with low resistance, is preferred over Nafion. The carbon
paper can be used to function as a separator and could reduce the internal resistance
and thereby the MFC expenditures. Ceramic materials are both viable and cost-effective
substitutes for extensively used membranes [74]. Operational parameters include organic
loading rates [75], as well as the type and concentration of the substrate utilized. However,
the evaporation of the substrate/anolyte remains a difficulty for MFC performance and
requires further research [26].

4. Application/Performance of MFCs in Wastewater Treatment

Significant developments have been made to improve MFCs’ performance together
with their application by introducing considerable efforts in the exploration of separators,
electrode materials, design of the reactor, and various methods to analyze wastewater other
than the power generation and cost-effectiveness [76]. MFC performance is majorly studied
through power density that is based on the surface area of the anode or cathode. The anode
should be non-toxic to microorganisms, chemically inert, cost-efficient, and long-lasting [77].
Anodes in MFCs play a key role in durability, power output, and easier functioning. The
anode should consist of a wide surface area to allow for bacterial adherence and high
electrical conductivity to facilitate the transfer of charge, as well as improved current
collection competency. The surface area of the anode is essential in fostering and sustaining
bio-catalytic activity and can be changed to enhance its suitability for microorganisms,
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ultimately improving the transfer of electrons from bacteria to the surface of the anode. The
amount of bacterial adhesion is proportionally related to power generation. Thus, more
bacterial adhesion will result in more power generation with reduced electrical loss [78].

It has been demonstrated that the construction of a novel annular single-chamber
microbial fuel cell (ASCMFC) utilizing stainless-steel mesh and a graphite-coating anode
will provide high power density with dairy wastewater substitute [79]. The maximum
power density, maximum CE, and COD removal were reported as 20.2 W/m3, 91%, and
26.87%, respectively. In another study, researchers evaluated a modification for the anode
to improve the MFC’s performance through electrochemical oxidation. It was reported
that CM-N (carbon mesh nitric acid) MFC was capable of 81.7% recovery. The maximum
power density observed in the nitric acid-modified anode was reported to be 792 mW/m2

as compared to the unmodified control (552 mW/m2). Furthermore, the CE is significantly
enhanced after modification to 24% from 14% (the unmodified MFC), and the efficiency to
remove COD was also observed to be higher than the unmodified one [80].

The substrate is regarded as the most important biological aspect of MFC, since it
determines how much electricity will be generated [70]. Researchers have employed
municipal wastewater, swine wastewater, starch-processing wastewater, food-processing
wastewater, and chocolate factory wastewater to generate energy using MFC. Table 1 lists
the few most frequent substrates and their effects on their performance.

Table 1. Applications of MFCs in the treatment of different types of wastewaters.

S. No. Inoculum and
Substrate Type of MFC Electrode Material

Power Den-
sity/Current

Den-
sity/Voltage

Treatment
Efficiency Reference

1 Swine wastewater
manure Two-chambered Carbon cloth 13 mW/m2 TCOD: 83%,

CE: 0.3% [81]

2

Agriculture
wastewater

(Human feces
wastewater)

Two-chambered

-Anode: carbon
paper

-Cathode: carbon
paper with 40%

platinum

70.8 mW/m2
TCOD: 71.0%,
SCOD: 88.0%,
NH4

+: 44.0%
[82]

3 Domestic and olive
mill wastewater

Single-chambered
air cathode

-Anode: graphite
fiber brush.

-Cathodes 7 cm2

(total exposed
surface area)

124.6 mW m−2
TCOD: 65.0%
BOD: 50.0%,

CE: 29%
[83]

4

Dairy wastewater
(COD of

1000 mg/L)
inoculated by

activated sludge
from the dairy

WWTP

Annular single
chambered

-Graphite-coated
stainless-steel mesh

anode
-Cathode: carbon

cloth type B

20.2 W/m3 COD: 91%,
CE: 26.87% [79]

5 Synthetic
wastewater

Up-flow
constructed

wetland
(UCW-MFC)

-anode: graphite
-cathode:

magnesium
15.1 mW/m2

COD: 92.1%,
NH4

+: 93.2%,
NO3

−: 81.1%,
CE: 1.64%

[84]

6 Industrial
wastewater

Dual chambered
anaerobic MFCs Anode and cathode 260 mW/m2

TCOD: 87%,
SCOD: 79%,

TSS: 72%
[85]
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Table 1. Cont.

S. No. Inoculum and
Substrate Type of MFC Electrode Material

Power Den-
sity/Current

Den-
sity/Voltage

Treatment
Efficiency Reference

7 Acetate Single-chambered
MFC

Substrate as a
source of carbon to

stimulate
electroactive

bacteria

506 mW/m2

CE (72.3%),
butyrate
(43.0%),

propionate
(36.0%), and

glucose (15%)

[86]

8 Arabitol Single-chambered
MFC

Co substrate in a
single chamber 0.68 mA/cm2 COD: >91% [87]

9 Cysteine

MFC with carbon
paper electrodes
(11.25 cm2) dual

chamber

Co-substrate 36 mW/m2 - [86]

10
Common effluent
treatment plant

(CETP) wastewater

H-type, dual
chamber,

mediator-less MFC
graphite plates 0.6 V COD: 50% [88]

11 Sodium benzoate
(0.721 g/L)

H-type, dual
chamber,

mediator-less MFC
graphite plates 0.8 V COD: 89% [88]

4.1. Factors Affecting Performances of MFCs during Wastewater Treatment

As discussed in the previous section, the MFC performance and efficiency are deter-
mined by several factors that include microbial electron transfer, fuel oxidation, oxygen
supply, circuit resistance, proton transfer via the membrane, reduction at the cathode site,
concentration, and pH. These factors can be reinforced and modified over time for better
output [70].

4.1.1. Electrode Properties

Electrode performance and power output are influenced by electrode material prop-
erties. Table 2 represents different anode and cathode materials that could be used in
MFCs as well as their advantages and disadvantages. The material used for the anode
should support a broad surface area, as well as good electrical conductivity and stability.
However, because of the high-power output per unit surface area, graphite felt, carbon
cloth, carbon felt, carbon mesh, and graphite fiber brush are frequently utilized as elec-
trodes. Furthermore, reports on platinum (Pt)-based cathodes and biocathodes suggest an
increase in MFCs’ power input by increasing catalytic activity using oxygen or reducing
over potential. However, the cathodes mentioned are not economically friendly [77]. The
performance of the cathode electron receiver determines the power and voltage density
in MFCs. Researchers have studied electrical functioning of MFCs with potassium per-
manganate, ferricyanide solution, and dissolved oxygen as cathode electron receivers. The
highest power density and smallest internal resistance of 4.35 W/m3 and 54 Ω, respectively,
were reported [89].
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Table 2. Anode and cathode materials used in MFCs.

S. No. Material Used Anode/
Cathode Advantages Disadvantages Reference

1 Graphite rods Anode
High conductivity, chemical
stability, low cost, and easy to
handle

Surface area is difficult to
increase [90]

2 Graphite
brushes Anode Easy to construct and more

specific area Clogging issues [91]

3 Carbon cloth Anode Large porosity relatively Not cost efficient [92]

4 Carbon paper Anode Easy to construct wire
connection Brittle [93]

5 Carbon felt Anode Enormous surface area Elevated resistance [94]

6 Reticulated
vitreous carbon Anode High electrical conductivity Delicate and large resistance [48]

7 Stainless steel Anode High conductivity, cost
efficient, and easily accessible

Low surface area,
compatibility issues,
can get corroded

[95]

8 Pt-based catalyst Cathode
High surface area and low
potential for the oxygen
reduction reaction

pH sensitivity,
sulfide poisoning, and
non-sustainability

[96]

9 Non-Pt-based
catalyst Cathode

pH control, no sulfide
poisoning, and
non-sustainability

Compromised electron
transfer [97]

10 Carbon Nano
tubes Cathode High surface area and power

density Voltage losses [98]

11 Palladium Cathode Excellent catalytic properties
and low cost

Very low oxygen reduction
reaction overpotential for
catalytic hydrogen production

[99]

12 Aerobic
biocathode Cathode

Production of methane,
ethanol, and formic acid via
microbes and application as a
biosensor for BOD detection

Loss of electrons through
oxygen [100]

13 Anaerobic
biocathode Cathode Prevention of loss of electrons

via anodic end

Biofilms catalyze the
reduction of chemically active
species

[54]

14 Cathode with
metal-free catalyst Cathode Cheap materials, catalytic

activity, stability

Superior electrocatalytic
activity, with lower
overpotential and prolonged
stability for ORR

[97]

4.1.2. pH

In MFC, protonic generations occur at an anodic end with facilitation of the smooth
flowing electrons to interact with the oxygen molecule for the production of water. Anode
acidification occurs due to the continuous loop operation due to incomplete proton trans-
port through the membrane. On the other hand, the cathode is alkalized due to the lower
efficiency of proton replacement. These constraints eventually hinder the effectiveness
of MFCs, resulting in a pH concentration gradient. An increase in the pH of the cathode
compartment reduces current production, thus lowering the operating pH required to
achieve higher power production [101]. A study has demonstrated the effect of pH on the
production of electricity and contaminant dynamics through MFCs [102]. Reports suggest
that the production of power was the highest (0.66 Wm−3) with a pH of around 9.5 for the
air cathode chamber. For 30 days, the MFC operation was in continuous control mode and
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enhanced the performance of the cell in terms of power output, which was reported to be
1.8 Wm−3 at the optimum pH. The study demonstrated that physical ammonium loss and
organic matter removal were directly influenced by pH.

4.1.3. Temperature

Temperature also has a considerable impact on MFCs’ performance in terms of re-
moving COD and generating electricity. MFCs’ kinetic properties and thermodynamic
properties are highly dependent on temperature. An increase in temperature leads to an
increase in the power density but a decrease in the ohmic resistance. A study has examined
the effects of a change in temperature on the electrode potential, power density, columbic
efficiency, COD removal, and internal resistance of a two-chamber MFC [103]. It was
reported that as the internal resistance of the MFC increases, the power density acquired
is simultaneously reduced. The data for CE were observed to be 8.65% at 30 ◦C, 8.53% at
37 ◦C, and 13.24% at 43 ◦C, respectively. These findings illustrate that MFCs are capable of
operating at a wide range of temperatures.

4.1.4. Aeration

Aeration, along with the presence of oxygen in the cathode, is another key characteris-
tic of MFC function, since organic catalysts such as Pt, iron, and Al are known to require
large amounts of oxygen to carry out the reduction process as the electron acceptor of the
cathode. However, since an air-purging pump is required within the cathode, this technique
raises the cost of an MFC. Different aeration rates were used to evaluate the efficacy of
MFCs. To study the influence of anode aeration on electricity generation, an air-cathode
MFC that had earlier been embellished anaerobically in the anode was subjected to aeration
intermittently and steadily [104]. Except for a loss in CE, intermittent aeration had almost
no impact on electricity production. An electricity with 0.35–0.41 V was generated with a
wide range of dissolved oxygen concentrations (D.O) at rate of (0.1–4.0 mg/L). The study
revealed that the maximum voltage output was minimally affected by anode aeration, but
CE was dramatically lowered. In another study, power generation was increased dramat-
ically in the anode MFC due to aeration. The results showed that the maximum voltage
generation of aerated, aerobic, and anaerobic anodes was 183, 150, and 68 mV, respec-
tively [105]. The aeration flow rate also plays a significant role in bioelectricity generation.
However, it has been demonstrated that power generation does not increase proportionally
with the increase in aeration flow rate. In another study, the optimal aeration flow rate
to accomplish the maximal power generation was reported to be 600 mL min−1 due to
the presence of adequate oxygen to serve as the terminal oxygen acceptor for electricity
production [106].

5. Different Products’ Recovery from Wastewater Using MFCs

To date, various wastewater treatment technologies are in practice to achieve sustain-
able goals along with greater treatment efficiencies [5,107–109]. MFCs, although being an
eco-friendly approach, require a high amount of investment, together with a maintenance
cost, which eventually leads to compromised economical aspects of their development.
This increased cost is mainly due to the involvement of separator materials and expensive
electrodes. The development of cost-effective bioelectrodes and abiotic electrodes has been
a promising aspect in minimizing the cost of MFCs’ establishment and maintenance but
requires more research for designing. MFCs based on decentralized wastewater are cost
efficient due to the reduction in the transportation cost for wastewater and less energy con-
sumption. Moreover, they promote the recovery of additional valuable substances found
in wastewater, such as gold, heavy metals, and silver, thus rendering them economically
viable.

MFCs have shown excellent efficiencies for the removal and recovery of heavy met-
als from wastewater. For instance, an algal (Chlorella sp.)-based MFC with nickel-foam/
graphene electrodes achieved up to 95% Cd(II) removal efficiency with a maximum adsorp-
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tion amount of 115 g/m2 [110]. Other studies using ligand-based sensor materials have
also achieved significant Cd(II) adsorption capacities of 167.33 mg/g and 176.19 mg/g,
respectively [111,112]. However, algal MFC provides an advantage over other technologies
due to enhanced power generation, with a maximum power density of 36.4 Mw/m2 [110].
Similarly, for the detection of wastewater metal contaminants such as cesium, copper, and
lead, functionalized adsorbents that can achieve excellent adsorption capacities have been
developed [113–115]. MFCs have also resulted in 98.3% and 89.6% Cu2+ and Pb(II) removal
rates, respectively [116,117]. However, for cesium removal from wastewater, MFCs have
shown undesirable results owing to high electrical resistance and low potential [118].

The wastewater generated from food industries, animal houses, and agriculture is
high-strength wastewater containing high amounts of nitrogen (N) and phosphorus (P)
components that can be further utilized as fertilizers that are vital in agricultural activi-
ties [119]. Researchers have worked on the development of a lucrative MFC system for
silver metal recovery from silver (Ag) ion-containing wastewaters [120]. Silver metal recov-
ery was achieved with efficiencies as high as 99.91 ± 0.00% to 98.26± 0.01% with an output
rate of 69.9 kg silver/kWh energy output. This was obtained using a batch-fed cathode and
continuously fed anode systems with an initial silver concentration of 200 ppm. Another
study investigated the utilization of tetrachlorocuprate as an electron acceptor of an MFC
for the discovery of requirements that can affect the cost-efficient recovery of gold. The
highest MFC efficiency was found to be around 57% for Au (III), with a concentration
of 200 ppm, and the Au recovery efficiency and remaining concentration were reported
to be 99.89 ± 0.00% and 0.22 ± 0.00 ppm, respectively. An air-cathode single-chamber
MFC was constructed to analyze the effects of ammonium (NH4) and magnesium (Mg) on
phosphorus precipitation in artificial wastewater.

Phosphorus was precipitated as struvite, and NH4 and Mg were added to the effluent.
After dissolving the precipitated phosphorus on the cathode with MES buffers and Milli-
Q water, the phosphorus was able to be recovered [121]. A three-chamber MFC-based
nitrogen recovery technique from synthetic wastewater was demonstrated in a study [122].
The ferric nitrate was a single-electron acceptor in the cathode and was also utilized
to evaluate the NO3–N recovery efficiency in the event of NO–3 as the main anion in
the cathode. Overall, the results showed it was possible to recover approximately 47%
NH+4—N in the anode chamber and 83% NO–3—N in the cathode chamber. In another
study, dual-compartment MFCs were constructed and operated continuously with various
influent concentrations of ammonium-nitrogen (5–40 mg/L). The influence of ammonium
on organics removal and output of the energy and the recovery of nutrients was examined.
Overall, the experimental results showed that the phosphate recovery rate gained in MFC
was influenced by ammonium concentration [123]. Researchers have evaluated the work
performance of the MFCs using mixed consortia and isolated pure cultures of Firmicutes
and Proteobacteria species from biofilm for electricity production and nutrient recovery. The
study revealed that the microbes utilize less than 10% of total phosphorus for their growth;
meanwhile, 90% was able to be recovered as struvite [124].

It has been reported that the ammonium content is approximately 9000 mg/L in
human urine, and it was 8100 mg/L after urine hydrolysis was utilized with different
MFCs models, such as continuous mode, for treatment. Through the application of MFCs,
nutrients were able to be recovered from human urine also in a form of struvite together
with electricity generating. A three-stage single-chamber MFC/struvite extraction system
was utilized to recover nutrients. In the first and third stages, MFCs were reported to
generate 14.32 W/m3 and 11.76 W/m3 of power, respectively, and in the second stage, MFC
was used for nutrient recovery [25]. Table 3 shows innovative approaches to improve MFC
function and outcome.
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Table 3. Innovative approaches to improve MFC systems and productivity.

S. No. MFC System Outcome Ref

1
Synthetic polymeric tubular MFC having affinity
binding group for removal of volatile fatty acids and
inorganic compounds

Effective removal (≥98%) of pollutants, up to 95%
biodegradation of the toxic compounds [125]

2
CW-MFC system developed for electroactive and
textile dye wastewater treatment through microbial
community

Bioaugmentation and dynamic removal of pollutants
through electroactive bacterial community [126]

3 Screening of fruit waste for MFCs
The energy production rate of orange waste was
maximally up to 357 mV voltage output, followed by
banana and mango fruit waste

[127]

4 Estimated the power generation capacity of sodium
citrate-treated MFCs

Significantly improved biocatalytic activity of anode
with maximum electrical energy output [128]

5 Study the MFC coupled effect with stacked 12
vertically-arranged constructed wetlands

Reduced COD level, uptake of free N and P, electricity
generation [73]

6 Microalgae can be used in MFCs
Efficient for CO2 uptake, effective removal of N and P,
symbiotic microalgae–bacterial interactions for power
generation

[129]

7 Anode–cathode catalysts immersed in biomolecule
solutions (monosaccharides, nitrogen and amino acid)

51% COD, 20 mL methane gas was achieved at 20.5 ◦C
temperature [10]

8 MFC operated through bioelectrochemical nutrient
from human urine as a self-power generating system

Endured power and electrical current generation at a
rate of 3 A/m for over two months and
simultaneously increased concentration of N and K by
a factor of 1.5–1.7

[123]

9 Evaluated the effect of ammonia concentration on
MFC power generation and efficiency

A high concentration of ammonia in the influent
negatively affected the ammonium recovery and poor
uptake of phosphorus by MFCs

[72]

10

Estimated the treatment efficiency of membrane-less
MFCs by simulating core of a shallow un-planted
horizontal subsurface flow-constructed wetland
system

Effective for domestic wastewater treatment with 25%
efficiency [72]

11 Applicability of lingo-cellulosic low-cost material for
MFCs

Maximum power generation through the high
electro-osmotic force and high pH at the cathode with
significant recovery of elements

[130]

12 Evaluated the effect of nitrate and sulphate
components on MFC microbial component activity

Nitrate does not show any effect on cathode and
anode microbial flora. However, the bacterial
community of Desulfovibrio showed dominant
growth on the cathode (32.9%) after the addition of
sulfate

[131]

13 Studied the long-term processing of multi-layered
MFC for brewery effluent

Maximum removal efficiency for COD up to 94.6 ±
1.0% but system failure due to long-term processing [132]

14 Algae cathode MFCs for landfill leaching at different
concentrations of pollutants of 5–40%

Enhanced removal of nitrogen and phosphorus with
power generation [133]

15 200 L modularized MFC system consisting of 96 MFC
modules

The cost-effective system generates ∼200 mW power,
75% of the total COD, and 90% of the suspended
solids removal

[7]

16 Electro-chemicals disruption of pollutants Non-toxic metabolites [134]

17 Two-chamber MFC for wastewater treatment at a rate
of 84 L/hr and COD of 3000 mg/L

COD conversion of 91.9%, electricity generation of
26.4 kWh for the feed of 84 L/hr [135]

18 Constructed wetland reactor and a microbial fuel cell
reactor(CW-MFC) for digestion

MFC digestion rate for 98–100 L/hr and 74%
electricity generation [136]

19 microbial bioelectrochemical systems (BES) co-culture
Pseudomonas aeruginosa and other strain Highest electrochemical activity [137]

20 MFC system with passive aeration method for waste
treatment

Cost-effective approaches for electricity generation by
the 80% organic compound removal [138]

21
Comparative study of a single-chamber (MFC-1) and
double-chamber (MFC-2) MFC for wastewater
treatment

Effective removal of solutes, maintenance of COD
level and electricity production [139]
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6. Recent Advancements in MFC Technology

MFCs are a relatively new promising technology for producing renewable energy
while treating wastewater. Despite the various advantages that MFCs provide, this tech-
nology still has significant drawbacks that prevent its expansion and widespread use in
potential areas of application. Recent developments in MFC technology have involved
significant research on novel materials to be applied in the primary system components
(anodic/cathodic electrodes and separator) to overcome these system bottlenecks, mainly
low power density levels from wastewater substrates. Nanostructured materials have
attracted a lot of attention for the fabrication of advanced electrodes and separators due to
their improved properties such as high specific surface area, increased transfer rates, and in
many cases, low cost and ease of fabrication [140]. Metal nanoparticles such as copper, gold,
platinum, and palladium; silver, quantum dots, and metal-oxides such as 480 CeO2, TiO2,
ZnO, SiO2, and MnO2; graphene (2D nanomaterials), carbon nanotubes, and nanocom-
posites (multiphase materials) are some examples of nanomaterials for electrodes that can
increase the function of MFCs [141]. The addition of nanosized fillers to the nanocomposite
matrix can improve the performance of anode materials. Multiphase materials that include
at least one component phase with a size smaller than 100 nm are included in nanocom-
posites. To operate as a suitable anode material in MFCs, nanocomposites are created
to enhance a material’s distinctive functionalities (such as mechanical strength, electrical
conductivity, and chemical stability) [37]. The power density of MFCs may be increased
to more than 2000 mWm–2 by utilizing nanocomposite anodic materials such as graphene
oxide and stainless steel-based nanocomposite [142]. Carbon nanotubes (CNTs) are a novel
form of carbon material that has received considerable interest from scientists due to their
distinctive fiber structure, extremely high mechanical strength and toughness, large spe-
cific surface area, good thermal stability and chemical inertia, strong conductivity, and
distinctive one-dimensional nanometer scale [143]. Through layer-by-layer self-assembly,
Roh et al. [144] changed carbon paper to use multi-walled carbon nanotubes as the anode.
The internal resistance of the modified carbon paper with CNTs in the MFC was 258 Ω,
which was much lower than the equivalently operated MFC with carbon paper (1163 Ω),
as compared to plain carbon paper. From a starting power density of 241 mW/m2, the
maximum power density reached 290 mW/m2. The results might be explained by the
electrical double-layered region expanding due to the CNT’s inclusion, which increased the
surface area and average pore diameter. Today, due to its exceptional qualities, graphene is
regarded as a top competitor for a highly effective and affordable material for MFCs. Since
it has a high surface area and high electrochemical conductivity, graphene is frequently
utilized as an anode material in MFC. The graphene-modified stainless steel mesh anode in
MFC has a power density of 2668 mW m2 [145]. For the benefit of enhancing the MFC’s
performance, a new modified anode based on multi-walled carbon nanotubes was de-
signed. E. coli grew effectively on MWCNT-, MWCNTCOOH-, and MWCNT-NH2-doped
anodes as opposed to bare carbon fiber anodes. As a result, 560.4 mW/m2 is the greatest
power density that could be measured using an anode modified by MWCNT-COOH [146].
Therefore, these kinds of adjustments contribute to enhancing the MFC’s power generation
and stability. As MFC can produce power by treating wastewater, nanomaterial electrode
materials offer a viable technique for high hydrogen generation.

7. Challenges and Future Prospects

Various research papers and studies suggest that MFC technologies have been demon-
strated as ecologically sustainable techniques to generate power while also removing
pollutants from different forms of wastewater. However, there are a few significant issues,
including economical aspects, development of designs that offer maximum output, and
so forth, with MFC technologies. Thus, they have never been considered a significant
competitor in the field of renewable energy or the wastewater treatment sector. Neverthe-
less, MFCs are probably sufficient in terms of net energy production, rather than utilizing
energy obtained from the oxidation of organic materials using wastes and inorganic car-
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bon under certain conditions. MFC systems have the benefit of being able to transform
chemical energy directly into electrical energy through biological processes, allowing them
to physiologically adapt to the treatment of a wide range of chemical substrates at differ-
ent concentrations. MFC technology can be used by research groups to facilitate a better
understanding of electrochemical, biochemical, microbial, and material surface responses
under regulated conditions, which has had a favorable influence. The main focuses of their
study are comprised of how materials, chemical compounds, and feedstock substrates,
among other things, might affect them [45]. This strategy allows us to better understand
the potential issues affecting MFCs’ larger scale applications.

To achieve commercial success of MFC technology, measures should be taken to mini-
mize the high cost of operation and ameliorate poor power production [147]. Concerning
configuration and treatment capabilities, MFCs have a capital cost that is 30 times greater
than a standard activated sludge treatment system utilized for household wastewater [148].
The utilization of expensive electrode materials, such as catalyst, current collector, and
separator materials, leads to the high-level capital cost of MFCs. In MFCs, bacteria can
transfer electrons to the anode and protons into the solution, which causes a negative anode
potential (approximately 0.2 V). The most promising cathode oxidants are oxygen and air,
and both have a maximum theoretical potential of 0.805 V. Pt-catalyzed cathodes facilitate
a maximum achievable potential of +0.3 V in MFC. The highest limits of power density in
the case of MFCs were anticipated to be between 17 and 19 W/m2, assuming negligible
internal resistance or first-order kinetics characteristic of microorganisms in biofilms.

The poor power density is due to a combination of factors, including solution con-
ditions, high internal resistance, substrate degradability, and the dynamics of biofilm. To
improve currents and voltage output, the stacked MFCs could be used in parallel or series;
however, parallel connections may enhance currents and power density, and CE is also
substantially higher in parallel than in series. The stacked MFCs in a direct series can
increase voltages, which is difficult to achieve with a chemical fuel cell due to the impact
of the external circuit on the microbial consortia. The voltage reversal in stacked MFCs
and its impact on the enhancement of the performance in a direct series can be a topic of
investigation for future study. The larger voltage could be accomplished by connecting
arrays of MFCs to the charge capacitors in parallel and further discharging them in series.
However, this technique can raise the cost and power consumption [148].

Although MFCs are considered a new trend, further studies should concentrate on
minimizing the limiting factors and comprehending the metabolic process involved to
select high electrochemically active microorganisms. This entails creating a thick conduc-
tive biofilm and fine-tuning the operational parameters. The applicability of MFCs in
wastewater treatment is directly determined by the design and architecture of the reac-
tor [149,150]. Investigations on energy utilization and storage are required to develop a
power utilization and collecting system that would speed up the commercial deployment
of MFCs as well as reduce the elimination of hazardous substances. Figure 5 depicts green
chemistry approaches for wastewater treatment through the MFC system. Owing to re-
markable advancements in electrode materials and inoculation patterns, MFC stacks can
withstand the critical challenges of ionic short circuits and voltage reversal, which have
been significant hurdles to practical use [151,152].

Further research is needed to address the following issues: enhanced power genera-
tion, regulated microbial performance in the unit, creation of new full-scale MFC models
to reduce possible losses for optimal performance, and reduction of costs. Finally, the
integration of MFCs with other wastewater treatment technologies can enhance treatment
efficiency and hence reduce the overall power consumption to a great extent.
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8. Concluding Remarks

This review article has attempted to summarize the applications of MFCs in wastewa-
ter treatment and green bioelectricity generation. Recent developments in MFC technolo-
gies have been comprehensively discussed, including improvements in their structural
architecture, integration with different novel biocatalysts and biocathode, anode, and cath-
ode materials, various microbial community interactions and substrates to be used, and the
removal of contaminants. Furthermore, limitations restricting the commercialization of fuel
cells such as the cost and efficiency of treatment, electrode performance, power density, and
high maintenance expenditure have been highlighted. MFCs are widely acknowledged
as a decent and potent solution for integrating bioenergy production and wastewater
treatment. MFC technologies are ecologically favorable techniques, and power output may
be enhanced by utilizing cellulosic materials, which is beneficial to the system. As a result,
enhancements in power densities, COD removal, pollutant degradation, and a widespread
requirement to generate electricity without CO2 emissions might indicate that MFCs are
increasingly practicable for power production. Thus, it can be concluded that MFCs may be
commercialized in large-scale industries by enhancing power density and overall efficacy
while decreasing resource budgets, as well as coordinating a boundless accomplishment in
energy production and sustainable wastewater treatment.
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